fix ImageContentItem to take base64 string as image.data (#909)

# What does this PR do?

- Discussion in
https://github.com/meta-llama/llama-stack/pull/906#discussion_r1936260819

- image.data should accept base64 string as input instead of binary
bytes, change prompt_adapter to account for that.

## Test Plan

```
pytest -v tests/client-sdk/inference/test_inference.py
```

with test in https://github.com/meta-llama/llama-stack/pull/906

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This commit is contained in:
Xi Yan 2025-01-30 15:58:23 -08:00 committed by GitHub
parent 7fe2592795
commit 94051cfe9e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 85 additions and 31 deletions

View file

@ -248,7 +248,9 @@ class JsonSchemaGenerator:
type_schema.update(self._metadata_to_schema(m))
return type_schema
def _simple_type_to_schema(self, typ: TypeLike) -> Optional[Schema]:
def _simple_type_to_schema(
self, typ: TypeLike, json_schema_extra: Optional[dict] = None
) -> Optional[Schema]:
"""
Returns the JSON schema associated with a simple, unrestricted type.
@ -264,6 +266,11 @@ class JsonSchemaGenerator:
elif typ is float:
return {"type": "number"}
elif typ is str:
if json_schema_extra and "contentEncoding" in json_schema_extra:
return {
"type": "string",
"contentEncoding": json_schema_extra["contentEncoding"],
}
return {"type": "string"}
elif typ is bytes:
return {"type": "string", "contentEncoding": "base64"}
@ -303,7 +310,12 @@ class JsonSchemaGenerator:
# not a simple type
return None
def type_to_schema(self, data_type: TypeLike, force_expand: bool = False) -> Schema:
def type_to_schema(
self,
data_type: TypeLike,
force_expand: bool = False,
json_schema_extra: Optional[dict] = None,
) -> Schema:
"""
Returns the JSON schema associated with a type.
@ -313,7 +325,7 @@ class JsonSchemaGenerator:
"""
# short-circuit for common simple types
schema = self._simple_type_to_schema(data_type)
schema = self._simple_type_to_schema(data_type, json_schema_extra)
if schema is not None:
return schema
@ -486,15 +498,9 @@ class JsonSchemaGenerator:
property_docstrings = get_class_property_docstrings(
typ, self.options.property_description_fun
)
properties: Dict[str, Schema] = {}
required: List[str] = []
for property_name, property_type in get_class_properties(typ):
defaults = {}
if "model_fields" in members:
f = members["model_fields"]
defaults = {k: finfo.default for k, finfo in f.items()}
# rename property if an alias name is specified
alias = get_annotation(property_type, Alias)
if alias:
@ -502,11 +508,22 @@ class JsonSchemaGenerator:
else:
output_name = property_name
defaults = {}
json_schema_extra = None
if "model_fields" in members:
f = members["model_fields"]
defaults = {k: finfo.default for k, finfo in f.items()}
json_schema_extra = f.get(output_name, None).json_schema_extra
if is_type_optional(property_type):
optional_type: type = unwrap_optional_type(property_type)
property_def = self.type_to_schema(optional_type)
property_def = self.type_to_schema(
optional_type, json_schema_extra=json_schema_extra
)
else:
property_def = self.type_to_schema(property_type)
property_def = self.type_to_schema(
property_type, json_schema_extra=json_schema_extra
)
required.append(output_name)
# check if attribute has a default value initializer

View file

@ -2439,27 +2439,32 @@
"type": {
"type": "string",
"const": "image",
"default": "image"
"default": "image",
"description": "Discriminator type of the content item. Always \"image\""
},
"image": {
"type": "object",
"properties": {
"url": {
"$ref": "#/components/schemas/URL"
"$ref": "#/components/schemas/URL",
"description": "A URL of the image or data URL in the format of data:image/{type};base64,{data}. Note that URL could have length limits."
},
"data": {
"type": "string",
"contentEncoding": "base64"
"contentEncoding": "base64",
"description": "base64 encoded image data as string"
}
},
"additionalProperties": false
"additionalProperties": false,
"description": "Image as a base64 encoded string or an URL"
}
},
"additionalProperties": false,
"required": [
"type",
"image"
]
],
"title": "A image content item"
},
"InterleavedContent": {
"oneOf": [
@ -2647,17 +2652,20 @@
"type": {
"type": "string",
"const": "text",
"default": "text"
"default": "text",
"description": "Discriminator type of the content item. Always \"text\""
},
"text": {
"type": "string"
"type": "string",
"description": "Text content"
}
},
"additionalProperties": false,
"required": [
"type",
"text"
]
],
"title": "A text content item"
},
"ToolCall": {
"type": "object",

View file

@ -1466,19 +1466,28 @@ components:
type: string
const: image
default: image
description: >-
Discriminator type of the content item. Always "image"
image:
type: object
properties:
url:
$ref: '#/components/schemas/URL'
description: >-
A URL of the image or data URL in the format of data:image/{type};base64,{data}.
Note that URL could have length limits.
data:
type: string
contentEncoding: base64
description: base64 encoded image data as string
additionalProperties: false
description: >-
Image as a base64 encoded string or an URL
additionalProperties: false
required:
- type
- image
title: A image content item
InterleavedContent:
oneOf:
- type: string
@ -1598,12 +1607,16 @@ components:
type: string
const: text
default: text
description: >-
Discriminator type of the content item. Always "text"
text:
type: string
description: Text content
additionalProperties: false
required:
- type
- text
title: A text content item
ToolCall:
type: object
properties:

View file

@ -4,14 +4,13 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
from enum import Enum
from typing import Annotated, List, Literal, Optional, Union
from llama_models.llama3.api.datatypes import ToolCall
from llama_models.schema_utils import json_schema_type, register_schema
from pydantic import BaseModel, Field, field_serializer, model_validator
from pydantic import BaseModel, Field, model_validator
@json_schema_type
@ -20,8 +19,16 @@ class URL(BaseModel):
class _URLOrData(BaseModel):
"""
A URL or a base64 encoded string
:param url: A URL of the image or data URL in the format of data:image/{type};base64,{data}. Note that URL could have length limits.
:param data: base64 encoded image data as string
"""
url: Optional[URL] = None
data: Optional[bytes] = None
# data is a base64 encoded string, hint with contentEncoding=base64
data: Optional[str] = Field(contentEncoding="base64", default=None)
@model_validator(mode="before")
@classmethod
@ -30,21 +37,27 @@ class _URLOrData(BaseModel):
return values
return {"url": values}
@field_serializer("data")
def serialize_data(self, data: Optional[bytes], _info):
if data is None:
return None
return base64.b64encode(data).decode("utf-8")
@json_schema_type
class ImageContentItem(BaseModel):
"""A image content item
:param type: Discriminator type of the content item. Always "image"
:param image: Image as a base64 encoded string or an URL
"""
type: Literal["image"] = "image"
image: _URLOrData
@json_schema_type
class TextContentItem(BaseModel):
"""A text content item
:param type: Discriminator type of the content item. Always "text"
:param text: Text content
"""
type: Literal["text"] = "text"
text: str

View file

@ -135,7 +135,8 @@ async def interleaved_content_convert_to_raw(
else:
raise ValueError("Unsupported URL type")
elif image.data:
data = image.data
# data is a base64 encoded string, decode it to bytes for RawMediaItem
data = base64.b64decode(image.data)
else:
raise ValueError("No data or URL provided")
@ -184,8 +185,10 @@ async def localize_image_content(media: ImageContentItem) -> Tuple[bytes, str]:
return content, format
else:
pil_image = PIL_Image.open(io.BytesIO(image.data))
return image.data, pil_image.format
# data is a base64 encoded string, decode it to bytes first
data_bytes = base64.b64decode(image.data)
pil_image = PIL_Image.open(io.BytesIO(data_bytes))
return data_bytes, pil_image.format
async def convert_image_content_to_url(