mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-29 11:24:19 +00:00
API Updates (#73)
* API Keys passed from Client instead of distro configuration * delete distribution registry * Rename the "package" word away * Introduce a "Router" layer for providers Some providers need to be factorized and considered as thin routing layers on top of other providers. Consider two examples: - The inference API should be a routing layer over inference providers, routed using the "model" key - The memory banks API is another instance where various memory bank types will be provided by independent providers (e.g., a vector store is served by Chroma while a keyvalue memory can be served by Redis or PGVector) This commit introduces a generalized routing layer for this purpose. * update `apis_to_serve` * llama_toolchain -> llama_stack * Codemod from llama_toolchain -> llama_stack - added providers/registry - cleaned up api/ subdirectories and moved impls away - restructured api/api.py - from llama_stack.apis.<api> import foo should work now - update imports to do llama_stack.apis.<api> - update many other imports - added __init__, fixed some registry imports - updated registry imports - create_agentic_system -> create_agent - AgenticSystem -> Agent * Moved some stuff out of common/; re-generated OpenAPI spec * llama-toolchain -> llama-stack (hyphens) * add control plane API * add redis adapter + sqlite provider * move core -> distribution * Some more toolchain -> stack changes * small naming shenanigans * Removing custom tool and agent utilities and moving them client side * Move control plane to distribution server for now * Remove control plane from API list * no codeshield dependency randomly plzzzzz * Add "fire" as a dependency * add back event loggers * stack configure fixes * use brave instead of bing in the example client * add init file so it gets packaged * add init files so it gets packaged * Update MANIFEST * bug fix --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Xi Yan <xiyan@meta.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
This commit is contained in:
parent
f294eac5f5
commit
9487ad8294
213 changed files with 1725 additions and 1204 deletions
295
llama_stack/providers/adapters/inference/tgi/tgi.py
Normal file
295
llama_stack/providers/adapters/inference/tgi/tgi.py
Normal file
|
@ -0,0 +1,295 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import Any, AsyncGenerator, Dict
|
||||
|
||||
import requests
|
||||
|
||||
from huggingface_hub import HfApi, InferenceClient
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import StopReason
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.utils.inference.prepare_messages import prepare_messages
|
||||
|
||||
from .config import TGIImplConfig
|
||||
|
||||
HF_SUPPORTED_MODELS = {
|
||||
"Meta-Llama3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
"Meta-Llama3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||
"Meta-Llama3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
||||
}
|
||||
|
||||
|
||||
class TGIAdapter(Inference):
|
||||
def __init__(self, config: TGIImplConfig) -> None:
|
||||
self.config = config
|
||||
self.tokenizer = Tokenizer.get_instance()
|
||||
self.formatter = ChatFormat(self.tokenizer)
|
||||
|
||||
@property
|
||||
def client(self) -> InferenceClient:
|
||||
return InferenceClient(model=self.config.url, token=self.config.api_token)
|
||||
|
||||
def _get_endpoint_info(self) -> Dict[str, Any]:
|
||||
return {
|
||||
**self.client.get_endpoint_info(),
|
||||
"inference_url": self.config.url,
|
||||
}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
try:
|
||||
info = self._get_endpoint_info()
|
||||
if "model_id" not in info:
|
||||
raise RuntimeError("Missing model_id in model info")
|
||||
if "max_total_tokens" not in info:
|
||||
raise RuntimeError("Missing max_total_tokens in model info")
|
||||
self.max_tokens = info["max_total_tokens"]
|
||||
|
||||
model_id = info["model_id"]
|
||||
model_name = next(
|
||||
(name for name, id in HF_SUPPORTED_MODELS.items() if id == model_id),
|
||||
None,
|
||||
)
|
||||
if model_name is None:
|
||||
raise RuntimeError(
|
||||
f"TGI is serving model: {model_id}, use one of the supported models: {', '.join(HF_SUPPORTED_MODELS.values())}"
|
||||
)
|
||||
self.model_name = model_name
|
||||
self.inference_url = info["inference_url"]
|
||||
except Exception as e:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
raise RuntimeError(f"Error initializing TGIAdapter: {e}") from e
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||
options = {}
|
||||
if request.sampling_params is not None:
|
||||
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||
if getattr(request.sampling_params, attr):
|
||||
options[attr] = getattr(request.sampling_params, attr)
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
request = ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
messages = prepare_messages(request)
|
||||
model_input = self.formatter.encode_dialog_prompt(messages)
|
||||
prompt = self.tokenizer.decode(model_input.tokens)
|
||||
|
||||
input_tokens = len(model_input.tokens)
|
||||
max_new_tokens = min(
|
||||
request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
|
||||
self.max_tokens - input_tokens - 1,
|
||||
)
|
||||
|
||||
print(f"Calculated max_new_tokens: {max_new_tokens}")
|
||||
|
||||
assert (
|
||||
request.model == self.model_name
|
||||
), f"Model mismatch, expected {self.model_name}, got {request.model}"
|
||||
|
||||
options = self.get_chat_options(request)
|
||||
if not request.stream:
|
||||
response = self.client.text_generation(
|
||||
prompt=prompt,
|
||||
stream=False,
|
||||
details=True,
|
||||
max_new_tokens=max_new_tokens,
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
**options,
|
||||
)
|
||||
stop_reason = None
|
||||
if response.details.finish_reason:
|
||||
if response.details.finish_reason == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif response.details.finish_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = self.formatter.decode_assistant_message_from_content(
|
||||
response.generated_text,
|
||||
stop_reason,
|
||||
)
|
||||
yield ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
logprobs=None,
|
||||
)
|
||||
|
||||
else:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta="",
|
||||
)
|
||||
)
|
||||
buffer = ""
|
||||
ipython = False
|
||||
stop_reason = None
|
||||
tokens = []
|
||||
|
||||
for response in self.client.text_generation(
|
||||
prompt=prompt,
|
||||
stream=True,
|
||||
details=True,
|
||||
max_new_tokens=max_new_tokens,
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
**options,
|
||||
):
|
||||
token_result = response.token
|
||||
|
||||
buffer += token_result.text
|
||||
tokens.append(token_result.id)
|
||||
|
||||
if not ipython and buffer.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.started,
|
||||
),
|
||||
)
|
||||
)
|
||||
buffer = buffer[len("<|python_tag|>") :]
|
||||
continue
|
||||
|
||||
if token_result.text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
elif token_result.text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
else:
|
||||
text = token_result.text
|
||||
|
||||
if ipython:
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
else:
|
||||
delta = text
|
||||
|
||||
if stop_reason is None:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=delta,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
# parse tool calls and report errors
|
||||
message = self.formatter.decode_assistant_message(tokens, stop_reason)
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.failure,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content=tool_call,
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class InferenceEndpointAdapter(TGIAdapter):
|
||||
def __init__(self, config: TGIImplConfig) -> None:
|
||||
super().__init__(config)
|
||||
self.config.url = self._construct_endpoint_url()
|
||||
|
||||
def _construct_endpoint_url(self) -> str:
|
||||
hf_endpoint_name = self.config.hf_endpoint_name
|
||||
assert hf_endpoint_name.count("/") <= 1, (
|
||||
"Endpoint name must be in the format of 'namespace/endpoint_name' "
|
||||
"or 'endpoint_name'"
|
||||
)
|
||||
if "/" not in hf_endpoint_name:
|
||||
hf_namespace: str = self.get_namespace()
|
||||
endpoint_path = f"{hf_namespace}/{hf_endpoint_name}"
|
||||
else:
|
||||
endpoint_path = hf_endpoint_name
|
||||
return f"https://api.endpoints.huggingface.cloud/v2/endpoint/{endpoint_path}"
|
||||
|
||||
def get_namespace(self) -> str:
|
||||
return HfApi().whoami()["name"]
|
||||
|
||||
@property
|
||||
def client(self) -> InferenceClient:
|
||||
return InferenceClient(model=self.inference_url, token=self.config.api_token)
|
||||
|
||||
def _get_endpoint_info(self) -> Dict[str, Any]:
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"authorization": f"Bearer {self.config.api_token}",
|
||||
}
|
||||
response = requests.get(self.config.url, headers=headers)
|
||||
response.raise_for_status()
|
||||
endpoint_info = response.json()
|
||||
return {
|
||||
"inference_url": endpoint_info["status"]["url"],
|
||||
"model_id": endpoint_info["model"]["repository"],
|
||||
"max_total_tokens": int(
|
||||
endpoint_info["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"]
|
||||
),
|
||||
}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
await super().initialize()
|
Loading…
Add table
Add a link
Reference in a new issue