mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-18 19:02:30 +00:00
feat: File search tool for Responses API (#2426)
# What does this PR do? This is an initial working prototype of wiring up the `file_search` builtin tool for the Responses API to our existing rag knowledge search tool. This is me seeing what I could pull together on top of the bits we already have merged. This may not be the ideal way to implement this, and things like how I shuffle the vector store ids from the original response API tool request to the actual tool execution feel a bit hacky (grep for `tool_kwargs["vector_db_ids"]` in `_execute_tool_call` to see what I mean). ## Test Plan I stubbed in some new tests to exercise this using text and pdf documents. Note that this is currently under tests/verification only because it sometimes flakes with tool calling of the small Llama-3.2-3B model we run in CI (and that I use as an example below). We'd want to make the test a bit more robust in some way if we moved this over to tests/integration and ran it in CI. ### OpenAI SaaS (to verify test correctness) ``` pytest -sv tests/verifications/openai_api/test_responses.py \ -k 'file_search' \ --base-url=https://api.openai.com/v1 \ --model=gpt-4o ``` ### Fireworks with faiss vector store ``` llama stack run llama_stack/templates/fireworks/run.yaml pytest -sv tests/verifications/openai_api/test_responses.py \ -k 'file_search' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=meta-llama/Llama-3.3-70B-Instruct ``` ### Ollama with faiss vector store This sometimes flakes on Ollama because the quantized small model doesn't always choose to call the tool to answer the user's question. But, it often works. ``` ollama run llama3.2:3b INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack run ./llama_stack/templates/ollama/run.yaml \ --image-type venv \ --env OLLAMA_URL="http://0.0.0.0:11434" pytest -sv tests/verifications/openai_api/test_responses.py \ -k'file_search' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=meta-llama/Llama-3.2-3B-Instruct ``` ### OpenAI provider with sqlite-vec vector store ``` llama stack run ./llama_stack/templates/starter/run.yaml --image-type venv pytest -sv tests/verifications/openai_api/test_responses.py \ -k 'file_search' \ --base-url=http://localhost:8321/v1/openai/v1 \ --model=openai/gpt-4o-mini ``` ### Ensure existing vector store integration tests still pass ``` ollama run llama3.2:3b INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack run ./llama_stack/templates/ollama/run.yaml \ --image-type venv \ --env OLLAMA_URL="http://0.0.0.0:11434" LLAMA_STACK_CONFIG=http://localhost:8321 \ pytest -sv tests/integration/vector_io \ --text-model "meta-llama/Llama-3.2-3B-Instruct" \ --embedding-model=all-MiniLM-L6-v2 ``` --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
554ada57b0
commit
941f505eb0
28 changed files with 1105 additions and 24 deletions
|
@ -16,6 +16,6 @@ async def get_provider_impl(config: FaissVectorIOConfig, deps: dict[Api, Any]):
|
|||
|
||||
assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = FaissVectorIOAdapter(config, deps[Api.inference])
|
||||
impl = FaissVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -15,6 +15,7 @@ import faiss
|
|||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
|
@ -132,9 +133,10 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference) -> None:
|
||||
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.files_api = files_api
|
||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
|
|
|
@ -15,6 +15,6 @@ async def get_provider_impl(config: SQLiteVectorIOConfig, deps: dict[Api, Any]):
|
|||
from .sqlite_vec import SQLiteVecVectorIOAdapter
|
||||
|
||||
assert isinstance(config, SQLiteVectorIOConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference])
|
||||
impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -17,6 +17,7 @@ import numpy as np
|
|||
import sqlite_vec
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.files.files import Files
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
|
@ -301,9 +302,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
and creates a cache of VectorDBWithIndex instances (each wrapping a SQLiteVecIndex).
|
||||
"""
|
||||
|
||||
def __init__(self, config, inference_api: Inference) -> None:
|
||||
def __init__(self, config, inference_api: Inference, files_api: Files | None) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.files_api = files_api
|
||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue