Merge branch 'main' into chore/standard-unsupported-model-err-msg-2517

This commit is contained in:
Rohan Awhad 2025-06-26 10:53:28 -04:00
commit 92d934e476
196 changed files with 2335 additions and 1516 deletions

View file

@ -23,6 +23,13 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
LogProbConfig,
Message,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -31,16 +38,7 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.apis.models.models import Model
from llama_stack.apis.models import Model
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.exceptions import UnsupportedModelError
from llama_stack.log import get_logger

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.apis.models.models import ModelType
from llama_stack.apis.models import ModelType
from llama_stack.exceptions import UnsupportedModelError
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
@ -35,7 +35,9 @@ def get_huggingface_repo(model_descriptor: str) -> str | None:
def build_hf_repo_model_entry(
provider_model_id: str, model_descriptor: str, additional_aliases: list[str] | None = None
provider_model_id: str,
model_descriptor: str,
additional_aliases: list[str] | None = None,
) -> ProviderModelEntry:
aliases = [
get_huggingface_repo(model_descriptor),

View file

@ -95,27 +95,25 @@ from llama_stack.apis.inference import (
CompletionResponse,
CompletionResponseStreamChunk,
GreedySamplingStrategy,
Message,
SamplingParams,
SystemMessage,
TokenLogProbs,
ToolChoice,
ToolResponseMessage,
TopKSamplingStrategy,
TopPSamplingStrategy,
UserMessage,
)
from llama_stack.apis.inference.inference import (
JsonSchemaResponseFormat,
Message,
OpenAIChatCompletion,
OpenAICompletion,
OpenAICompletionChoice,
OpenAIEmbeddingData,
OpenAIMessageParam,
OpenAIResponseFormatParam,
SamplingParams,
SystemMessage,
TokenLogProbs,
ToolChoice,
ToolConfig,
ToolResponseMessage,
TopKSamplingStrategy,
TopPSamplingStrategy,
UserMessage,
)
from llama_stack.apis.inference.inference import (
from llama_stack.apis.inference import (
OpenAIChoice as OpenAIChatCompletionChoice,
)
from llama_stack.models.llama.datatypes import (
@ -1026,7 +1024,9 @@ def openai_messages_to_messages(
return converted_messages
def openai_content_to_content(content: str | Iterable[OpenAIChatCompletionContentPartParam]):
def openai_content_to_content(content: str | Iterable[OpenAIChatCompletionContentPartParam] | None):
if content is None:
return ""
if isinstance(content, str):
return content
elif isinstance(content, list):

View file

@ -45,8 +45,8 @@ class RedisKVStoreConfig(CommonConfig):
return {
"type": "redis",
"namespace": None,
"host": "${env.REDIS_HOST:localhost}",
"port": "${env.REDIS_PORT:6379}",
"host": "${env.REDIS_HOST:=localhost}",
"port": "${env.REDIS_PORT:=6379}",
}
@ -66,7 +66,7 @@ class SqliteKVStoreConfig(CommonConfig):
return {
"type": "sqlite",
"namespace": None,
"db_path": "${env.SQLITE_STORE_DIR:" + __distro_dir__ + "}/" + db_name,
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
}
@ -84,12 +84,12 @@ class PostgresKVStoreConfig(CommonConfig):
return {
"type": "postgres",
"namespace": None,
"host": "${env.POSTGRES_HOST:localhost}",
"port": "${env.POSTGRES_PORT:5432}",
"db": "${env.POSTGRES_DB:llamastack}",
"user": "${env.POSTGRES_USER:llamastack}",
"password": "${env.POSTGRES_PASSWORD:llamastack}",
"table_name": "${env.POSTGRES_TABLE_NAME:" + table_name + "}",
"host": "${env.POSTGRES_HOST:=localhost}",
"port": "${env.POSTGRES_PORT:=5432}",
"db": "${env.POSTGRES_DB:=llamastack}",
"user": "${env.POSTGRES_USER:=llamastack}",
"password": "${env.POSTGRES_PASSWORD:=llamastack}",
"table_name": "${env.POSTGRES_TABLE_NAME:=" + table_name + "}",
}
@classmethod
@ -131,12 +131,12 @@ class MongoDBKVStoreConfig(CommonConfig):
return {
"type": "mongodb",
"namespace": None,
"host": "${env.MONGODB_HOST:localhost}",
"port": "${env.MONGODB_PORT:5432}",
"host": "${env.MONGODB_HOST:=localhost}",
"port": "${env.MONGODB_PORT:=5432}",
"db": "${env.MONGODB_DB}",
"user": "${env.MONGODB_USER}",
"password": "${env.MONGODB_PASSWORD}",
"collection_name": "${env.MONGODB_COLLECTION_NAME:" + collection_name + "}",
"collection_name": "${env.MONGODB_COLLECTION_NAME:=" + collection_name + "}",
}

