mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-30 23:51:00 +00:00
vllm
This commit is contained in:
parent
71219b4937
commit
92ee627e89
1 changed files with 32 additions and 36 deletions
|
@ -8,13 +8,17 @@ from typing import AsyncGenerator
|
|||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_models.sku_list import all_registered_models, resolve_model
|
||||
from llama_models.sku_list import all_registered_models
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelAlias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
|
@ -30,8 +34,24 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
|
||||
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||
def build_model_aliases():
|
||||
return [
|
||||
ModelAlias(
|
||||
provider_model_id=model.huggingface_repo,
|
||||
aliases=[model.descriptor()],
|
||||
llama_model=model.descriptor(),
|
||||
)
|
||||
for model in all_registered_models()
|
||||
if model.huggingface_repo
|
||||
]
|
||||
|
||||
|
||||
class VLLMInferenceAdapter(Inference, ModelRegistryHelper, ModelsProtocolPrivate):
|
||||
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
self,
|
||||
model_aliases=build_model_aliases(),
|
||||
)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
self.client = None
|
||||
|
@ -44,31 +64,6 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def initialize(self) -> None:
|
||||
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
||||
|
||||
async def register_model(self, model: Model) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> List[Model]:
|
||||
models = []
|
||||
for model in self.client.models.list():
|
||||
repo = model.id
|
||||
if repo not in self.huggingface_repo_to_llama_model_id:
|
||||
print(f"Unknown model served by vllm: {repo}")
|
||||
continue
|
||||
|
||||
identifier = self.huggingface_repo_to_llama_model_id[repo]
|
||||
if identifier == model.provider_resource_id:
|
||||
print(
|
||||
f"Verified that model {model.provider_resource_id} is being served by vLLM"
|
||||
)
|
||||
return
|
||||
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} is not being served by vLLM"
|
||||
)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
|
@ -95,8 +90,9 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model_id,
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
|
@ -148,10 +144,6 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
if "max_tokens" not in options:
|
||||
options["max_tokens"] = self.config.max_tokens
|
||||
|
||||
model = resolve_model(request.model)
|
||||
if model is None:
|
||||
raise ValueError(f"Unknown model: {request.model}")
|
||||
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
|
@ -163,16 +155,20 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
]
|
||||
else:
|
||||
input_dict["prompt"] = chat_completion_request_to_prompt(
|
||||
request, self.formatter
|
||||
request, self.get_llama_model(request.model), self.formatter
|
||||
)
|
||||
else:
|
||||
assert (
|
||||
not media_present
|
||||
), "Together does not support media for Completion requests"
|
||||
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
||||
input_dict["prompt"] = completion_request_to_prompt(
|
||||
request,
|
||||
self.get_llama_model(request.model),
|
||||
self.formatter,
|
||||
)
|
||||
|
||||
return {
|
||||
"model": model.huggingface_repo,
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**options,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue