Added hadamard transform for spinquant

This commit is contained in:
Sachin Mehta 2024-10-25 11:48:24 -07:00
parent afae4e3d8e
commit 93472042f8
2 changed files with 103 additions and 2 deletions

View file

@ -35,12 +35,11 @@ from termcolor import cprint
from llama_stack.apis.inference import * # noqa: F403 from llama_stack.apis.inference import * # noqa: F403
from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerTokenizerData
from llama_stack.distribution.utils.model_utils import model_local_dir from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.providers.utils.inference.prompt_adapter import ( from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_messages, chat_completion_request_to_messages,
) )
from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerTokenizerData
from .config import ( from .config import (
Fp8QuantizationConfig, Fp8QuantizationConfig,
@ -159,6 +158,16 @@ class Llama:
model = Transformer(model_args) model = Transformer(model_args)
model = convert_to_int4_quantized_model(model, model_args, config) model = convert_to_int4_quantized_model(model, model_args, config)
model.load_state_dict(state_dict, strict=True) model.load_state_dict(state_dict, strict=True)
if config.quantization.spinquant:
# Add a wrapper for adding hadamard transform for spinquant.
# This needs to be done after loading the state dict otherwise an error will be raised while
# loading the state dict.
from .quantization.hadamard_utils import (
add_hadamard_transform_for_spinquant,
)
add_hadamard_transform_for_spinquant(model)
else: else:
raise NotImplementedError( raise NotImplementedError(
"Currently int4 and fp8 are the only supported quantization methods." "Currently int4 and fp8 are the only supported quantization methods."

View file

@ -0,0 +1,92 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import math
import re
import torch
from torch import nn
def hadamard_transform(x: torch.Tensor) -> torch.Tensor:
"""Hadamard transform.
This function performs the Hadamard transform on the input tensor 'x'.
The Hadamard transform is a linear transformation that multiplies the input
tensor by the Hadamard matrix of dimension n x n, where n is the size of
the last dimension of the input tensor.
"""
*_, n = x.shape
m = int(math.log2(n))
assert n == 1 << m, "n must be a power of 2"
x = x[..., None]
inv_sqrt2 = 0.5**0.5
for _ in range(m):
top = x[..., ::2, :] + x[..., 1::2, :]
bot = x[..., ::2, :] - x[..., 1::2, :]
x = torch.cat((top, bot), dim=-1)
x *= inv_sqrt2
res = x.squeeze(-2)
return res
class HadamardModule(torch.nn.Module):
"""A module that applies the Hadamard transform to the input tensor.
Args:
group_size: The size of the groups that the input tensor will be divided into
before applying the Hadamard transform.
"""
def __init__(self, group_size: int) -> None:
super().__init__()
self.group_size = group_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
reshape_back = False
orig_shape = x.shape
if self.group_size != x.shape[-1]:
reshape_back = True
x = x.reshape(-1, x.shape[-1] // self.group_size, self.group_size)
x = hadamard_transform(x)
if reshape_back:
x = x.reshape(orig_shape)
return x
def add_hadamard_transform_for_spinquant(
model: torch.nn.Module, prefix: str = ""
) -> None:
"""
Adds a Hadamard transform to the last linear layer of each feedforward network (FFN) in the model.
This function recursively traverses the model's children and looks for layers that match the pattern
"layers.<digit>.feed_forward.w2", where <digit> is one or more digits. When such a layer is found,
it is replaced with a new sequential module that consists of a HadamardModule followed by the original
layer. The HadamardModule applies the Hadamard transform to the input tensor.
See `SpinQuant <https://arxiv.org/abs/2405.16406>_` paper for more details.
Args:
model: An instance of 'torch.nn.Module' (e.g., Transformer model).
prefix: A string prefix to add to the full name of each child module.
Returns:
None
"""
pattern_last_linear_ffn = r"layers.\d+.feed_forward.w2"
for module_name, module in model.named_children():
child_full_name = prefix + "." + module_name
if re.search(pattern_last_linear_ffn, child_full_name):
new_module = nn.Sequential(
HadamardModule(group_size=module.in_features), module
)
del module
setattr(model, module_name, new_module)
else:
add_hadamard_transform_for_spinquant(
module, (prefix + "." if prefix else prefix) + module_name
)