View file

@ -12,8 +12,7 @@ import uuid
from abc import ABC, abstractmethod
from typing import Any
from llama_stack.apis.files import Files
from llama_stack.apis.files.files import OpenAIFileObject
from llama_stack.apis.files import Files, OpenAIFileObject
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,

View file

@ -7,6 +7,7 @@ import base64
import io
import logging
import re
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any
@ -23,12 +24,13 @@ from llama_stack.apis.common.content_types import (
)
from llama_stack.apis.tools import RAGDocument
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
from llama_stack.providers.datatypes import Api
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
log = logging.getLogger(__name__)
@ -148,6 +150,7 @@ async def content_from_doc(doc: RAGDocument) -> str:
def make_overlapped_chunks(
document_id: str, text: str, window_len: int, overlap_len: int, metadata: dict[str, Any]
) -> list[Chunk]:
default_tokenizer = "DEFAULT_TIKTOKEN_TOKENIZER"
tokenizer = Tokenizer.get_instance()
tokens = tokenizer.encode(text, bos=False, eos=False)
try:
@ -161,16 +164,32 @@ def make_overlapped_chunks(
for i in range(0, len(tokens), window_len - overlap_len):
toks = tokens[i : i + window_len]
chunk = tokenizer.decode(toks)
chunk_id = generate_chunk_id(chunk, text)
chunk_metadata = metadata.copy()
chunk_metadata["chunk_id"] = chunk_id
chunk_metadata["document_id"] = document_id
chunk_metadata["token_count"] = len(toks)
chunk_metadata["metadata_token_count"] = len(metadata_tokens)
backend_chunk_metadata = ChunkMetadata(
chunk_id=chunk_id,
document_id=document_id,
source=metadata.get("source", None),
created_timestamp=metadata.get("created_timestamp", int(time.time())),
updated_timestamp=int(time.time()),
chunk_window=f"{i}-{i + len(toks)}",
chunk_tokenizer=default_tokenizer,
chunk_embedding_model=None, # This will be set in `VectorDBWithIndex.insert_chunks`
content_token_count=len(toks),
metadata_token_count=len(metadata_tokens),
)
# chunk is a string
chunks.append(
Chunk(
content=chunk,
metadata=chunk_metadata,
chunk_metadata=backend_chunk_metadata,
)
)
@ -237,6 +256,9 @@ class VectorDBWithIndex:
for i, c in enumerate(chunks):
if c.embedding is None:
chunks_to_embed.append(c)
if c.chunk_metadata:
c.chunk_metadata.chunk_embedding_model = self.vector_db.embedding_model
c.chunk_metadata.chunk_embedding_dimension = self.vector_db.embedding_dimension
else:
_validate_embedding(c.embedding, i, self.vector_db.embedding_dimension)

View file

@ -50,7 +50,7 @@ class SqliteSqlStoreConfig(SqlAlchemySqlStoreConfig):
def sample_run_config(cls, __distro_dir__: str, db_name: str = "sqlstore.db"):
return cls(
type="sqlite",
db_path="${env.SQLITE_STORE_DIR:" + __distro_dir__ + "}/" + db_name,
db_path="${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
)
@property
@ -78,11 +78,11 @@ class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig):
def sample_run_config(cls, **kwargs):
return cls(
type="postgres",
host="${env.POSTGRES_HOST:localhost}",
port="${env.POSTGRES_PORT:5432}",
db="${env.POSTGRES_DB:llamastack}",
user="${env.POSTGRES_USER:llamastack}",
password="${env.POSTGRES_PASSWORD:llamastack}",
host="${env.POSTGRES_HOST:=localhost}",
port="${env.POSTGRES_PORT:=5432}",
db="${env.POSTGRES_DB:=llamastack}",
user="${env.POSTGRES_USER:=llamastack}",
password="${env.POSTGRES_PASSWORD:=llamastack}",
)

View file

@ -180,7 +180,7 @@ async def start_trace(name: str, attributes: dict[str, Any] = None) -> TraceCont
trace_id = generate_trace_id()
context = TraceContext(BACKGROUND_LOGGER, trace_id)
attributes = {marker: True for marker in ROOT_SPAN_MARKERS} | (attributes or {})
attributes = dict.fromkeys(ROOT_SPAN_MARKERS, True) | (attributes or {})
context.push_span(name, attributes)
CURRENT_TRACE_CONTEXT.set(context)

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,14 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import hashlib
import uuid
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
hash_input = f"{document_id}:{chunk_text}".encode()
return str(uuid.UUID(hashlib.md5(hash_input).hexdigest()))