mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
Add vLLM provider
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
This commit is contained in:
parent
95a96afe34
commit
925e1afb5b
4 changed files with 317 additions and 0 deletions
24
llama_stack/providers/adapters/inference/vllm/__init__.py
Normal file
24
llama_stack/providers/adapters/inference/vllm/__init__.py
Normal file
|
@ -0,0 +1,24 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from .config import DatabricksImplConfig
|
||||||
|
from .vllm import InferenceEndpointAdapter, VLLMAdapter
|
||||||
|
|
||||||
|
|
||||||
|
async def get_adapter_impl(config: DatabricksImplConfig, _deps):
|
||||||
|
assert isinstance(config, DatabricksImplConfig), f"Unexpected config type: {type(config)}"
|
||||||
|
|
||||||
|
if config.url is not None:
|
||||||
|
impl = VLLMAdapter(config)
|
||||||
|
elif config.is_inference_endpoint():
|
||||||
|
impl = InferenceEndpointAdapter(config)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid configuration. Specify either an URL or HF Inference Endpoint details (namespace and endpoint name)."
|
||||||
|
)
|
||||||
|
|
||||||
|
await impl.initialize()
|
||||||
|
return impl
|
23
llama_stack/providers/adapters/inference/vllm/config.py
Normal file
23
llama_stack/providers/adapters/inference/vllm/config.py
Normal file
|
@ -0,0 +1,23 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from llama_models.schema_utils import json_schema_type
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: Any other engine configs
|
||||||
|
@json_schema_type
|
||||||
|
class VLLMImplConfig(BaseModel):
|
||||||
|
url: Optional[str] = Field(
|
||||||
|
default=None,
|
||||||
|
description="The URL for the vLLM model serving endpoint",
|
||||||
|
)
|
||||||
|
api_token: Optional[str] = Field(
|
||||||
|
default=None,
|
||||||
|
description="The API token",
|
||||||
|
)
|
262
llama_stack/providers/adapters/inference/vllm/vllm.py
Normal file
262
llama_stack/providers/adapters/inference/vllm/vllm.py
Normal file
|
@ -0,0 +1,262 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import AsyncGenerator
|
||||||
|
|
||||||
|
from llama_models.llama3.api.chat_format import ChatFormat
|
||||||
|
|
||||||
|
from llama_models.llama3.api.datatypes import Message, StopReason
|
||||||
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||||
|
from llama_models.sku_list import resolve_model
|
||||||
|
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import * # noqa: F403
|
||||||
|
from llama_stack.providers.utils.inference.prepare_messages import prepare_messages
|
||||||
|
|
||||||
|
from .config import VLLMImplConfig
|
||||||
|
|
||||||
|
# TODO
|
||||||
|
VLLM_SUPPORTED_MODELS = {}
|
||||||
|
|
||||||
|
|
||||||
|
class VLLMInferenceAdapter(Inference):
|
||||||
|
def __init__(self, config: VLLMImplConfig) -> None:
|
||||||
|
self.config = config
|
||||||
|
tokenizer = Tokenizer.get_instance()
|
||||||
|
self.formatter = ChatFormat(tokenizer)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def client(self) -> OpenAI:
|
||||||
|
return OpenAI(
|
||||||
|
api_key=self.config.api_token,
|
||||||
|
base_url=self.config.url
|
||||||
|
)
|
||||||
|
|
||||||
|
async def initialize(self) -> None:
|
||||||
|
return
|
||||||
|
|
||||||
|
async def shutdown(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def _messages_to_vllm_messages(self, messages: list[Message]) -> list:
|
||||||
|
vllm_messages = []
|
||||||
|
for message in messages:
|
||||||
|
if message.role == "ipython":
|
||||||
|
role = "tool"
|
||||||
|
else:
|
||||||
|
role = message.role
|
||||||
|
vllm_messages.append({"role": role, "content": message.content})
|
||||||
|
|
||||||
|
return vllm_messages
|
||||||
|
|
||||||
|
def resolve_vllm_model(self, model_name: str) -> str:
|
||||||
|
model = resolve_model(model_name)
|
||||||
|
assert (
|
||||||
|
model is not None
|
||||||
|
and model.descriptor(shorten_default_variant=True)
|
||||||
|
in VLLM_SUPPORTED_MODELS
|
||||||
|
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(VLLM_SUPPORTED_MODELS.keys())}"
|
||||||
|
|
||||||
|
return VLLM_SUPPORTED_MODELS.get(
|
||||||
|
model.descriptor(shorten_default_variant=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_vllm_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||||
|
options = {}
|
||||||
|
# TODO
|
||||||
|
return options
|
||||||
|
|
||||||
|
async def chat_completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: List[Message],
|
||||||
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||||
|
tools: Optional[List[ToolDefinition]] = None,
|
||||||
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||||
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||||
|
stream: Optional[bool] = False,
|
||||||
|
logprobs: Optional[LogProbConfig] = None,
|
||||||
|
) -> AsyncGenerator:
|
||||||
|
# wrapper request to make it easier to pass around (internal only, not exposed to API)
|
||||||
|
request = ChatCompletionRequest(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
sampling_params=sampling_params,
|
||||||
|
tools=tools or [],
|
||||||
|
tool_choice=tool_choice,
|
||||||
|
tool_prompt_format=tool_prompt_format,
|
||||||
|
stream=stream,
|
||||||
|
logprobs=logprobs,
|
||||||
|
)
|
||||||
|
|
||||||
|
# accumulate sampling params and other options to pass to vLLM
|
||||||
|
options = self.get_vllm_chat_options(request)
|
||||||
|
vllm_model = self.resolve_vllm_model(request.model)
|
||||||
|
messages = prepare_messages(request)
|
||||||
|
model_input = self.formatter.encode_dialog_prompt(messages)
|
||||||
|
|
||||||
|
input_tokens = len(model_input.tokens)
|
||||||
|
max_new_tokens = min(
|
||||||
|
request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
|
||||||
|
self.max_tokens - input_tokens - 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Calculated max_new_tokens: {max_new_tokens}")
|
||||||
|
|
||||||
|
assert (
|
||||||
|
request.model == self.model_name
|
||||||
|
), f"Model mismatch, expected {self.model_name}, got {request.model}"
|
||||||
|
|
||||||
|
if not request.stream:
|
||||||
|
r = self.client.chat.completions.create(
|
||||||
|
model=vllm_model,
|
||||||
|
messages=self._messages_to_vllm_messages(messages),
|
||||||
|
max_tokens=max_new_tokens,
|
||||||
|
stream=False,
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
stop_reason = None
|
||||||
|
if r.choices[0].finish_reason:
|
||||||
|
if (
|
||||||
|
r.choices[0].finish_reason == "stop"
|
||||||
|
or r.choices[0].finish_reason == "eos"
|
||||||
|
):
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif r.choices[0].finish_reason == "length":
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
|
||||||
|
completion_message = self.formatter.decode_assistant_message_from_content(
|
||||||
|
r.choices[0].message.content, stop_reason
|
||||||
|
)
|
||||||
|
yield ChatCompletionResponse(
|
||||||
|
completion_message=completion_message,
|
||||||
|
logprobs=None,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.start,
|
||||||
|
delta="",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
buffer = ""
|
||||||
|
ipython = False
|
||||||
|
stop_reason = None
|
||||||
|
|
||||||
|
for chunk in self.client.chat.completions.create(
|
||||||
|
model=vllm_model,
|
||||||
|
messages=self._messages_to_vllm_messages(messages),
|
||||||
|
max_tokens=max_new_tokens,
|
||||||
|
stream=True,
|
||||||
|
**options,
|
||||||
|
):
|
||||||
|
if chunk.choices[0].finish_reason:
|
||||||
|
if (
|
||||||
|
stop_reason is None and chunk.choices[0].finish_reason == "stop"
|
||||||
|
) or (
|
||||||
|
stop_reason is None and chunk.choices[0].finish_reason == "eos"
|
||||||
|
):
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif (
|
||||||
|
stop_reason is None
|
||||||
|
and chunk.choices[0].finish_reason == "length"
|
||||||
|
):
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
break
|
||||||
|
|
||||||
|
text = chunk.choices[0].message.content
|
||||||
|
if text is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# check if it's a tool call ( aka starts with <|python_tag|> )
|
||||||
|
if not ipython and text.startswith("<|python_tag|>"):
|
||||||
|
ipython = True
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content="",
|
||||||
|
parse_status=ToolCallParseStatus.started,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
buffer += text
|
||||||
|
continue
|
||||||
|
|
||||||
|
if ipython:
|
||||||
|
if text == "<|eot_id|>":
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
text = ""
|
||||||
|
continue
|
||||||
|
elif text == "<|eom_id|>":
|
||||||
|
stop_reason = StopReason.end_of_message
|
||||||
|
text = ""
|
||||||
|
continue
|
||||||
|
|
||||||
|
buffer += text
|
||||||
|
delta = ToolCallDelta(
|
||||||
|
content=text,
|
||||||
|
parse_status=ToolCallParseStatus.in_progress,
|
||||||
|
)
|
||||||
|
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=delta,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
buffer += text
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=text,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# parse tool calls and report errors
|
||||||
|
message = self.formatter.decode_assistant_message_from_content(
|
||||||
|
buffer, stop_reason
|
||||||
|
)
|
||||||
|
parsed_tool_calls = len(message.tool_calls) > 0
|
||||||
|
if ipython and not parsed_tool_calls:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content="",
|
||||||
|
parse_status=ToolCallParseStatus.failure,
|
||||||
|
),
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for tool_call in message.tool_calls:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content=tool_call,
|
||||||
|
parse_status=ToolCallParseStatus.success,
|
||||||
|
),
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.complete,
|
||||||
|
delta="",
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
|
@ -60,6 +60,14 @@ def available_providers() -> List[ProviderSpec]:
|
||||||
module="llama_stack.providers.adapters.inference.ollama",
|
module="llama_stack.providers.adapters.inference.ollama",
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
|
remote_provider_spec(
|
||||||
|
api=Api.inference,
|
||||||
|
adapter=AdapterSpec(
|
||||||
|
adapter_type="vllm",
|
||||||
|
pip_packages=["openai"],
|
||||||
|
module="llama_stack.providers.adapters.inference.vllm",
|
||||||
|
),
|
||||||
|
),
|
||||||
remote_provider_spec(
|
remote_provider_spec(
|
||||||
api=Api.inference,
|
api=Api.inference,
|
||||||
adapter=AdapterSpec(
|
adapter=AdapterSpec(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue