mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
Merge branch 'main' into fix-urllib3
This commit is contained in:
commit
9410d8f7a4
23 changed files with 335 additions and 85 deletions
142
.github/workflows/integration-vector-io-tests.yml
vendored
Normal file
142
.github/workflows/integration-vector-io-tests.yml
vendored
Normal file
|
@ -0,0 +1,142 @@
|
||||||
|
name: Vector IO Integration Tests
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: [ main ]
|
||||||
|
pull_request:
|
||||||
|
branches: [ main ]
|
||||||
|
paths:
|
||||||
|
- 'llama_stack/**'
|
||||||
|
- 'tests/integration/vector_io/**'
|
||||||
|
- 'uv.lock'
|
||||||
|
- 'pyproject.toml'
|
||||||
|
- 'requirements.txt'
|
||||||
|
- '.github/workflows/integration-vector-io-tests.yml' # This workflow
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
test-matrix:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
vector-io-provider: ["inline::faiss", "inline::sqlite-vec", "remote::chromadb", "remote::pgvector"]
|
||||||
|
python-version: ["3.12", "3.13"]
|
||||||
|
fail-fast: false # we want to run all tests regardless of failure
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||||
|
|
||||||
|
- name: Install dependencies
|
||||||
|
uses: ./.github/actions/setup-runner
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
|
||||||
|
- name: Setup Chroma
|
||||||
|
if: matrix.vector-io-provider == 'remote::chromadb'
|
||||||
|
run: |
|
||||||
|
docker run --rm -d --pull always \
|
||||||
|
--name chromadb \
|
||||||
|
-p 8000:8000 \
|
||||||
|
-v ~/chroma:/chroma/chroma \
|
||||||
|
-e IS_PERSISTENT=TRUE \
|
||||||
|
-e ANONYMIZED_TELEMETRY=FALSE \
|
||||||
|
chromadb/chroma:latest
|
||||||
|
|
||||||
|
- name: Start PGVector DB
|
||||||
|
if: matrix.vector-io-provider == 'remote::pgvector'
|
||||||
|
run: |
|
||||||
|
docker run -d \
|
||||||
|
--name pgvector \
|
||||||
|
-e POSTGRES_USER=llamastack \
|
||||||
|
-e POSTGRES_PASSWORD=llamastack \
|
||||||
|
-e POSTGRES_DB=llamastack \
|
||||||
|
-p 5432:5432 \
|
||||||
|
pgvector/pgvector:pg17
|
||||||
|
|
||||||
|
- name: Wait for PGVector to be ready
|
||||||
|
if: matrix.vector-io-provider == 'remote::pgvector'
|
||||||
|
run: |
|
||||||
|
echo "Waiting for Postgres to be ready..."
|
||||||
|
for i in {1..30}; do
|
||||||
|
if docker exec pgvector pg_isready -U llamastack > /dev/null 2>&1; then
|
||||||
|
echo "Postgres is ready!"
|
||||||
|
break
|
||||||
|
fi
|
||||||
|
echo "Not ready yet... ($i)"
|
||||||
|
sleep 1
|
||||||
|
done
|
||||||
|
|
||||||
|
- name: Enable pgvector extension
|
||||||
|
if: matrix.vector-io-provider == 'remote::pgvector'
|
||||||
|
run: |
|
||||||
|
PGPASSWORD=llamastack psql -h localhost -U llamastack -d llamastack \
|
||||||
|
-c "CREATE EXTENSION IF NOT EXISTS vector;"
|
||||||
|
|
||||||
|
- name: Wait for ChromaDB to be ready
|
||||||
|
if: matrix.vector-io-provider == 'remote::chromadb'
|
||||||
|
run: |
|
||||||
|
echo "Waiting for ChromaDB to be ready..."
|
||||||
|
for i in {1..30}; do
|
||||||
|
if curl -s http://localhost:8000/api/v2/heartbeat | grep -q "nanosecond heartbeat"; then
|
||||||
|
echo "ChromaDB is ready!"
|
||||||
|
exit 0
|
||||||
|
fi
|
||||||
|
sleep 2
|
||||||
|
done
|
||||||
|
echo "ChromaDB failed to start"
|
||||||
|
docker logs chromadb
|
||||||
|
exit 1
|
||||||
|
|
||||||
|
- name: Build Llama Stack
|
||||||
|
run: |
|
||||||
|
uv run llama stack build --template starter --image-type venv
|
||||||
|
|
||||||
|
- name: Check Storage and Memory Available Before Tests
|
||||||
|
if: ${{ always() }}
|
||||||
|
run: |
|
||||||
|
free -h
|
||||||
|
df -h
|
||||||
|
|
||||||
|
- name: Run Vector IO Integration Tests
|
||||||
|
env:
|
||||||
|
ENABLE_CHROMADB: ${{ matrix.vector-io-provider == 'remote::chromadb' && 'true' || '' }}
|
||||||
|
CHROMADB_URL: ${{ matrix.vector-io-provider == 'remote::chromadb' && 'http://localhost:8000' || '' }}
|
||||||
|
ENABLE_PGVECTOR: ${{ matrix.vector-io-provider == 'remote::pgvector' && 'true' || '' }}
|
||||||
|
PGVECTOR_HOST: ${{ matrix.vector-io-provider == 'remote::pgvector' && 'localhost' || '' }}
|
||||||
|
PGVECTOR_PORT: ${{ matrix.vector-io-provider == 'remote::pgvector' && '5432' || '' }}
|
||||||
|
PGVECTOR_DB: ${{ matrix.vector-io-provider == 'remote::pgvector' && 'llamastack' || '' }}
|
||||||
|
PGVECTOR_USER: ${{ matrix.vector-io-provider == 'remote::pgvector' && 'llamastack' || '' }}
|
||||||
|
PGVECTOR_PASSWORD: ${{ matrix.vector-io-provider == 'remote::pgvector' && 'llamastack' || '' }}
|
||||||
|
run: |
|
||||||
|
uv run pytest -sv --stack-config="inference=inline::sentence-transformers,vector_io=${{ matrix.vector-io-provider }}" \
|
||||||
|
tests/integration/vector_io \
|
||||||
|
--embedding-model all-MiniLM-L6-v2
|
||||||
|
|
||||||
|
- name: Check Storage and Memory Available After Tests
|
||||||
|
if: ${{ always() }}
|
||||||
|
run: |
|
||||||
|
free -h
|
||||||
|
df -h
|
||||||
|
|
||||||
|
- name: Create sanitized provider name
|
||||||
|
if: ${{ always() }}
|
||||||
|
run: |
|
||||||
|
echo "SANITIZED_PROVIDER=$(echo "${{ matrix.vector-io-provider }}" | tr ':' '_')" >> $GITHUB_ENV
|
||||||
|
|
||||||
|
- name: Write ChromaDB logs to file
|
||||||
|
if: ${{ always() && matrix.vector-io-provider == 'remote::chromadb' }}
|
||||||
|
run: |
|
||||||
|
docker logs chromadb > chromadb.log
|
||||||
|
|
||||||
|
- name: Upload all logs to artifacts
|
||||||
|
if: ${{ always() }}
|
||||||
|
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
|
||||||
|
with:
|
||||||
|
name: vector-io-logs-${{ github.run_id }}-${{ github.run_attempt }}-${{ env.SANITIZED_PROVIDER }}-${{ matrix.python-version }}
|
||||||
|
path: |
|
||||||
|
*.log
|
||||||
|
retention-days: 1
|
70
CHANGELOG.md
70
CHANGELOG.md
|
@ -1,5 +1,28 @@
|
||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
# v0.2.12
|
||||||
|
Published on: 2025-06-20T22:52:12Z
|
||||||
|
|
||||||
|
## Highlights
|
||||||
|
* Filter support in file search
|
||||||
|
* Support auth attributes in inference and response stores
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
# v0.2.11
|
||||||
|
Published on: 2025-06-17T20:26:26Z
|
||||||
|
|
||||||
|
## Highlights
|
||||||
|
* OpenAI-compatible vector store APIs
|
||||||
|
* Hybrid Search in Sqlite-vec
|
||||||
|
* File search tool in Responses API
|
||||||
|
* Pagination in inference and response stores
|
||||||
|
* Added `suffix` to completions API for fill-in-the-middle tasks
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
# v0.2.10.1
|
# v0.2.10.1
|
||||||
Published on: 2025-06-06T20:11:02Z
|
Published on: 2025-06-06T20:11:02Z
|
||||||
|
|
||||||
|
@ -481,51 +504,4 @@ Published on: 2024-11-23T17:14:07Z
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
# v0.0.54
|
|
||||||
Published on: 2024-11-22T00:36:09Z
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
# v0.0.53
|
|
||||||
Published on: 2024-11-20T22:18:00Z
|
|
||||||
|
|
||||||
🚀 Initial Release Notes for Llama Stack!
|
|
||||||
|
|
||||||
### Added
|
|
||||||
- Resource-oriented design for models, shields, memory banks, datasets and eval tasks
|
|
||||||
- Persistence for registered objects with distribution
|
|
||||||
- Ability to persist memory banks created for FAISS
|
|
||||||
- PostgreSQL KVStore implementation
|
|
||||||
- Environment variable placeholder support in run.yaml files
|
|
||||||
- Comprehensive Zero-to-Hero notebooks and quickstart guides
|
|
||||||
- Support for quantized models in Ollama
|
|
||||||
- Vision models support for Together, Fireworks, Meta-Reference, and Ollama, and vLLM
|
|
||||||
- Bedrock distribution with safety shields support
|
|
||||||
- Evals API with task registration and scoring functions
|
|
||||||
- MMLU and SimpleQA benchmark scoring functions
|
|
||||||
- Huggingface dataset provider integration for benchmarks
|
|
||||||
- Support for custom dataset registration from local paths
|
|
||||||
- Benchmark evaluation CLI tools with visualization tables
|
|
||||||
- RAG evaluation scoring functions and metrics
|
|
||||||
- Local persistence for datasets and eval tasks
|
|
||||||
|
|
||||||
### Changed
|
|
||||||
- Split safety into distinct providers (llama-guard, prompt-guard, code-scanner)
|
|
||||||
- Changed provider naming convention (`impls` → `inline`, `adapters` → `remote`)
|
|
||||||
- Updated API signatures for dataset and eval task registration
|
|
||||||
- Restructured folder organization for providers
|
|
||||||
- Enhanced Docker build configuration
|
|
||||||
- Added version prefixing for REST API routes
|
|
||||||
- Enhanced evaluation task registration workflow
|
|
||||||
- Improved benchmark evaluation output formatting
|
|
||||||
- Restructured evals folder organization for better modularity
|
|
||||||
|
|
||||||
### Removed
|
|
||||||
- `llama stack configure` command
|
|
||||||
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
|
@ -146,7 +146,9 @@ in the runtime configuration to help route to the correct provider.""",
|
||||||
|
|
||||||
|
|
||||||
class Provider(BaseModel):
|
class Provider(BaseModel):
|
||||||
provider_id: str
|
# provider_id of None means that the provider is not enabled - this happens
|
||||||
|
# when the provider is enabled via a conditional environment variable
|
||||||
|
provider_id: str | None
|
||||||
provider_type: str
|
provider_type: str
|
||||||
config: dict[str, Any]
|
config: dict[str, Any]
|
||||||
|
|
||||||
|
|
|
@ -48,6 +48,9 @@ class ProviderImpl(Providers):
|
||||||
ret = []
|
ret = []
|
||||||
for api, providers in safe_config.providers.items():
|
for api, providers in safe_config.providers.items():
|
||||||
for p in providers:
|
for p in providers:
|
||||||
|
# Skip providers that are not enabled
|
||||||
|
if p.provider_id is None:
|
||||||
|
continue
|
||||||
ret.append(
|
ret.append(
|
||||||
ProviderInfo(
|
ProviderInfo(
|
||||||
api=api,
|
api=api,
|
||||||
|
|
|
@ -255,6 +255,10 @@ async def instantiate_providers(
|
||||||
impls: dict[Api, Any] = {}
|
impls: dict[Api, Any] = {}
|
||||||
inner_impls_by_provider_id: dict[str, dict[str, Any]] = {f"inner-{x.value}": {} for x in router_apis}
|
inner_impls_by_provider_id: dict[str, dict[str, Any]] = {f"inner-{x.value}": {} for x in router_apis}
|
||||||
for api_str, provider in sorted_providers:
|
for api_str, provider in sorted_providers:
|
||||||
|
# Skip providers that are not enabled
|
||||||
|
if provider.provider_id is None:
|
||||||
|
continue
|
||||||
|
|
||||||
deps = {a: impls[a] for a in provider.spec.api_dependencies}
|
deps = {a: impls[a] for a in provider.spec.api_dependencies}
|
||||||
for a in provider.spec.optional_api_dependencies:
|
for a in provider.spec.optional_api_dependencies:
|
||||||
if a in impls:
|
if a in impls:
|
||||||
|
|
|
@ -137,6 +137,9 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
|
|
||||||
async def initialize(self) -> None:
|
async def initialize(self) -> None:
|
||||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||||
|
if not self.config.url:
|
||||||
|
raise ValueError("URL is a required parameter for the remote Chroma provider's config")
|
||||||
|
|
||||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||||
url = self.config.url.rstrip("/")
|
url = self.config.url.rstrip("/")
|
||||||
parsed = urlparse(url)
|
parsed = urlparse(url)
|
||||||
|
|
|
@ -10,7 +10,7 @@ from pydantic import BaseModel
|
||||||
|
|
||||||
|
|
||||||
class ChromaVectorIOConfig(BaseModel):
|
class ChromaVectorIOConfig(BaseModel):
|
||||||
url: str
|
url: str | None
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def sample_run_config(cls, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
def sample_run_config(cls, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
||||||
|
|
|
@ -13,11 +13,11 @@ from llama_stack.schema_utils import json_schema_type
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class PGVectorVectorIOConfig(BaseModel):
|
class PGVectorVectorIOConfig(BaseModel):
|
||||||
host: str = Field(default="localhost")
|
host: str | None = Field(default="localhost")
|
||||||
port: int = Field(default=5432)
|
port: int | None = Field(default=5432)
|
||||||
db: str = Field(default="postgres")
|
db: str | None = Field(default="postgres")
|
||||||
user: str = Field(default="postgres")
|
user: str | None = Field(default="postgres")
|
||||||
password: str = Field(default="mysecretpassword")
|
password: str | None = Field(default="mysecretpassword")
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def sample_run_config(
|
def sample_run_config(
|
||||||
|
|
|
@ -15,7 +15,21 @@ from pydantic import BaseModel, TypeAdapter
|
||||||
|
|
||||||
from llama_stack.apis.inference import InterleavedContent
|
from llama_stack.apis.inference import InterleavedContent
|
||||||
from llama_stack.apis.vector_dbs import VectorDB
|
from llama_stack.apis.vector_dbs import VectorDB
|
||||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
from llama_stack.apis.vector_io import (
|
||||||
|
Chunk,
|
||||||
|
QueryChunksResponse,
|
||||||
|
SearchRankingOptions,
|
||||||
|
VectorIO,
|
||||||
|
VectorStoreChunkingStrategy,
|
||||||
|
VectorStoreDeleteResponse,
|
||||||
|
VectorStoreFileContentsResponse,
|
||||||
|
VectorStoreFileObject,
|
||||||
|
VectorStoreFileStatus,
|
||||||
|
VectorStoreListFilesResponse,
|
||||||
|
VectorStoreListResponse,
|
||||||
|
VectorStoreObject,
|
||||||
|
VectorStoreSearchResponsePage,
|
||||||
|
)
|
||||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||||
from llama_stack.providers.utils.memory.vector_store import (
|
from llama_stack.providers.utils.memory.vector_store import (
|
||||||
EmbeddingIndex,
|
EmbeddingIndex,
|
||||||
|
@ -222,3 +236,108 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||||
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn)
|
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn)
|
||||||
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||||
return self.cache[vector_db_id]
|
return self.cache[vector_db_id]
|
||||||
|
|
||||||
|
async def openai_create_vector_store(
|
||||||
|
self,
|
||||||
|
name: str,
|
||||||
|
file_ids: list[str] | None = None,
|
||||||
|
expires_after: dict[str, Any] | None = None,
|
||||||
|
chunking_strategy: dict[str, Any] | None = None,
|
||||||
|
metadata: dict[str, Any] | None = None,
|
||||||
|
embedding_model: str | None = None,
|
||||||
|
embedding_dimension: int | None = 384,
|
||||||
|
provider_id: str | None = None,
|
||||||
|
provider_vector_db_id: str | None = None,
|
||||||
|
) -> VectorStoreObject:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_list_vector_stores(
|
||||||
|
self,
|
||||||
|
limit: int | None = 20,
|
||||||
|
order: str | None = "desc",
|
||||||
|
after: str | None = None,
|
||||||
|
before: str | None = None,
|
||||||
|
) -> VectorStoreListResponse:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_retrieve_vector_store(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
) -> VectorStoreObject:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_update_vector_store(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
name: str | None = None,
|
||||||
|
expires_after: dict[str, Any] | None = None,
|
||||||
|
metadata: dict[str, Any] | None = None,
|
||||||
|
) -> VectorStoreObject:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_delete_vector_store(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
) -> VectorStoreDeleteResponse:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_search_vector_store(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
query: str | list[str],
|
||||||
|
filters: dict[str, Any] | None = None,
|
||||||
|
max_num_results: int | None = 10,
|
||||||
|
ranking_options: SearchRankingOptions | None = None,
|
||||||
|
rewrite_query: bool | None = False,
|
||||||
|
search_mode: str | None = "vector",
|
||||||
|
) -> VectorStoreSearchResponsePage:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_attach_file_to_vector_store(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
file_id: str,
|
||||||
|
attributes: dict[str, Any] | None = None,
|
||||||
|
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||||
|
) -> VectorStoreFileObject:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_list_files_in_vector_store(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
limit: int | None = 20,
|
||||||
|
order: str | None = "desc",
|
||||||
|
after: str | None = None,
|
||||||
|
before: str | None = None,
|
||||||
|
filter: VectorStoreFileStatus | None = None,
|
||||||
|
) -> VectorStoreListFilesResponse:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_retrieve_vector_store_file(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
file_id: str,
|
||||||
|
) -> VectorStoreFileObject:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_retrieve_vector_store_file_contents(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
file_id: str,
|
||||||
|
) -> VectorStoreFileContentsResponse:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_update_vector_store_file(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
file_id: str,
|
||||||
|
attributes: dict[str, Any] | None = None,
|
||||||
|
) -> VectorStoreFileObject:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
||||||
|
async def openai_delete_vector_store_file(
|
||||||
|
self,
|
||||||
|
vector_store_id: str,
|
||||||
|
file_id: str,
|
||||||
|
) -> VectorStoreFileObject:
|
||||||
|
raise NotImplementedError("OpenAI Vector Stores API is not supported in PGVector")
|
||||||
|
|
|
@ -24,7 +24,7 @@ providers:
|
||||||
- provider_id: ollama
|
- provider_id: ollama
|
||||||
provider_type: remote::ollama
|
provider_type: remote::ollama
|
||||||
config:
|
config:
|
||||||
url: ${env.OLLAMA_URL:http://localhost:11434}
|
url: ${env.OLLAMA_URL:=http://localhost:11434}
|
||||||
eval:
|
eval:
|
||||||
- provider_id: meta-reference
|
- provider_id: meta-reference
|
||||||
provider_type: inline::meta-reference
|
provider_type: inline::meta-reference
|
||||||
|
@ -32,7 +32,7 @@ providers:
|
||||||
kvstore:
|
kvstore:
|
||||||
type: sqlite
|
type: sqlite
|
||||||
namespace: null
|
namespace: null
|
||||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
|
||||||
scoring:
|
scoring:
|
||||||
- provider_id: basic
|
- provider_id: basic
|
||||||
provider_type: inline::basic
|
provider_type: inline::basic
|
||||||
|
@ -40,7 +40,7 @@ providers:
|
||||||
- provider_id: braintrust
|
- provider_id: braintrust
|
||||||
provider_type: inline::braintrust
|
provider_type: inline::braintrust
|
||||||
config:
|
config:
|
||||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
openai_api_key: ${env.OPENAI_API_KEY:+}
|
||||||
datasetio:
|
datasetio:
|
||||||
- provider_id: localfs
|
- provider_id: localfs
|
||||||
provider_type: inline::localfs
|
provider_type: inline::localfs
|
||||||
|
@ -48,14 +48,14 @@ providers:
|
||||||
kvstore:
|
kvstore:
|
||||||
type: sqlite
|
type: sqlite
|
||||||
namespace: null
|
namespace: null
|
||||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/experimental-post-training}/localfs_datasetio.db
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/experimental-post-training}/localfs_datasetio.db
|
||||||
- provider_id: huggingface
|
- provider_id: huggingface
|
||||||
provider_type: remote::huggingface
|
provider_type: remote::huggingface
|
||||||
config:
|
config:
|
||||||
kvstore:
|
kvstore:
|
||||||
type: sqlite
|
type: sqlite
|
||||||
namespace: null
|
namespace: null
|
||||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/huggingface}/huggingface_datasetio.db
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/huggingface}/huggingface_datasetio.db
|
||||||
telemetry:
|
telemetry:
|
||||||
- provider_id: meta-reference
|
- provider_id: meta-reference
|
||||||
provider_type: inline::meta-reference
|
provider_type: inline::meta-reference
|
||||||
|
@ -74,7 +74,7 @@ providers:
|
||||||
persistence_store:
|
persistence_store:
|
||||||
type: sqlite
|
type: sqlite
|
||||||
namespace: null
|
namespace: null
|
||||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/experimental-post-training}/agents_store.db
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/experimental-post-training}/agents_store.db
|
||||||
safety:
|
safety:
|
||||||
- provider_id: llama-guard
|
- provider_id: llama-guard
|
||||||
provider_type: inline::llama-guard
|
provider_type: inline::llama-guard
|
||||||
|
@ -86,19 +86,19 @@ providers:
|
||||||
kvstore:
|
kvstore:
|
||||||
type: sqlite
|
type: sqlite
|
||||||
namespace: null
|
namespace: null
|
||||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/experimental-post-training}/faiss_store.db
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/experimental-post-training}/faiss_store.db
|
||||||
tool_runtime:
|
tool_runtime:
|
||||||
- provider_id: brave-search
|
- provider_id: brave-search
|
||||||
provider_type: remote::brave-search
|
provider_type: remote::brave-search
|
||||||
config:
|
config:
|
||||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
api_key: ${env.BRAVE_SEARCH_API_KEY:+}
|
||||||
max_results: 3
|
max_results: 3
|
||||||
|
|
||||||
|
|
||||||
metadata_store:
|
metadata_store:
|
||||||
namespace: null
|
namespace: null
|
||||||
type: sqlite
|
type: sqlite
|
||||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/experimental-post-training}/registry.db
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/experimental-post-training}/registry.db
|
||||||
models: []
|
models: []
|
||||||
shields: []
|
shields: []
|
||||||
vector_dbs: []
|
vector_dbs: []
|
||||||
|
|
|
@ -46,7 +46,7 @@ def get_distribution_template() -> DistributionTemplate:
|
||||||
provider_type="inline::meta-reference",
|
provider_type="inline::meta-reference",
|
||||||
config=MetaReferenceInferenceConfig.sample_run_config(
|
config=MetaReferenceInferenceConfig.sample_run_config(
|
||||||
model="${env.INFERENCE_MODEL}",
|
model="${env.INFERENCE_MODEL}",
|
||||||
checkpoint_dir="${env.INFERENCE_CHECKPOINT_DIR:null}",
|
checkpoint_dir="${env.INFERENCE_CHECKPOINT_DIR:=null}",
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
embedding_provider = Provider(
|
embedding_provider = Provider(
|
||||||
|
@ -112,7 +112,7 @@ def get_distribution_template() -> DistributionTemplate:
|
||||||
provider_type="inline::meta-reference",
|
provider_type="inline::meta-reference",
|
||||||
config=MetaReferenceInferenceConfig.sample_run_config(
|
config=MetaReferenceInferenceConfig.sample_run_config(
|
||||||
model="${env.SAFETY_MODEL}",
|
model="${env.SAFETY_MODEL}",
|
||||||
checkpoint_dir="${env.SAFETY_CHECKPOINT_DIR:null}",
|
checkpoint_dir="${env.SAFETY_CHECKPOINT_DIR:=null}",
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
],
|
],
|
||||||
|
|
|
@ -16,7 +16,7 @@ providers:
|
||||||
provider_type: inline::meta-reference
|
provider_type: inline::meta-reference
|
||||||
config:
|
config:
|
||||||
model: ${env.INFERENCE_MODEL}
|
model: ${env.INFERENCE_MODEL}
|
||||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
|
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:=null}
|
||||||
quantization:
|
quantization:
|
||||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||||
|
@ -29,7 +29,7 @@ providers:
|
||||||
provider_type: inline::meta-reference
|
provider_type: inline::meta-reference
|
||||||
config:
|
config:
|
||||||
model: ${env.SAFETY_MODEL}
|
model: ${env.SAFETY_MODEL}
|
||||||
checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:null}
|
checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:=null}
|
||||||
quantization:
|
quantization:
|
||||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||||
|
|
|
@ -16,7 +16,7 @@ providers:
|
||||||
provider_type: inline::meta-reference
|
provider_type: inline::meta-reference
|
||||||
config:
|
config:
|
||||||
model: ${env.INFERENCE_MODEL}
|
model: ${env.INFERENCE_MODEL}
|
||||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
|
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:=null}
|
||||||
quantization:
|
quantization:
|
||||||
type: ${env.QUANTIZATION_TYPE:=bf16}
|
type: ${env.QUANTIZATION_TYPE:=bf16}
|
||||||
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
model_parallel_size: ${env.MODEL_PARALLEL_SIZE:=0}
|
||||||
|
|
|
@ -46,7 +46,7 @@ def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderMo
|
||||||
model_type=ModelType.llm,
|
model_type=ModelType.llm,
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:}"),
|
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:+}"),
|
||||||
),
|
),
|
||||||
(
|
(
|
||||||
"anthropic",
|
"anthropic",
|
||||||
|
@ -56,7 +56,7 @@ def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderMo
|
||||||
model_type=ModelType.llm,
|
model_type=ModelType.llm,
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:}"),
|
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:+}"),
|
||||||
),
|
),
|
||||||
(
|
(
|
||||||
"gemini",
|
"gemini",
|
||||||
|
@ -66,17 +66,17 @@ def get_inference_providers() -> tuple[list[Provider], dict[str, list[ProviderMo
|
||||||
model_type=ModelType.llm,
|
model_type=ModelType.llm,
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:}"),
|
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:+}"),
|
||||||
),
|
),
|
||||||
(
|
(
|
||||||
"groq",
|
"groq",
|
||||||
[],
|
[],
|
||||||
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:}"),
|
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:+}"),
|
||||||
),
|
),
|
||||||
(
|
(
|
||||||
"together",
|
"together",
|
||||||
[],
|
[],
|
||||||
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:}"),
|
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:+}"),
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
inference_providers = []
|
inference_providers = []
|
||||||
|
|
|
@ -15,20 +15,20 @@ providers:
|
||||||
- provider_id: openai
|
- provider_id: openai
|
||||||
provider_type: remote::openai
|
provider_type: remote::openai
|
||||||
config:
|
config:
|
||||||
api_key: ${env.OPENAI_API_KEY:}
|
api_key: ${env.OPENAI_API_KEY:+}
|
||||||
- provider_id: anthropic
|
- provider_id: anthropic
|
||||||
provider_type: remote::anthropic
|
provider_type: remote::anthropic
|
||||||
config:
|
config:
|
||||||
api_key: ${env.ANTHROPIC_API_KEY:}
|
api_key: ${env.ANTHROPIC_API_KEY:+}
|
||||||
- provider_id: gemini
|
- provider_id: gemini
|
||||||
provider_type: remote::gemini
|
provider_type: remote::gemini
|
||||||
config:
|
config:
|
||||||
api_key: ${env.GEMINI_API_KEY:}
|
api_key: ${env.GEMINI_API_KEY:+}
|
||||||
- provider_id: groq
|
- provider_id: groq
|
||||||
provider_type: remote::groq
|
provider_type: remote::groq
|
||||||
config:
|
config:
|
||||||
url: https://api.groq.com
|
url: https://api.groq.com
|
||||||
api_key: ${env.GROQ_API_KEY:}
|
api_key: ${env.GROQ_API_KEY:+}
|
||||||
- provider_id: together
|
- provider_id: together
|
||||||
provider_type: remote::together
|
provider_type: remote::together
|
||||||
config:
|
config:
|
||||||
|
|
|
@ -29,7 +29,7 @@ def get_distribution_template() -> DistributionTemplate:
|
||||||
provider_id="vllm-inference",
|
provider_id="vllm-inference",
|
||||||
provider_type="remote::vllm",
|
provider_type="remote::vllm",
|
||||||
config=VLLMInferenceAdapterConfig.sample_run_config(
|
config=VLLMInferenceAdapterConfig.sample_run_config(
|
||||||
url="${env.VLLM_URL:http://localhost:8000/v1}",
|
url="${env.VLLM_URL:=http://localhost:8000/v1}",
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|
|
@ -12,7 +12,7 @@ providers:
|
||||||
- provider_id: vllm-inference
|
- provider_id: vllm-inference
|
||||||
provider_type: remote::vllm
|
provider_type: remote::vllm
|
||||||
config:
|
config:
|
||||||
url: ${env.VLLM_URL:http://localhost:8000/v1}
|
url: ${env.VLLM_URL:=http://localhost:8000/v1}
|
||||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||||
|
|
|
@ -15,7 +15,7 @@ providers:
|
||||||
- provider_id: vllm-inference
|
- provider_id: vllm-inference
|
||||||
provider_type: remote::vllm
|
provider_type: remote::vllm
|
||||||
config:
|
config:
|
||||||
url: ${env.VLLM_URL:http://localhost:8000/v1}
|
url: ${env.VLLM_URL:=http://localhost:8000/v1}
|
||||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||||
|
|
|
@ -15,7 +15,7 @@ providers:
|
||||||
- provider_id: vllm-inference
|
- provider_id: vllm-inference
|
||||||
provider_type: remote::vllm
|
provider_type: remote::vllm
|
||||||
config:
|
config:
|
||||||
url: ${env.VLLM_URL:http://localhost:8000/v1}
|
url: ${env.VLLM_URL:=http://localhost:8000/v1}
|
||||||
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
||||||
api_token: ${env.VLLM_API_TOKEN:=fake}
|
api_token: ${env.VLLM_API_TOKEN:=fake}
|
||||||
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
||||||
|
|
|
@ -44,7 +44,7 @@ def get_distribution_template() -> DistributionTemplate:
|
||||||
provider_id="vllm-inference",
|
provider_id="vllm-inference",
|
||||||
provider_type="remote::vllm",
|
provider_type="remote::vllm",
|
||||||
config=VLLMInferenceAdapterConfig.sample_run_config(
|
config=VLLMInferenceAdapterConfig.sample_run_config(
|
||||||
url="${env.VLLM_URL:http://localhost:8000/v1}",
|
url="${env.VLLM_URL:=http://localhost:8000/v1}",
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
embedding_provider = Provider(
|
embedding_provider = Provider(
|
||||||
|
|
|
@ -68,7 +68,7 @@ providers:
|
||||||
type: sqlite
|
type: sqlite
|
||||||
namespace: null
|
namespace: null
|
||||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/faiss_store.db
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/faiss_store.db
|
||||||
- provider_id: ${env.ENABLE_SQLITE_VEC+sqlite-vec}
|
- provider_id: ${env.ENABLE_SQLITE_VEC:+sqlite-vec}
|
||||||
provider_type: inline::sqlite-vec
|
provider_type: inline::sqlite-vec
|
||||||
config:
|
config:
|
||||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
|
||||||
|
|
|
@ -175,7 +175,7 @@ def get_distribution_template() -> DistributionTemplate:
|
||||||
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||||
),
|
),
|
||||||
Provider(
|
Provider(
|
||||||
provider_id="${env.ENABLE_SQLITE_VEC+sqlite-vec}",
|
provider_id="${env.ENABLE_SQLITE_VEC:+sqlite-vec}",
|
||||||
provider_type="inline::sqlite-vec",
|
provider_type="inline::sqlite-vec",
|
||||||
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||||
),
|
),
|
||||||
|
|
|
@ -29,6 +29,7 @@ mapfile -t py_dirs < <(
|
||||||
-type f \
|
-type f \
|
||||||
-name "*.py" ! -name "__init__.py" \
|
-name "*.py" ! -name "__init__.py" \
|
||||||
! -path "*/.venv/*" \
|
! -path "*/.venv/*" \
|
||||||
|
! -path "*/node_modules/*" \
|
||||||
-exec dirname {} \; | sort -u
|
-exec dirname {} \; | sort -u
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue