Merge branch 'main' into prompt-api

This commit is contained in:
Francisco Arceo 2025-09-08 08:58:21 -06:00 committed by GitHub
commit 931f7da61b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 728 additions and 191 deletions

View file

@ -354,6 +354,47 @@ You can easily validate a request by running:
curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://127.0.0.1:8321/v1/providers
```
#### Kubernetes Authentication Provider
The server can be configured to use Kubernetes SelfSubjectReview API to validate tokens directly against the Kubernetes API server:
```yaml
server:
auth:
provider_config:
type: "kubernetes"
api_server_url: "https://kubernetes.default.svc"
claims_mapping:
username: "roles"
groups: "roles"
uid: "uid_attr"
verify_tls: true
tls_cafile: "/path/to/ca.crt"
```
Configuration options:
- `api_server_url`: The Kubernetes API server URL (e.g., https://kubernetes.default.svc:6443)
- `verify_tls`: Whether to verify TLS certificates (default: true)
- `tls_cafile`: Path to CA certificate file for TLS verification
- `claims_mapping`: Mapping of Kubernetes user claims to access attributes
The provider validates tokens by sending a SelfSubjectReview request to the Kubernetes API server at `/apis/authentication.k8s.io/v1/selfsubjectreviews`. The provider extracts user information from the response:
- Username from the `userInfo.username` field
- Groups from the `userInfo.groups` field
- UID from the `userInfo.uid` field
To obtain a token for testing:
```bash
kubectl create namespace llama-stack
kubectl create serviceaccount llama-stack-auth -n llama-stack
kubectl create token llama-stack-auth -n llama-stack > llama-stack-auth-token
```
You can validate a request by running:
```bash
curl -s -L -H "Authorization: Bearer $(cat llama-stack-auth-token)" http://127.0.0.1:8321/v1/providers
```
#### GitHub Token Provider
Validates GitHub personal access tokens or OAuth tokens directly:
```yaml

View file

@ -7,4 +7,5 @@ Here's a list of known external providers that you can use with Llama Stack:
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Inline **and** Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
| MongoDB | VectorIO with MongoDB | Vector_IO | Remote | [mongodb-llama-stack](https://github.com/mongodb-partners/mongodb-llama-stack) |