feat: File search tool for Responses API (#2426)

# What does this PR do?

This is an initial working prototype of wiring up the `file_search`
builtin tool for the Responses API to our existing rag knowledge search
tool.

This is me seeing what I could pull together on top of the bits we
already have merged. This may not be the ideal way to implement this,
and things like how I shuffle the vector store ids from the original
response API tool request to the actual tool execution feel a bit hacky
(grep for `tool_kwargs["vector_db_ids"]` in `_execute_tool_call` to see
what I mean).

## Test Plan

I stubbed in some new tests to exercise this using text and pdf
documents.

Note that this is currently under tests/verification only because it
sometimes flakes with tool calling of the small Llama-3.2-3B model we
run in CI (and that I use as an example below). We'd want to make the
test a bit more robust in some way if we moved this over to
tests/integration and ran it in CI.

### OpenAI SaaS (to verify test correctness)

```
pytest -sv tests/verifications/openai_api/test_responses.py \
  -k 'file_search' \
  --base-url=https://api.openai.com/v1 \
  --model=gpt-4o
```

### Fireworks with faiss vector store

```
llama stack run llama_stack/templates/fireworks/run.yaml

pytest -sv tests/verifications/openai_api/test_responses.py \
  -k 'file_search' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model=meta-llama/Llama-3.3-70B-Instruct
```

### Ollama with faiss vector store

This sometimes flakes on Ollama because the quantized small model
doesn't always choose to call the tool to answer the user's question.
But, it often works.

```
ollama run llama3.2:3b

INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
  --image-type venv \
  --env OLLAMA_URL="http://0.0.0.0:11434"

pytest -sv tests/verifications/openai_api/test_responses.py \
  -k'file_search' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model=meta-llama/Llama-3.2-3B-Instruct
```

### OpenAI provider with sqlite-vec vector store

```
llama stack run ./llama_stack/templates/starter/run.yaml --image-type venv

 pytest -sv tests/verifications/openai_api/test_responses.py \
  -k 'file_search' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model=openai/gpt-4o-mini
```

### Ensure existing vector store integration tests still pass

```
ollama run llama3.2:3b

INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
  --image-type venv \
  --env OLLAMA_URL="http://0.0.0.0:11434"

LLAMA_STACK_CONFIG=http://localhost:8321 \
pytest -sv tests/integration/vector_io \
  --text-model "meta-llama/Llama-3.2-3B-Instruct" \
  --embedding-model=all-MiniLM-L6-v2
```

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-06-13 14:32:48 -04:00 committed by GitHub
parent 554ada57b0
commit 941f505eb0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
28 changed files with 1105 additions and 24 deletions

View file

@ -3240,6 +3240,59 @@
}
}
},
"/v1/openai/v1/vector_stores/{vector_store_id}/files": {
"post": {
"responses": {
"200": {
"description": "A VectorStoreFileObject representing the attached file.",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/VectorStoreFileObject"
}
}
}
},
"400": {
"$ref": "#/components/responses/BadRequest400"
},
"429": {
"$ref": "#/components/responses/TooManyRequests429"
},
"500": {
"$ref": "#/components/responses/InternalServerError500"
},
"default": {
"$ref": "#/components/responses/DefaultError"
}
},
"tags": [
"VectorIO"
],
"description": "Attach a file to a vector store.",
"parameters": [
{
"name": "vector_store_id",
"in": "path",
"description": "The ID of the vector store to attach the file to.",
"required": true,
"schema": {
"type": "string"
}
}
],
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/OpenaiAttachFileToVectorStoreRequest"
}
}
},
"required": true
}
}
},
"/v1/openai/v1/completions": {
"post": {
"responses": {
@ -7047,6 +7100,9 @@
{
"$ref": "#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall"
},
{
"$ref": "#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall"
},
{
"$ref": "#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall"
},
@ -7193,12 +7249,41 @@
"const": "file_search",
"default": "file_search"
},
"vector_store_id": {
"vector_store_ids": {
"type": "array",
"items": {
"type": "string"
}
},
"filters": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
}
},
"max_num_results": {
"type": "integer",
"default": 10
},
"ranking_options": {
"type": "object",
"properties": {
@ -7217,7 +7302,7 @@
"additionalProperties": false,
"required": [
"type",
"vector_store_id"
"vector_store_ids"
],
"title": "OpenAIResponseInputToolFileSearch"
},
@ -7484,6 +7569,64 @@
],
"title": "OpenAIResponseOutputMessageContentOutputText"
},
"OpenAIResponseOutputMessageFileSearchToolCall": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"queries": {
"type": "array",
"items": {
"type": "string"
}
},
"status": {
"type": "string"
},
"type": {
"type": "string",
"const": "file_search_call",
"default": "file_search_call"
},
"results": {
"type": "array",
"items": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
}
}
}
},
"additionalProperties": false,
"required": [
"id",
"queries",
"status",
"type"
],
"title": "OpenAIResponseOutputMessageFileSearchToolCall"
},
"OpenAIResponseOutputMessageFunctionToolCall": {
"type": "object",
"properties": {
@ -7760,6 +7903,9 @@
{
"$ref": "#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall"
},
{
"$ref": "#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall"
},
{
"$ref": "#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall"
},
@ -7775,6 +7921,7 @@
"mapping": {
"message": "#/components/schemas/OpenAIResponseMessage",
"web_search_call": "#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall",
"file_search_call": "#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall",
"function_call": "#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall",
"mcp_call": "#/components/schemas/OpenAIResponseOutputMessageMCPCall",
"mcp_list_tools": "#/components/schemas/OpenAIResponseOutputMessageMCPListTools"
@ -11766,6 +11913,232 @@
],
"title": "LogEventRequest"
},
"VectorStoreChunkingStrategy": {
"oneOf": [
{
"$ref": "#/components/schemas/VectorStoreChunkingStrategyAuto"
},
{
"$ref": "#/components/schemas/VectorStoreChunkingStrategyStatic"
}
],
"discriminator": {
"propertyName": "type",
"mapping": {
"auto": "#/components/schemas/VectorStoreChunkingStrategyAuto",
"static": "#/components/schemas/VectorStoreChunkingStrategyStatic"
}
}
},
"VectorStoreChunkingStrategyAuto": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "auto",
"default": "auto"
}
},
"additionalProperties": false,
"required": [
"type"
],
"title": "VectorStoreChunkingStrategyAuto"
},
"VectorStoreChunkingStrategyStatic": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "static",
"default": "static"
},
"static": {
"$ref": "#/components/schemas/VectorStoreChunkingStrategyStaticConfig"
}
},
"additionalProperties": false,
"required": [
"type",
"static"
],
"title": "VectorStoreChunkingStrategyStatic"
},
"VectorStoreChunkingStrategyStaticConfig": {
"type": "object",
"properties": {
"chunk_overlap_tokens": {
"type": "integer",
"default": 400
},
"max_chunk_size_tokens": {
"type": "integer",
"default": 800
}
},
"additionalProperties": false,
"required": [
"chunk_overlap_tokens",
"max_chunk_size_tokens"
],
"title": "VectorStoreChunkingStrategyStaticConfig"
},
"OpenaiAttachFileToVectorStoreRequest": {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The ID of the file to attach to the vector store."
},
"attributes": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
"description": "The key-value attributes stored with the file, which can be used for filtering."
},
"chunking_strategy": {
"$ref": "#/components/schemas/VectorStoreChunkingStrategy",
"description": "The chunking strategy to use for the file."
}
},
"additionalProperties": false,
"required": [
"file_id"
],
"title": "OpenaiAttachFileToVectorStoreRequest"
},
"VectorStoreFileLastError": {
"type": "object",
"properties": {
"code": {
"oneOf": [
{
"type": "string",
"const": "server_error"
},
{
"type": "string",
"const": "rate_limit_exceeded"
}
]
},
"message": {
"type": "string"
}
},
"additionalProperties": false,
"required": [
"code",
"message"
],
"title": "VectorStoreFileLastError"
},
"VectorStoreFileObject": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"object": {
"type": "string",
"default": "vector_store.file"
},
"attributes": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
}
},
"chunking_strategy": {
"$ref": "#/components/schemas/VectorStoreChunkingStrategy"
},
"created_at": {
"type": "integer"
},
"last_error": {
"$ref": "#/components/schemas/VectorStoreFileLastError"
},
"status": {
"oneOf": [
{
"type": "string",
"const": "completed"
},
{
"type": "string",
"const": "in_progress"
},
{
"type": "string",
"const": "cancelled"
},
{
"type": "string",
"const": "failed"
}
]
},
"usage_bytes": {
"type": "integer",
"default": 0
},
"vector_store_id": {
"type": "string"
}
},
"additionalProperties": false,
"required": [
"id",
"object",
"attributes",
"chunking_strategy",
"created_at",
"status",
"usage_bytes",
"vector_store_id"
],
"title": "VectorStoreFileObject",
"description": "OpenAI Vector Store File object."
},
"OpenAIJSONSchema": {
"type": "object",
"properties": {

View file

@ -2263,6 +2263,43 @@ paths:
schema:
$ref: '#/components/schemas/LogEventRequest'
required: true
/v1/openai/v1/vector_stores/{vector_store_id}/files:
post:
responses:
'200':
description: >-
A VectorStoreFileObject representing the attached file.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Attach a file to a vector store.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store to attach the file to.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiAttachFileToVectorStoreRequest'
required: true
/v1/openai/v1/completions:
post:
responses:
@ -5021,6 +5058,7 @@ components:
OpenAIResponseInput:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall'
- $ref: '#/components/schemas/OpenAIResponseInputFunctionToolCallOutput'
- $ref: '#/components/schemas/OpenAIResponseMessage'
@ -5115,10 +5153,23 @@ components:
type: string
const: file_search
default: file_search
vector_store_id:
vector_store_ids:
type: array
items:
type: string
filters:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
max_num_results:
type: integer
default: 10
ranking_options:
type: object
properties:
@ -5132,7 +5183,7 @@ components:
additionalProperties: false
required:
- type
- vector_store_id
- vector_store_ids
title: OpenAIResponseInputToolFileSearch
OpenAIResponseInputToolFunction:
type: object
@ -5294,6 +5345,41 @@ components:
- type
title: >-
OpenAIResponseOutputMessageContentOutputText
"OpenAIResponseOutputMessageFileSearchToolCall":
type: object
properties:
id:
type: string
queries:
type: array
items:
type: string
status:
type: string
type:
type: string
const: file_search_call
default: file_search_call
results:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
additionalProperties: false
required:
- id
- queries
- status
- type
title: >-
OpenAIResponseOutputMessageFileSearchToolCall
"OpenAIResponseOutputMessageFunctionToolCall":
type: object
properties:
@ -5491,6 +5577,7 @@ components:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseMessage'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools'
@ -5499,6 +5586,7 @@ components:
mapping:
message: '#/components/schemas/OpenAIResponseMessage'
web_search_call: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall'
file_search_call: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall'
function_call: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall'
mcp_call: '#/components/schemas/OpenAIResponseOutputMessageMCPCall'
mcp_list_tools: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools'
@ -8251,6 +8339,148 @@ components:
- event
- ttl_seconds
title: LogEventRequest
VectorStoreChunkingStrategy:
oneOf:
- $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto'
- $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic'
discriminator:
propertyName: type
mapping:
auto: '#/components/schemas/VectorStoreChunkingStrategyAuto'
static: '#/components/schemas/VectorStoreChunkingStrategyStatic'
VectorStoreChunkingStrategyAuto:
type: object
properties:
type:
type: string
const: auto
default: auto
additionalProperties: false
required:
- type
title: VectorStoreChunkingStrategyAuto
VectorStoreChunkingStrategyStatic:
type: object
properties:
type:
type: string
const: static
default: static
static:
$ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig'
additionalProperties: false
required:
- type
- static
title: VectorStoreChunkingStrategyStatic
VectorStoreChunkingStrategyStaticConfig:
type: object
properties:
chunk_overlap_tokens:
type: integer
default: 400
max_chunk_size_tokens:
type: integer
default: 800
additionalProperties: false
required:
- chunk_overlap_tokens
- max_chunk_size_tokens
title: VectorStoreChunkingStrategyStaticConfig
OpenaiAttachFileToVectorStoreRequest:
type: object
properties:
file_id:
type: string
description: >-
The ID of the file to attach to the vector store.
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The key-value attributes stored with the file, which can be used for filtering.
chunking_strategy:
$ref: '#/components/schemas/VectorStoreChunkingStrategy'
description: >-
The chunking strategy to use for the file.
additionalProperties: false
required:
- file_id
title: OpenaiAttachFileToVectorStoreRequest
VectorStoreFileLastError:
type: object
properties:
code:
oneOf:
- type: string
const: server_error
- type: string
const: rate_limit_exceeded
message:
type: string
additionalProperties: false
required:
- code
- message
title: VectorStoreFileLastError
VectorStoreFileObject:
type: object
properties:
id:
type: string
object:
type: string
default: vector_store.file
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
chunking_strategy:
$ref: '#/components/schemas/VectorStoreChunkingStrategy'
created_at:
type: integer
last_error:
$ref: '#/components/schemas/VectorStoreFileLastError'
status:
oneOf:
- type: string
const: completed
- type: string
const: in_progress
- type: string
const: cancelled
- type: string
const: failed
usage_bytes:
type: integer
default: 0
vector_store_id:
type: string
additionalProperties: false
required:
- id
- object
- attributes
- chunking_strategy
- created_at
- status
- usage_bytes
- vector_store_id
title: VectorStoreFileObject
description: OpenAI Vector Store File object.
OpenAIJSONSchema:
type: object
properties:

View file

@ -18,6 +18,7 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| files | `inline::localfs` |
| inference | `remote::ollama` |
| post_training | `inline::huggingface` |
| safety | `inline::llama-guard` |

View file

@ -81,6 +81,15 @@ class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
type: Literal["web_search_call"] = "web_search_call"
@json_schema_type
class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
id: str
queries: list[str]
status: str
type: Literal["file_search_call"] = "file_search_call"
results: list[dict[str, Any]] | None = None
@json_schema_type
class OpenAIResponseOutputMessageFunctionToolCall(BaseModel):
call_id: str
@ -119,6 +128,7 @@ class OpenAIResponseOutputMessageMCPListTools(BaseModel):
OpenAIResponseOutput = Annotated[
OpenAIResponseMessage
| OpenAIResponseOutputMessageWebSearchToolCall
| OpenAIResponseOutputMessageFileSearchToolCall
| OpenAIResponseOutputMessageFunctionToolCall
| OpenAIResponseOutputMessageMCPCall
| OpenAIResponseOutputMessageMCPListTools,
@ -362,6 +372,7 @@ class OpenAIResponseInputFunctionToolCallOutput(BaseModel):
OpenAIResponseInput = Annotated[
# Responses API allows output messages to be passed in as input
OpenAIResponseOutputMessageWebSearchToolCall
| OpenAIResponseOutputMessageFileSearchToolCall
| OpenAIResponseOutputMessageFunctionToolCall
| OpenAIResponseInputFunctionToolCallOutput
|
@ -397,9 +408,10 @@ class FileSearchRankingOptions(BaseModel):
@json_schema_type
class OpenAIResponseInputToolFileSearch(BaseModel):
type: Literal["file_search"] = "file_search"
vector_store_id: list[str]
vector_store_ids: list[str]
filters: dict[str, Any] | None = None
max_num_results: int | None = Field(default=10, ge=1, le=50)
ranking_options: FileSearchRankingOptions | None = None
# TODO: add filters
class ApprovalFilter(BaseModel):

View file

@ -8,7 +8,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Literal, Protocol, runtime_checkable
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, Field
@ -16,6 +16,7 @@ from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.strong_typing.schema import register_schema
class Chunk(BaseModel):
@ -133,6 +134,50 @@ class VectorStoreDeleteResponse(BaseModel):
deleted: bool = True
@json_schema_type
class VectorStoreChunkingStrategyAuto(BaseModel):
type: Literal["auto"] = "auto"
@json_schema_type
class VectorStoreChunkingStrategyStaticConfig(BaseModel):
chunk_overlap_tokens: int = 400
max_chunk_size_tokens: int = Field(800, ge=100, le=4096)
@json_schema_type
class VectorStoreChunkingStrategyStatic(BaseModel):
type: Literal["static"] = "static"
static: VectorStoreChunkingStrategyStaticConfig
VectorStoreChunkingStrategy = Annotated[
VectorStoreChunkingStrategyAuto | VectorStoreChunkingStrategyStatic, Field(discriminator="type")
]
register_schema(VectorStoreChunkingStrategy, name="VectorStoreChunkingStrategy")
@json_schema_type
class VectorStoreFileLastError(BaseModel):
code: Literal["server_error"] | Literal["rate_limit_exceeded"]
message: str
@json_schema_type
class VectorStoreFileObject(BaseModel):
"""OpenAI Vector Store File object."""
id: str
object: str = "vector_store.file"
attributes: dict[str, Any] = Field(default_factory=dict)
chunking_strategy: VectorStoreChunkingStrategy
created_at: int
last_error: VectorStoreFileLastError | None = None
status: Literal["completed"] | Literal["in_progress"] | Literal["cancelled"] | Literal["failed"]
usage_bytes: int = 0
vector_store_id: str
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
@ -290,3 +335,21 @@ class VectorIO(Protocol):
:returns: A VectorStoreSearchResponse containing the search results.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files", method="POST")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
"""Attach a file to a vector store.
:param vector_store_id: The ID of the vector store to attach the file to.
:param file_id: The ID of the file to attach to the vector store.
:param attributes: The key-value attributes stored with the file, which can be used for filtering.
:param chunking_strategy: The chunking strategy to use for the file.
:returns: A VectorStoreFileObject representing the attached file.
"""
...

View file

@ -19,6 +19,7 @@ from llama_stack.apis.vector_io import (
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
@ -254,3 +255,20 @@ class VectorIORouter(VectorIO):
ranking_options=ranking_options,
rewrite_query=rewrite_query,
)
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
logger.debug(f"VectorIORouter.openai_attach_file_to_vector_store: {vector_store_id}, {file_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_attach_file_to_vector_store(
vector_store_id=vector_store_id,
file_id=file_id,
attributes=attributes,
chunking_strategy=chunking_strategy,
)

View file

@ -24,6 +24,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputTool,
OpenAIResponseInputToolFileSearch,
OpenAIResponseInputToolMCP,
OpenAIResponseMessage,
OpenAIResponseObject,
@ -34,6 +35,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutput,
OpenAIResponseOutputMessageContent,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageFileSearchToolCall,
OpenAIResponseOutputMessageFunctionToolCall,
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseOutputMessageWebSearchToolCall,
@ -62,7 +64,7 @@ from llama_stack.apis.inference.inference import (
OpenAIToolMessageParam,
OpenAIUserMessageParam,
)
from llama_stack.apis.tools.tools import ToolGroups, ToolRuntime
from llama_stack.apis.tools import RAGQueryConfig, ToolGroups, ToolRuntime
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
@ -198,7 +200,8 @@ class OpenAIResponsePreviousResponseWithInputItems(BaseModel):
class ChatCompletionContext(BaseModel):
model: str
messages: list[OpenAIMessageParam]
tools: list[ChatCompletionToolParam] | None = None
response_tools: list[OpenAIResponseInputTool] | None = None
chat_tools: list[ChatCompletionToolParam] | None = None
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP]
temperature: float | None
response_format: OpenAIResponseFormatParam
@ -388,7 +391,8 @@ class OpenAIResponsesImpl:
ctx = ChatCompletionContext(
model=model,
messages=messages,
tools=chat_tools,
response_tools=tools,
chat_tools=chat_tools,
mcp_tool_to_server=mcp_tool_to_server,
temperature=temperature,
response_format=response_format,
@ -417,7 +421,7 @@ class OpenAIResponsesImpl:
completion_result = await self.inference_api.openai_chat_completion(
model=ctx.model,
messages=messages,
tools=ctx.tools,
tools=ctx.chat_tools,
stream=True,
temperature=ctx.temperature,
response_format=ctx.response_format,
@ -606,6 +610,12 @@ class OpenAIResponsesImpl:
if not tool:
raise ValueError(f"Tool {tool_name} not found")
chat_tools.append(make_openai_tool(tool_name, tool))
elif input_tool.type == "file_search":
tool_name = "knowledge_search"
tool = await self.tool_groups_api.get_tool(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")
chat_tools.append(make_openai_tool(tool_name, tool))
elif input_tool.type == "mcp":
always_allowed = None
never_allowed = None
@ -667,6 +677,7 @@ class OpenAIResponsesImpl:
tool_call_id = tool_call.id
function = tool_call.function
tool_kwargs = json.loads(function.arguments) if function.arguments else {}
if not function or not tool_call_id or not function.name:
return None, None
@ -680,12 +691,26 @@ class OpenAIResponsesImpl:
endpoint=mcp_tool.server_url,
headers=mcp_tool.headers or {},
tool_name=function.name,
kwargs=json.loads(function.arguments) if function.arguments else {},
kwargs=tool_kwargs,
)
else:
if function.name == "knowledge_search":
response_file_search_tool = next(
t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)
)
if response_file_search_tool:
if response_file_search_tool.filters:
logger.warning("Filters are not yet supported for file_search tool")
if response_file_search_tool.ranking_options:
logger.warning("Ranking options are not yet supported for file_search tool")
tool_kwargs["vector_db_ids"] = response_file_search_tool.vector_store_ids
tool_kwargs["query_config"] = RAGQueryConfig(
mode="vector",
max_chunks=response_file_search_tool.max_num_results,
)
result = await self.tool_runtime_api.invoke_tool(
tool_name=function.name,
kwargs=json.loads(function.arguments) if function.arguments else {},
kwargs=tool_kwargs,
)
except Exception as e:
error_exc = e
@ -713,6 +738,27 @@ class OpenAIResponsesImpl:
)
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
message.status = "failed"
elif function.name == "knowledge_search":
message = OpenAIResponseOutputMessageFileSearchToolCall(
id=tool_call_id,
queries=[tool_kwargs.get("query", "")],
status="completed",
)
if "document_ids" in result.metadata:
message.results = []
for i, doc_id in enumerate(result.metadata["document_ids"]):
text = result.metadata["chunks"][i] if "chunks" in result.metadata else None
score = result.metadata["scores"][i] if "scores" in result.metadata else None
message.results.append(
{
"file_id": doc_id,
"filename": doc_id,
"text": text,
"score": score,
}
)
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
message.status = "failed"
else:
raise ValueError(f"Unknown tool {function.name} called")

View file

@ -170,6 +170,8 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
content=picked,
metadata={
"document_ids": [c.metadata["document_id"] for c in chunks[: len(picked)]],
"chunks": [c.content for c in chunks[: len(picked)]],
"scores": scores[: len(picked)],
},
)

View file

@ -16,6 +16,6 @@ async def get_provider_impl(config: FaissVectorIOConfig, deps: dict[Api, Any]):
assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = FaissVectorIOAdapter(config, deps[Api.inference])
impl = FaissVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
await impl.initialize()
return impl

View file

@ -15,6 +15,7 @@ import faiss
import numpy as np
from numpy.typing import NDArray
from llama_stack.apis.files import Files
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.vector_dbs import VectorDB
@ -132,9 +133,10 @@ class FaissIndex(EmbeddingIndex):
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference) -> None:
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None:
self.config = config
self.inference_api = inference_api
self.files_api = files_api
self.cache: dict[str, VectorDBWithIndex] = {}
self.kvstore: KVStore | None = None
self.openai_vector_stores: dict[str, dict[str, Any]] = {}

View file

@ -15,6 +15,6 @@ async def get_provider_impl(config: SQLiteVectorIOConfig, deps: dict[Api, Any]):
from .sqlite_vec import SQLiteVecVectorIOAdapter
assert isinstance(config, SQLiteVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference])
impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
await impl.initialize()
return impl

View file

@ -17,6 +17,7 @@ import numpy as np
import sqlite_vec
from numpy.typing import NDArray
from llama_stack.apis.files.files import Files
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
@ -301,9 +302,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
and creates a cache of VectorDBWithIndex instances (each wrapping a SQLiteVecIndex).
"""
def __init__(self, config, inference_api: Inference) -> None:
def __init__(self, config, inference_api: Inference, files_api: Files | None) -> None:
self.config = config
self.inference_api = inference_api
self.files_api = files_api
self.cache: dict[str, VectorDBWithIndex] = {}
self.openai_vector_stores: dict[str, dict[str, Any]] = {}

View file

@ -24,6 +24,7 @@ def available_providers() -> list[ProviderSpec]:
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
deprecation_warning="Please use the `inline::faiss` provider instead.",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
@ -32,6 +33,7 @@ def available_providers() -> list[ProviderSpec]:
module="llama_stack.providers.inline.vector_io.faiss",
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
# NOTE: sqlite-vec cannot be bundled into the container image because it does not have a
# source distribution and the wheels are not available for all platforms.
@ -42,6 +44,7 @@ def available_providers() -> list[ProviderSpec]:
module="llama_stack.providers.inline.vector_io.sqlite_vec",
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
@ -51,6 +54,7 @@ def available_providers() -> list[ProviderSpec]:
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
deprecation_warning="Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
remote_provider_spec(
Api.vector_io,

View file

@ -23,6 +23,7 @@ from llama_stack.apis.vector_io import (
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import (
@ -241,3 +242,12 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")

View file

@ -25,6 +25,7 @@ from llama_stack.apis.vector_io import (
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import (
@ -240,6 +241,15 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
"""Generate a unique chunk ID using a hash of document ID and chunk text."""

View file

@ -23,6 +23,7 @@ from llama_stack.apis.vector_io import (
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import (
@ -241,3 +242,12 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")

View file

@ -5,11 +5,13 @@
# the root directory of this source tree.
import logging
import mimetypes
import time
import uuid
from abc import ABC, abstractmethod
from typing import Any
from llama_stack.apis.files import Files
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
QueryChunksResponse,
@ -20,6 +22,15 @@ from llama_stack.apis.vector_io import (
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import (
Chunk,
VectorStoreChunkingStrategy,
VectorStoreChunkingStrategyAuto,
VectorStoreChunkingStrategyStatic,
VectorStoreFileLastError,
VectorStoreFileObject,
)
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks
logger = logging.getLogger(__name__)
@ -36,6 +47,7 @@ class OpenAIVectorStoreMixin(ABC):
# These should be provided by the implementing class
openai_vector_stores: dict[str, dict[str, Any]]
files_api: Files | None
@abstractmethod
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
@ -67,6 +79,16 @@ class OpenAIVectorStoreMixin(ABC):
"""Unregister a vector database (provider-specific implementation)."""
pass
@abstractmethod
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
"""Insert chunks into a vector database (provider-specific implementation)."""
pass
@abstractmethod
async def query_chunks(
self, vector_db_id: str, query: Any, params: dict[str, Any] | None = None
@ -383,3 +405,78 @@ class OpenAIVectorStoreMixin(ABC):
if metadata[key] != value:
return False
return True
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
attributes = attributes or {}
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
vector_store_file_object = VectorStoreFileObject(
id=file_id,
attributes=attributes,
chunking_strategy=chunking_strategy,
created_at=int(time.time()),
status="in_progress",
vector_store_id=vector_store_id,
)
if not hasattr(self, "files_api") or not self.files_api:
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
message="Files API is not available",
)
return vector_store_file_object
if isinstance(chunking_strategy, VectorStoreChunkingStrategyStatic):
max_chunk_size_tokens = chunking_strategy.static.max_chunk_size_tokens
chunk_overlap_tokens = chunking_strategy.static.chunk_overlap_tokens
else:
# Default values from OpenAI API spec
max_chunk_size_tokens = 800
chunk_overlap_tokens = 400
try:
file_response = await self.files_api.openai_retrieve_file(file_id)
mime_type, _ = mimetypes.guess_type(file_response.filename)
content_response = await self.files_api.openai_retrieve_file_content(file_id)
content = content_from_data_and_mime_type(content_response.body, mime_type)
chunks = make_overlapped_chunks(
file_id,
content,
max_chunk_size_tokens,
chunk_overlap_tokens,
attributes,
)
if not chunks:
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
message="No chunks were generated from the file",
)
return vector_store_file_object
await self.insert_chunks(
vector_db_id=vector_store_id,
chunks=chunks,
)
except Exception as e:
logger.error(f"Error attaching file to vector store: {e}")
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
message=str(e),
)
return vector_store_file_object
vector_store_file_object.status = "completed"
return vector_store_file_object

View file

@ -72,16 +72,18 @@ def content_from_data(data_url: str) -> str:
data = unquote(data)
encoding = parts["encoding"] or "utf-8"
data = data.encode(encoding)
return content_from_data_and_mime_type(data, parts["mimetype"], parts.get("encoding", None))
encoding = parts["encoding"]
def content_from_data_and_mime_type(data: bytes | str, mime_type: str | None, encoding: str | None = None) -> str:
if isinstance(data, bytes):
if not encoding:
import chardet
detected = chardet.detect(data)
encoding = detected["encoding"]
mime_type = parts["mimetype"]
mime_category = mime_type.split("/")[0]
mime_category = mime_type.split("/")[0] if mime_type else None
if mime_category == "text":
# For text-based files (including CSV, MD)
return data.decode(encoding)

View file

@ -23,6 +23,8 @@ distribution_spec:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
files:
- inline::localfs
post_training:
- inline::huggingface
tool_runtime:

View file

@ -13,6 +13,7 @@ from llama_stack.distribution.datatypes import (
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
from llama_stack.providers.inline.post_training.huggingface import HuggingFacePostTrainingConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
@ -29,6 +30,7 @@ def get_distribution_template() -> DistributionTemplate:
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"files": ["inline::localfs"],
"post_training": ["inline::huggingface"],
"tool_runtime": [
"remote::brave-search",
@ -49,6 +51,11 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
files_provider = Provider(
provider_id="meta-reference-files",
provider_type="inline::localfs",
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
posttraining_provider = Provider(
provider_id="huggingface",
provider_type="inline::huggingface",
@ -98,6 +105,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_overrides={
"inference": [inference_provider],
"vector_io": [vector_io_provider_faiss],
"files": [files_provider],
"post_training": [posttraining_provider],
},
default_models=[inference_model, embedding_model],
@ -107,6 +115,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_overrides={
"inference": [inference_provider],
"vector_io": [vector_io_provider_faiss],
"files": [files_provider],
"post_training": [posttraining_provider],
"safety": [
Provider(

View file

@ -4,6 +4,7 @@ apis:
- agents
- datasetio
- eval
- files
- inference
- post_training
- safety
@ -84,6 +85,14 @@ providers:
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:~/.llama/distributions/ollama/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/files_metadata.db
post_training:
- provider_id: huggingface
provider_type: inline::huggingface

View file

@ -4,6 +4,7 @@ apis:
- agents
- datasetio
- eval
- files
- inference
- post_training
- safety
@ -82,6 +83,14 @@ providers:
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:~/.llama/distributions/ollama/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/files_metadata.db
post_training:
- provider_id: huggingface
provider_type: inline::huggingface

View file

@ -17,6 +17,8 @@ distribution_spec:
- inline::sqlite-vec
- remote::chromadb
- remote::pgvector
files:
- inline::localfs
safety:
- inline::llama-guard
agents:

View file

@ -4,6 +4,7 @@ apis:
- agents
- datasetio
- eval
- files
- inference
- safety
- scoring
@ -75,6 +76,14 @@ providers:
db: ${env.PGVECTOR_DB:}
user: ${env.PGVECTOR_USER:}
password: ${env.PGVECTOR_PASSWORD:}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/starter}/files_metadata.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard

View file

@ -12,6 +12,7 @@ from llama_stack.distribution.datatypes import (
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
@ -134,6 +135,7 @@ def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ([p.provider_type for p in inference_providers] + ["inline::sentence-transformers"]),
"vector_io": ["inline::sqlite-vec", "remote::chromadb", "remote::pgvector"],
"files": ["inline::localfs"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -170,6 +172,11 @@ def get_distribution_template() -> DistributionTemplate:
),
),
]
files_provider = Provider(
provider_id="meta-reference-files",
provider_type="inline::localfs",
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
@ -212,6 +219,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_overrides={
"inference": inference_providers + [embedding_provider],
"vector_io": vector_io_providers,
"files": [files_provider],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,

View file

@ -31,6 +31,25 @@ test_response_web_search:
search_context_size: "low"
output: "128"
test_response_file_search:
test_name: test_response_file_search
test_params:
case:
- case_id: "llama_experts"
input: "How many experts does the Llama 4 Maverick model have?"
tools:
- type: file_search
# vector_store_ids param for file_search tool gets added by the test runner
file_content: "Llama 4 Maverick has 128 experts"
output: "128"
- case_id: "llama_experts_pdf"
input: "How many experts does the Llama 4 Maverick model have?"
tools:
- type: file_search
# vector_store_ids param for file_search toolgets added by the test runner
file_path: "pdfs/llama_stack_and_models.pdf"
output: "128"
test_response_mcp_tool:
test_name: test_response_mcp_tool
test_params:

View file

@ -5,6 +5,8 @@
# the root directory of this source tree.
import json
import os
import time
import httpx
import openai
@ -23,6 +25,31 @@ from tests.verifications.openai_api.fixtures.load import load_test_cases
responses_test_cases = load_test_cases("responses")
def _new_vector_store(openai_client, name):
# Ensure we don't reuse an existing vector store
vector_stores = openai_client.vector_stores.list()
for vector_store in vector_stores:
if vector_store.name == name:
openai_client.vector_stores.delete(vector_store_id=vector_store.id)
# Create a new vector store
vector_store = openai_client.vector_stores.create(
name=name,
)
return vector_store
def _upload_file(openai_client, name, file_path):
# Ensure we don't reuse an existing file
files = openai_client.files.list()
for file in files:
if file.filename == name:
openai_client.files.delete(file_id=file.id)
# Upload a text file with our document content
return openai_client.files.create(file=open(file_path, "rb"), purpose="assistants")
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_basic"]["test_params"]["case"],
@ -258,6 +285,111 @@ def test_response_non_streaming_web_search(request, openai_client, model, provid
assert case["output"].lower() in response.output_text.lower().strip()
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_file_search"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_file_search(
request, openai_client, model, provider, verification_config, tmp_path, case
):
if isinstance(openai_client, LlamaStackAsLibraryClient):
pytest.skip("Responses API file search is not yet supported in library client.")
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
vector_store = _new_vector_store(openai_client, "test_vector_store")
if "file_content" in case:
file_name = "test_response_non_streaming_file_search.txt"
file_path = tmp_path / file_name
file_path.write_text(case["file_content"])
elif "file_path" in case:
file_path = os.path.join(os.path.dirname(__file__), "fixtures", case["file_path"])
file_name = os.path.basename(file_path)
else:
raise ValueError(f"No file content or path provided for case {case['case_id']}")
file_response = _upload_file(openai_client, file_name, file_path)
# Attach our file to the vector store
file_attach_response = openai_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file_response.id,
)
# Wait for the file to be attached
while file_attach_response.status == "in_progress":
time.sleep(0.1)
file_attach_response = openai_client.vector_stores.files.retrieve(
vector_store_id=vector_store.id,
file_id=file_response.id,
)
assert file_attach_response.status == "completed", f"Expected file to be attached, got {file_attach_response}"
assert not file_attach_response.last_error
# Update our tools with the right vector store id
tools = case["tools"]
for tool in tools:
if tool["type"] == "file_search":
tool["vector_store_ids"] = [vector_store.id]
# Create the response request, which should query our vector store
response = openai_client.responses.create(
model=model,
input=case["input"],
tools=tools,
stream=False,
include=["file_search_call.results"],
)
# Verify the file_search_tool was called
assert len(response.output) > 1
assert response.output[0].type == "file_search_call"
assert response.output[0].status == "completed"
assert response.output[0].queries # ensure it's some non-empty list
assert response.output[0].results
assert case["output"].lower() in response.output[0].results[0].text.lower()
assert response.output[0].results[0].score > 0
# Verify the output_text generated by the response
assert case["output"].lower() in response.output_text.lower().strip()
def test_response_non_streaming_file_search_empty_vector_store(
request, openai_client, model, provider, verification_config
):
if isinstance(openai_client, LlamaStackAsLibraryClient):
pytest.skip("Responses API file search is not yet supported in library client.")
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
vector_store = _new_vector_store(openai_client, "test_vector_store")
# Create the response request, which should query our vector store
response = openai_client.responses.create(
model=model,
input="How many experts does the Llama 4 Maverick model have?",
tools=[{"type": "file_search", "vector_store_ids": [vector_store.id]}],
stream=False,
include=["file_search_call.results"],
)
# Verify the file_search_tool was called
assert len(response.output) > 1
assert response.output[0].type == "file_search_call"
assert response.output[0].status == "completed"
assert response.output[0].queries # ensure it's some non-empty list
assert not response.output[0].results # ensure we don't get any results
# Verify some output_text was generated by the response
assert response.output_text
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_mcp_tool"]["test_params"]["case"],