mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 13:44:38 +00:00
Add toolchain from agentic system here
This commit is contained in:
parent
f6b2b2fb39
commit
95781ec85d
71 changed files with 11899 additions and 0 deletions
0
toolchain/inference/__init__.py
Normal file
0
toolchain/inference/__init__.py
Normal file
2
toolchain/inference/api/__init__.py
Normal file
2
toolchain/inference/api/__init__.py
Normal file
|
@ -0,0 +1,2 @@
|
|||
from .datatypes import * # noqa: F401 F403
|
||||
from .endpoints import * # noqa: F401 F403
|
146
toolchain/inference/api/config.py
Normal file
146
toolchain/inference/api/config.py
Normal file
|
@ -0,0 +1,146 @@
|
|||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
from hydra.core.config_store import ConfigStore
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
|
||||
@dataclass
|
||||
class GeneratorArgs:
|
||||
ckpt_dir: str
|
||||
tokenizer_path: str
|
||||
model_parallel_size: Optional[int] = None
|
||||
max_seq_len: int = 2048
|
||||
max_batch_size: int = 4
|
||||
|
||||
|
||||
class ImplType(Enum):
|
||||
inline = "inline"
|
||||
remote = "remote"
|
||||
|
||||
|
||||
class CheckpointType(Enum):
|
||||
pytorch = "pytorch"
|
||||
huggingface = "huggingface"
|
||||
|
||||
|
||||
class PytorchCheckpoint(BaseModel):
|
||||
checkpoint_type: Literal[CheckpointType.pytorch.value] = (
|
||||
CheckpointType.pytorch.value
|
||||
)
|
||||
checkpoint_dir: str
|
||||
tokenizer_path: str
|
||||
model_parallel_size: int
|
||||
|
||||
|
||||
class HuggingFaceCheckpoint(BaseModel):
|
||||
checkpoint_type: Literal[CheckpointType.huggingface.value] = (
|
||||
CheckpointType.huggingface.value
|
||||
)
|
||||
repo_id: str # or model_name ?
|
||||
model_parallel_size: int
|
||||
|
||||
|
||||
class ModelCheckpointConfig(BaseModel):
|
||||
checkpoint: Annotated[
|
||||
Union[PytorchCheckpoint, HuggingFaceCheckpoint],
|
||||
Field(discriminator="checkpoint_type"),
|
||||
]
|
||||
|
||||
|
||||
# NOTE: this same config will be used when instantiating an inference server naturally
|
||||
class InlineImplConfig(BaseModel):
|
||||
impl_type: Literal[ImplType.inline.value] = ImplType.inline.value
|
||||
checkpoint_config: ModelCheckpointConfig
|
||||
max_seq_len: int
|
||||
max_batch_size: int = 1
|
||||
|
||||
|
||||
class RemoteImplConfig(BaseModel):
|
||||
impl_type: Literal[ImplType.remote.value] = ImplType.remote.value
|
||||
url: str = Field(..., description="The URL of the remote module")
|
||||
|
||||
|
||||
class ModelInferenceConfig(BaseModel):
|
||||
impl_config: Annotated[
|
||||
Union[InlineImplConfig, RemoteImplConfig],
|
||||
Field(discriminator="impl_type"),
|
||||
]
|
||||
|
||||
|
||||
# Hydra does not like unions of containers and
|
||||
# Pydantic does not like Literals
|
||||
# Adding a simple dataclass with custom coversion
|
||||
# to config classes
|
||||
|
||||
|
||||
@dataclass
|
||||
class InlineImplHydraConfig:
|
||||
checkpoint_type: str # "pytorch" / "HF"
|
||||
# pytorch checkpoint required args
|
||||
checkpoint_dir: str
|
||||
tokenizer_path: str
|
||||
model_parallel_size: int
|
||||
max_seq_len: int
|
||||
max_batch_size: int = 1
|
||||
# TODO: huggingface checkpoint required args
|
||||
|
||||
def convert_to_inline_impl_config(self):
|
||||
if self.checkpoint_type == "pytorch":
|
||||
return InlineImplConfig(
|
||||
checkpoint_config=ModelCheckpointConfig(
|
||||
checkpoint=PytorchCheckpoint(
|
||||
checkpoint_type=CheckpointType.pytorch.value,
|
||||
checkpoint_dir=self.checkpoint_dir,
|
||||
tokenizer_path=self.tokenizer_path,
|
||||
model_parallel_size=self.model_parallel_size,
|
||||
)
|
||||
),
|
||||
max_seq_len=self.max_seq_len,
|
||||
max_batch_size=self.max_batch_size,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError("HF Checkpoint not supported yet")
|
||||
|
||||
|
||||
@dataclass
|
||||
class RemoteImplHydraConfig:
|
||||
url: str
|
||||
|
||||
def convert_to_remote_impl_config(self):
|
||||
return RemoteImplConfig(
|
||||
url=self.url,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelInferenceHydraConfig:
|
||||
impl_type: str
|
||||
inline_config: Optional[InlineImplHydraConfig] = None
|
||||
remote_config: Optional[RemoteImplHydraConfig] = None
|
||||
|
||||
def __post_init__(self):
|
||||
assert self.impl_type in ["inline", "remote"]
|
||||
if self.impl_type == "inline":
|
||||
assert self.inline_config is not None
|
||||
if self.impl_type == "remote":
|
||||
assert self.remote_config is not None
|
||||
|
||||
def convert_to_model_inferene_config(self):
|
||||
if self.impl_type == "inline":
|
||||
inline_config = InlineImplHydraConfig(**self.inline_config)
|
||||
return ModelInferenceConfig(
|
||||
impl_config=inline_config.convert_to_inline_impl_config()
|
||||
)
|
||||
elif self.impl_type == "remote":
|
||||
remote_config = RemoteImplHydraConfig(**self.remote_config)
|
||||
return ModelInferenceConfig(
|
||||
impl_config=remote_config.convert_to_remote_impl_config()
|
||||
)
|
||||
|
||||
|
||||
cs = ConfigStore.instance()
|
||||
cs.store(name="model_inference_config", node=ModelInferenceHydraConfig)
|
68
toolchain/inference/api/datatypes.py
Normal file
68
toolchain/inference/api/datatypes.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
from enum import Enum
|
||||
from typing import List, Literal, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from strong_typing.schema import json_schema_type
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from models.llama3.datatypes import * # noqa: F403
|
||||
|
||||
|
||||
class LogProbConfig(BaseModel):
|
||||
top_k: Optional[int] = 0
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QuantizationType(Enum):
|
||||
bf16 = "bf16"
|
||||
fp8 = "fp8"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Fp8QuantizationConfig(BaseModel):
|
||||
quantization_type: Literal[QuantizationType.fp8.value] = QuantizationType.fp8.value
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Bf16QuantizationConfig(BaseModel):
|
||||
quantization_type: Literal[QuantizationType.bf16.value] = (
|
||||
QuantizationType.bf16.value
|
||||
)
|
||||
|
||||
|
||||
QuantizationConfig = Annotated[
|
||||
Union[Bf16QuantizationConfig, Fp8QuantizationConfig],
|
||||
Field(discriminator="quantization_type"),
|
||||
]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseEventType(Enum):
|
||||
start = "start"
|
||||
complete = "complete"
|
||||
progress = "progress"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolCallParseStatus(Enum):
|
||||
started = "started"
|
||||
in_progress = "in_progress"
|
||||
failure = "failure"
|
||||
success = "success"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolCallDelta(BaseModel):
|
||||
content: Union[str, ToolCall]
|
||||
parse_status: ToolCallParseStatus
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseEvent(BaseModel):
|
||||
"""Chat completion response event."""
|
||||
|
||||
event_type: ChatCompletionResponseEventType
|
||||
delta: Union[str, ToolCallDelta]
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
stop_reason: Optional[StopReason] = None
|
117
toolchain/inference/api/endpoints.py
Normal file
117
toolchain/inference/api/endpoints.py
Normal file
|
@ -0,0 +1,117 @@
|
|||
from .datatypes import * # noqa: F403
|
||||
from typing import Optional, Protocol
|
||||
|
||||
# this dependency is annoying and we need a forked up version anyway
|
||||
from pyopenapi import webmethod
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionRequest(BaseModel):
|
||||
model: PretrainedModel
|
||||
content: InterleavedTextAttachment
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
|
||||
stream: Optional[bool] = False
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
quantization_config: Optional[QuantizationConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionResponse(BaseModel):
|
||||
completion_message: CompletionMessage
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionResponseStreamChunk(BaseModel):
|
||||
"""streamed completion response."""
|
||||
|
||||
delta: str
|
||||
stop_reason: Optional[StopReason] = None
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BatchCompletionRequest(BaseModel):
|
||||
model: PretrainedModel
|
||||
content_batch: List[InterleavedTextAttachment]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
quantization_config: Optional[QuantizationConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BatchCompletionResponse(BaseModel):
|
||||
completion_message_batch: List[CompletionMessage]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: InstructModel
|
||||
messages: List[Message]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
|
||||
# zero-shot tool definitions as input to the model
|
||||
available_tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
||||
|
||||
stream: Optional[bool] = False
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
quantization_config: Optional[QuantizationConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseStreamChunk(BaseModel):
|
||||
"""SSE-stream of these events."""
|
||||
|
||||
event: ChatCompletionResponseEvent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
completion_message: CompletionMessage
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BatchChatCompletionRequest(BaseModel):
|
||||
model: InstructModel
|
||||
messages_batch: List[List[Message]]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
|
||||
# zero-shot tool definitions as input to the model
|
||||
available_tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
||||
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
quantization_config: Optional[QuantizationConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BatchChatCompletionResponse(BaseModel):
|
||||
completion_message_batch: List[CompletionMessage]
|
||||
|
||||
|
||||
class ModelInference(Protocol):
|
||||
|
||||
@webmethod(route="/inference/completion")
|
||||
async def completion(
|
||||
self,
|
||||
request: CompletionRequest,
|
||||
) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ...
|
||||
|
||||
@webmethod(route="/inference/chat_completion")
|
||||
async def chat_completion(
|
||||
self,
|
||||
request: ChatCompletionRequest,
|
||||
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ...
|
||||
|
||||
@webmethod(route="/inference/batch_completion")
|
||||
async def batch_completion(
|
||||
self,
|
||||
request: BatchCompletionRequest,
|
||||
) -> List[CompletionResponse]: ...
|
||||
|
||||
@webmethod(route="/inference/batch_chat_completion")
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
request: BatchChatCompletionRequest,
|
||||
) -> List[ChatCompletionResponse]: ...
|
12
toolchain/inference/api_instance.py
Normal file
12
toolchain/inference/api_instance.py
Normal file
|
@ -0,0 +1,12 @@
|
|||
from .api.config import ImplType, ModelInferenceConfig
|
||||
|
||||
|
||||
async def get_inference_api_instance(config: ModelInferenceConfig):
|
||||
if config.impl_config.impl_type == ImplType.inline.value:
|
||||
from .inference import ModelInferenceImpl
|
||||
|
||||
return ModelInferenceImpl(config.impl_config)
|
||||
|
||||
from .client import ModelInferenceClient
|
||||
|
||||
return ModelInferenceClient(config.impl_config.url)
|
73
toolchain/inference/client.py
Normal file
73
toolchain/inference/client.py
Normal file
|
@ -0,0 +1,73 @@
|
|||
import asyncio
|
||||
import json
|
||||
from typing import AsyncGenerator
|
||||
|
||||
import fire
|
||||
import httpx
|
||||
|
||||
from .api.endpoints import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
InstructModel,
|
||||
ModelInference,
|
||||
)
|
||||
|
||||
|
||||
class ModelInferenceClient(ModelInference):
|
||||
def __init__(self, base_url: str):
|
||||
self.base_url = base_url
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
async with httpx.AsyncClient() as client:
|
||||
async with client.stream(
|
||||
"POST",
|
||||
f"{self.base_url}/inference/chat_completion",
|
||||
data=request.json(),
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=20,
|
||||
) as response:
|
||||
async for line in response.aiter_lines():
|
||||
if line.startswith("data:"):
|
||||
data = line[len("data: ") :]
|
||||
try:
|
||||
yield ChatCompletionResponseStreamChunk(**json.loads(data))
|
||||
except Exception as e:
|
||||
print(data)
|
||||
print(f"Error with parsing or validation: {e}")
|
||||
|
||||
|
||||
async def run_main(host: str, port: int):
|
||||
client = ModelInferenceClient(f"http://{host}:{port}")
|
||||
|
||||
message = UserMessage(content="hello world, help me out here")
|
||||
req = ChatCompletionRequest(
|
||||
model=InstructModel.llama3_70b_chat,
|
||||
messages=[message],
|
||||
stream=True,
|
||||
)
|
||||
async for event in client.chat_completion(
|
||||
ChatCompletionRequest(
|
||||
model=InstructModel.llama3_70b_chat,
|
||||
messages=[message],
|
||||
stream=True,
|
||||
)
|
||||
):
|
||||
print(event)
|
||||
|
||||
|
||||
def main(host: str, port: int):
|
||||
asyncio.run(run_main(host, port))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
298
toolchain/inference/generation.py
Normal file
298
toolchain/inference/generation.py
Normal file
|
@ -0,0 +1,298 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
||||
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Generator, List, Optional, TypedDict
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from fairscale.nn.model_parallel.initialize import (
|
||||
get_model_parallel_rank,
|
||||
initialize_model_parallel,
|
||||
model_parallel_is_initialized,
|
||||
)
|
||||
from models.llama3.args import ModelArgs
|
||||
from models.llama3.chat_format import ChatFormat, ModelInput
|
||||
from models.llama3.datatypes import Message
|
||||
from models.llama3.model import Transformer
|
||||
from models.llama3.tokenizer import Tokenizer
|
||||
from termcolor import cprint
|
||||
|
||||
|
||||
@dataclass
|
||||
class TokenResult:
|
||||
token: int
|
||||
text: str
|
||||
logprobs: Optional[List[float]] = None
|
||||
|
||||
|
||||
class CompletionPrediction(TypedDict, total=False):
|
||||
generation: str
|
||||
tokens: List[str] # not required
|
||||
logprobs: List[float] # not required
|
||||
|
||||
|
||||
class Llama:
|
||||
@staticmethod
|
||||
def build(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
max_seq_len: int,
|
||||
max_batch_size: int,
|
||||
model_parallel_size: Optional[int] = None,
|
||||
seed: int = 1,
|
||||
) -> "Llama":
|
||||
"""
|
||||
Build a Llama instance by initializing and loading a model checkpoint.
|
||||
|
||||
Args:
|
||||
ckpt_dir (str): Path to the directory containing checkpoint files.
|
||||
tokenizer_path (str): Path to the tokenizer file.
|
||||
max_seq_len (int): Maximum sequence length for input text.
|
||||
max_batch_size (int): Maximum batch size for inference.
|
||||
model_parallel_size (Optional[int], optional): Number of model parallel processes.
|
||||
If not provided, it's determined from the environment. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Llama: An instance of the Llama class with the loaded model and tokenizer.
|
||||
|
||||
Raises:
|
||||
AssertionError: If there are no checkpoint files in the specified directory,
|
||||
or if the model parallel size does not match the number of checkpoint files.
|
||||
|
||||
Note:
|
||||
This method initializes the distributed process group, sets the device to CUDA,
|
||||
and loads the pre-trained model and tokenizer.
|
||||
"""
|
||||
|
||||
if not torch.distributed.is_initialized():
|
||||
torch.distributed.init_process_group("nccl")
|
||||
if not model_parallel_is_initialized():
|
||||
if model_parallel_size is None:
|
||||
model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
initialize_model_parallel(model_parallel_size)
|
||||
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
torch.cuda.set_device(local_rank)
|
||||
|
||||
# seed must be the same in all processes
|
||||
torch.manual_seed(seed)
|
||||
|
||||
if local_rank > 0:
|
||||
sys.stdout = open(os.devnull, "w")
|
||||
|
||||
start_time = time.time()
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
||||
assert model_parallel_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
ckpt_path = checkpoints[get_model_parallel_rank()]
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
params = json.loads(f.read())
|
||||
|
||||
# TODO(ashwin): this block is so we can load internal checkpoints without additional
|
||||
# fuss. the final code should _not_ have this blurb
|
||||
if "model" in params:
|
||||
params = params["model"]
|
||||
|
||||
model_args: ModelArgs = ModelArgs(
|
||||
max_seq_len=max_seq_len,
|
||||
max_batch_size=max_batch_size,
|
||||
**params,
|
||||
)
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
|
||||
assert (
|
||||
model_args.vocab_size == tokenizer.n_words
|
||||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
if torch.cuda.is_bf16_supported():
|
||||
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
|
||||
else:
|
||||
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
|
||||
model = Transformer(model_args)
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||||
|
||||
return Llama(model, tokenizer, model_args)
|
||||
|
||||
def __init__(self, model: Transformer, tokenizer: Tokenizer, args: ModelArgs):
|
||||
self.args = args
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.formatter = ChatFormat(tokenizer)
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate(
|
||||
self,
|
||||
model_input: ModelInput,
|
||||
max_gen_len: int,
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
logprobs: bool = False,
|
||||
echo: bool = False,
|
||||
include_stop_token: bool = False,
|
||||
) -> Generator:
|
||||
params = self.model.params
|
||||
|
||||
# cprint("Input to model -> " + self.tokenizer.decode(model_input.tokens), "red")
|
||||
prompt_tokens = [model_input.tokens]
|
||||
|
||||
bsz = 1
|
||||
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
|
||||
|
||||
min_prompt_len = min(len(t) for t in prompt_tokens)
|
||||
max_prompt_len = max(len(t) for t in prompt_tokens)
|
||||
|
||||
if max_prompt_len >= params.max_seq_len:
|
||||
cprint(
|
||||
f"Out of token budget {max_prompt_len} vs {params.max_seq_len}", "red"
|
||||
)
|
||||
return
|
||||
|
||||
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
|
||||
pad_id = self.tokenizer.pad_id
|
||||
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
|
||||
for k, t in enumerate(prompt_tokens):
|
||||
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
|
||||
if logprobs:
|
||||
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
|
||||
|
||||
prev_pos = 0
|
||||
eos_reached = torch.tensor([False] * bsz, device="cuda")
|
||||
input_text_mask = tokens != pad_id
|
||||
if min_prompt_len == total_len:
|
||||
# TODO(ashwin): unify this branch with the one below and figure out multimodal crap
|
||||
logits = self.model.forward(tokens, prev_pos)
|
||||
token_logprobs = -F.cross_entropy(
|
||||
input=logits.transpose(1, 2),
|
||||
target=tokens,
|
||||
reduction="none",
|
||||
ignore_index=pad_id,
|
||||
)
|
||||
|
||||
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
|
||||
|
||||
for cur_pos in range(min_prompt_len, total_len):
|
||||
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
||||
|
||||
if temperature > 0:
|
||||
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
|
||||
next_token = sample_top_p(probs, top_p)
|
||||
else:
|
||||
next_token = torch.argmax(logits[:, -1], dim=-1)
|
||||
|
||||
next_token = next_token.reshape(-1)
|
||||
# only replace token if prompt has already been generated
|
||||
next_token = torch.where(
|
||||
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
|
||||
)
|
||||
tokens[:, cur_pos] = next_token
|
||||
|
||||
target = tokens[:, prev_pos + 1 : cur_pos + 1]
|
||||
if logprobs:
|
||||
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
|
||||
input=logits.transpose(1, 2),
|
||||
target=tokens[:, prev_pos + 1 : cur_pos + 1],
|
||||
reduction="none",
|
||||
ignore_index=pad_id,
|
||||
)
|
||||
eos_reached |= (~input_text_mask[:, cur_pos]) & (
|
||||
torch.isin(next_token, stop_tokens)
|
||||
)
|
||||
yield TokenResult(
|
||||
token=next_token[0].item(),
|
||||
text=self.tokenizer.decode(next_token.tolist()),
|
||||
logprobs=(
|
||||
token_logprobs[:, prev_pos + 1 : cur_pos + 1][0].tolist()
|
||||
if logprobs
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
prev_pos = cur_pos
|
||||
if all(eos_reached):
|
||||
break
|
||||
|
||||
def text_completion(
|
||||
self,
|
||||
prompt: str,
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
max_gen_len: Optional[int] = None,
|
||||
logprobs: bool = False,
|
||||
echo: bool = False,
|
||||
) -> Generator:
|
||||
if (
|
||||
max_gen_len is None
|
||||
or max_gen_len == 0
|
||||
or max_gen_len >= self.model.params.max_seq_len
|
||||
):
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
|
||||
prompt_tokens = self.tokenizer.encode(x, bos=True, eos=False)
|
||||
|
||||
yield from self.generate(
|
||||
model_input=ModelInput(tokens=prompt_tokens),
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=logprobs,
|
||||
echo=echo,
|
||||
)
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
messages: List[Message],
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
max_gen_len: Optional[int] = None,
|
||||
logprobs: bool = False,
|
||||
) -> Generator:
|
||||
if (
|
||||
max_gen_len is None
|
||||
or max_gen_len == 0
|
||||
or max_gen_len >= self.model.params.max_seq_len
|
||||
):
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
|
||||
yield from self.generate(
|
||||
model_input=self.formatter.encode_dialog_prompt(messages),
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=logprobs,
|
||||
include_stop_token=True,
|
||||
)
|
||||
|
||||
|
||||
def sample_top_p(probs, p):
|
||||
"""
|
||||
Perform top-p (nucleus) sampling on a probability distribution.
|
||||
|
||||
Args:
|
||||
probs (torch.Tensor): Probability distribution tensor.
|
||||
p (float): Probability threshold for top-p sampling.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Sampled token indices.
|
||||
|
||||
Note:
|
||||
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
|
||||
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
|
||||
"""
|
||||
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
||||
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
||||
mask = probs_sum - probs_sort > p
|
||||
probs_sort[mask] = 0.0
|
||||
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
||||
next_token = torch.multinomial(probs_sort, num_samples=1)
|
||||
next_token = torch.gather(probs_idx, -1, next_token)
|
||||
return next_token
|
173
toolchain/inference/inference.py
Normal file
173
toolchain/inference/inference.py
Normal file
|
@ -0,0 +1,173 @@
|
|||
from typing import AsyncGenerator
|
||||
|
||||
from models.llama3.datatypes import StopReason
|
||||
|
||||
from .api.config import CheckpointType, GeneratorArgs, InlineImplConfig
|
||||
from .api.datatypes import (
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
)
|
||||
from .api.endpoints import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
ModelInference,
|
||||
)
|
||||
from .model_parallel import LlamaModelParallelGenerator
|
||||
|
||||
|
||||
def generator_args_from_config(config: InlineImplConfig) -> GeneratorArgs:
|
||||
if (
|
||||
config.checkpoint_config.checkpoint.checkpoint_type
|
||||
== CheckpointType.pytorch.value
|
||||
):
|
||||
pt_checkpoint = config.checkpoint_config.checkpoint
|
||||
return GeneratorArgs(
|
||||
ckpt_dir=pt_checkpoint.checkpoint_dir,
|
||||
tokenizer_path=pt_checkpoint.tokenizer_path,
|
||||
model_parallel_size=pt_checkpoint.model_parallel_size,
|
||||
max_seq_len=config.max_seq_len,
|
||||
max_batch_size=config.max_batch_size,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError("HF Checkpoint not supported yet")
|
||||
|
||||
|
||||
class ModelInferenceImpl(ModelInference):
|
||||
|
||||
def __init__(self, config: InlineImplConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
generator_args = generator_args_from_config(self.config)
|
||||
self.generator = LlamaModelParallelGenerator(
|
||||
args=generator_args,
|
||||
)
|
||||
self.generator.start()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.generator.stop()
|
||||
|
||||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta="",
|
||||
)
|
||||
)
|
||||
|
||||
tokens = []
|
||||
logprobs = []
|
||||
|
||||
stop_reason = None
|
||||
|
||||
buffer = ""
|
||||
ipython = False
|
||||
|
||||
for token_result in self.generator.chat_completion(
|
||||
messages=request.messages,
|
||||
temperature=request.sampling_params.temperature,
|
||||
top_p=request.sampling_params.top_p,
|
||||
max_gen_len=request.sampling_params.max_tokens,
|
||||
logprobs=request.logprobs,
|
||||
):
|
||||
buffer += token_result.text
|
||||
tokens.append(token_result.token)
|
||||
|
||||
if not ipython and buffer.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.started,
|
||||
),
|
||||
)
|
||||
)
|
||||
buffer = buffer[len("<|python_tag|>") :]
|
||||
continue
|
||||
|
||||
if not request.stream:
|
||||
if request.logprobs:
|
||||
logprobs.append(token_result.logprob)
|
||||
|
||||
continue
|
||||
|
||||
if token_result.text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
elif token_result.text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
else:
|
||||
text = token_result.text
|
||||
|
||||
if ipython:
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
else:
|
||||
delta = text
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=delta,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
# TODO(ashwin): parse tool calls separately here and report errors?
|
||||
# if someone breaks the iteration before coming here we are toast
|
||||
message = self.generator.formatter.decode_assistant_message(tokens, stop_reason)
|
||||
if request.stream:
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.failure,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content=tool_call,
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
# TODO(ashwin): what else do we need to send out here when everything finishes?
|
||||
else:
|
||||
yield ChatCompletionResponse(
|
||||
content=message.content,
|
||||
tool_calls=message.tool_calls,
|
||||
stop_reason=stop_reason,
|
||||
logprobs=logprobs if request.logprobs else None,
|
||||
)
|
100
toolchain/inference/model_parallel.py
Normal file
100
toolchain/inference/model_parallel.py
Normal file
|
@ -0,0 +1,100 @@
|
|||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from typing import Generator, List, Optional
|
||||
|
||||
from models.llama3.chat_format import ChatFormat
|
||||
from models.llama3.datatypes import Message
|
||||
from models.llama3.tokenizer import Tokenizer
|
||||
|
||||
from .api.config import GeneratorArgs
|
||||
from .generation import Llama
|
||||
from .parallel_utils import ModelParallelProcessGroup
|
||||
|
||||
|
||||
@dataclass
|
||||
class InferenceArgs:
|
||||
messages: List[Message]
|
||||
temperature: float
|
||||
top_p: float
|
||||
max_gen_len: int
|
||||
logprobs: bool
|
||||
|
||||
|
||||
class ModelRunner:
|
||||
def __init__(self, llama):
|
||||
self.llama = llama
|
||||
|
||||
# the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()`
|
||||
def __call__(self, task: InferenceArgs):
|
||||
return self.llama.chat_completion(
|
||||
task.messages,
|
||||
task.temperature,
|
||||
task.top_p,
|
||||
task.max_gen_len,
|
||||
task.logprobs,
|
||||
)
|
||||
|
||||
|
||||
def init_model_cb(args: GeneratorArgs):
|
||||
llama = Llama.build(
|
||||
args.ckpt_dir,
|
||||
args.tokenizer_path,
|
||||
args.max_seq_len,
|
||||
args.max_batch_size,
|
||||
)
|
||||
return ModelRunner(llama)
|
||||
|
||||
|
||||
class LlamaModelParallelGenerator:
|
||||
"""
|
||||
This abstraction exists so
|
||||
- we can run model parallel code without needing to run the CLIs via torchrun
|
||||
- this also enables use model parallel code within a notebook context.
|
||||
|
||||
A Context Manager is used to ensure that the model parallel process is started and stopped
|
||||
correctly. This does make the ergonomics a little awkward, because it isn't immediately
|
||||
clear at the callsite why we need to use a context manager.
|
||||
"""
|
||||
|
||||
def __init__(self, args: GeneratorArgs):
|
||||
self.args = args
|
||||
|
||||
# this is a hack because Agent's loop uses this to tokenize and check if input is too long
|
||||
# while the tool-use loop is going
|
||||
self.formatter = ChatFormat(Tokenizer(self.args.tokenizer_path))
|
||||
|
||||
def start(self):
|
||||
self.__enter__()
|
||||
|
||||
def stop(self):
|
||||
self.__exit__(None, None, None)
|
||||
|
||||
def __enter__(self):
|
||||
self.group = ModelParallelProcessGroup(
|
||||
self.args.model_parallel_size,
|
||||
init_model_cb=partial(init_model_cb, self.args),
|
||||
)
|
||||
self.group.start()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
self.group.stop()
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
messages: List[Message],
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
max_gen_len: Optional[int] = None,
|
||||
logprobs: bool = False,
|
||||
) -> Generator:
|
||||
req_obj = InferenceArgs(
|
||||
messages=messages,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
max_gen_len=max_gen_len,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
gen = self.group.run_inference(req_obj)
|
||||
yield from gen
|
259
toolchain/inference/parallel_utils.py
Normal file
259
toolchain/inference/parallel_utils.py
Normal file
|
@ -0,0 +1,259 @@
|
|||
import multiprocessing
|
||||
import os
|
||||
import pickle
|
||||
import tempfile
|
||||
import time
|
||||
import uuid
|
||||
|
||||
from typing import Callable, Generator
|
||||
|
||||
import torch
|
||||
|
||||
import zmq
|
||||
|
||||
from fairscale.nn.model_parallel.initialize import (
|
||||
get_model_parallel_group,
|
||||
get_model_parallel_rank,
|
||||
get_model_parallel_src_rank,
|
||||
)
|
||||
|
||||
from torch.distributed.launcher.api import elastic_launch, LaunchConfig
|
||||
|
||||
|
||||
_END_SENTINEL = "__end_sentinel__"
|
||||
_CANCEL_SENTINEL = "__cancel_sentinel__"
|
||||
|
||||
|
||||
def mp_rank_0() -> bool:
|
||||
return get_model_parallel_rank() == 0
|
||||
|
||||
|
||||
def retrieve_requests(reply_socket_url: str):
|
||||
if mp_rank_0():
|
||||
context = zmq.Context()
|
||||
reply_socket = context.socket(zmq.ROUTER)
|
||||
reply_socket.connect(reply_socket_url)
|
||||
|
||||
while True:
|
||||
client_id, obj = maybe_get_work(reply_socket)
|
||||
if obj is None:
|
||||
time.sleep(0.01)
|
||||
continue
|
||||
|
||||
reply_socket.send_multipart([client_id, pickle.dumps("YES READY")])
|
||||
break
|
||||
|
||||
def send_obj(obj):
|
||||
reply_socket.send_multipart([client_id, pickle.dumps(obj)])
|
||||
|
||||
while True:
|
||||
tasks = [None]
|
||||
if mp_rank_0():
|
||||
client_id, task = maybe_get_work(reply_socket)
|
||||
# there is still an unknown unclean GeneratorExit happening resulting in a
|
||||
# cancel sentinel getting queued _after_ we have finished sending everything :/
|
||||
# kind of a hack this is :/
|
||||
if task != _CANCEL_SENTINEL:
|
||||
tasks = [task]
|
||||
|
||||
torch.distributed.broadcast_object_list(
|
||||
tasks,
|
||||
src=get_model_parallel_src_rank(),
|
||||
group=get_model_parallel_group(),
|
||||
)
|
||||
|
||||
task = tasks[0]
|
||||
if task is None:
|
||||
time.sleep(0.1)
|
||||
else:
|
||||
try:
|
||||
out = yield task
|
||||
if out is None:
|
||||
break
|
||||
|
||||
for obj in out:
|
||||
updates = [None]
|
||||
if mp_rank_0():
|
||||
_, update = maybe_get_work(reply_socket)
|
||||
if update == _CANCEL_SENTINEL:
|
||||
updates = [update]
|
||||
else:
|
||||
# only send the update if it's not cancelled otherwise the object sits in the socket
|
||||
# and gets pulled in the next request lol
|
||||
send_obj(obj)
|
||||
|
||||
torch.distributed.broadcast_object_list(
|
||||
updates,
|
||||
src=get_model_parallel_src_rank(),
|
||||
group=get_model_parallel_group(),
|
||||
)
|
||||
if updates[0] == _CANCEL_SENTINEL:
|
||||
print("quitting generation loop because request was cancelled")
|
||||
break
|
||||
|
||||
if mp_rank_0():
|
||||
send_obj(_END_SENTINEL)
|
||||
except Exception as e:
|
||||
print(f"[debug] got exception {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
if mp_rank_0():
|
||||
send_obj(e)
|
||||
|
||||
if mp_rank_0():
|
||||
send_obj("DONE")
|
||||
|
||||
|
||||
def maybe_get_work(sock: zmq.Socket):
|
||||
message = None
|
||||
client_id = None
|
||||
try:
|
||||
client_id, obj = sock.recv_multipart(zmq.NOBLOCK)
|
||||
message = pickle.loads(obj)
|
||||
except zmq.ZMQError as e:
|
||||
if e.errno != zmq.EAGAIN:
|
||||
raise e
|
||||
|
||||
return client_id, message
|
||||
|
||||
|
||||
def worker_process_entrypoint(
|
||||
reply_socket_url: str,
|
||||
init_model_cb: Callable,
|
||||
) -> None:
|
||||
model = init_model_cb()
|
||||
torch.distributed.barrier()
|
||||
time.sleep(1)
|
||||
|
||||
# run the requests co-routine which retrieves requests from the socket
|
||||
# and sends responses (we provide) back to the caller
|
||||
req_gen = retrieve_requests(reply_socket_url)
|
||||
result = None
|
||||
while True:
|
||||
try:
|
||||
task = req_gen.send(result)
|
||||
if isinstance(task, str) and task == _END_SENTINEL:
|
||||
break
|
||||
|
||||
result = model(task)
|
||||
except StopIteration:
|
||||
break
|
||||
|
||||
print("[debug] worker process done")
|
||||
|
||||
|
||||
def launch_dist_group(
|
||||
reply_socket_url: str,
|
||||
model_parallel_size: int,
|
||||
init_model_cb: Callable,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
id = uuid.uuid4().hex
|
||||
dist_url = f"file:///tmp/llama3_{id}_{time.time()}"
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
# TODO: track workers and if they terminate, tell parent process about it so cleanup can happen
|
||||
launch_config = LaunchConfig(
|
||||
max_nodes=1,
|
||||
min_nodes=1,
|
||||
nproc_per_node=model_parallel_size,
|
||||
start_method="fork",
|
||||
rdzv_backend="c10d",
|
||||
rdzv_endpoint=os.path.join(tmpdir, "rdzv"),
|
||||
rdzv_configs={"store_type": "file", "timeout": 90},
|
||||
max_restarts=0,
|
||||
monitor_interval=1,
|
||||
run_id=str(uuid.uuid4()),
|
||||
)
|
||||
elastic_launch(launch_config, entrypoint=worker_process_entrypoint)(
|
||||
reply_socket_url,
|
||||
init_model_cb,
|
||||
)
|
||||
|
||||
|
||||
def start_model_parallel_process(
|
||||
model_parallel_size: int,
|
||||
init_model_cb: Callable,
|
||||
**kwargs,
|
||||
):
|
||||
context = zmq.Context()
|
||||
request_socket = context.socket(zmq.DEALER)
|
||||
|
||||
# Binding the request socket to a random port
|
||||
request_socket.bind("tcp://127.0.0.1:0")
|
||||
|
||||
main_process_url = request_socket.getsockopt_string(zmq.LAST_ENDPOINT)
|
||||
|
||||
ctx = multiprocessing.get_context("fork")
|
||||
process = ctx.Process(
|
||||
target=launch_dist_group,
|
||||
args=(
|
||||
main_process_url,
|
||||
model_parallel_size,
|
||||
init_model_cb,
|
||||
),
|
||||
kwargs=kwargs,
|
||||
)
|
||||
process.start()
|
||||
|
||||
# wait until the model is loaded; rank 0 will send a message to indicate it's ready
|
||||
|
||||
request_socket.send_pyobj("READY?")
|
||||
response = request_socket.recv_pyobj()
|
||||
print(f"Finished model load {response}")
|
||||
|
||||
return request_socket, process
|
||||
|
||||
|
||||
class ModelParallelProcessGroup:
|
||||
def __init__(
|
||||
self,
|
||||
model_parallel_size: int,
|
||||
init_model_cb: Callable,
|
||||
**kwargs,
|
||||
):
|
||||
self.model_parallel_size = model_parallel_size
|
||||
self.init_model_cb = init_model_cb
|
||||
self.started = False
|
||||
self.running = False
|
||||
|
||||
def start(self):
|
||||
assert not self.started, "process group already started"
|
||||
self.request_socket, self.process = start_model_parallel_process(
|
||||
self.model_parallel_size,
|
||||
self.init_model_cb,
|
||||
)
|
||||
self.started = True
|
||||
|
||||
def stop(self):
|
||||
assert self.started, "process group not started"
|
||||
if self.process.is_alive():
|
||||
self.request_socket.send_pyobj(_END_SENTINEL, zmq.NOBLOCK)
|
||||
self.process.join()
|
||||
self.started = False
|
||||
|
||||
def run_inference(self, request) -> Generator:
|
||||
assert not self.running, "inference already running"
|
||||
|
||||
self.running = True
|
||||
self.request_socket.send_pyobj(request)
|
||||
try:
|
||||
while True:
|
||||
obj = self.request_socket.recv_pyobj()
|
||||
if obj == _END_SENTINEL:
|
||||
break
|
||||
|
||||
if isinstance(obj, Exception):
|
||||
print(f"[debug] got exception {obj}")
|
||||
raise obj
|
||||
|
||||
yield obj
|
||||
except GeneratorExit as e:
|
||||
self.request_socket.send_pyobj(_CANCEL_SENTINEL)
|
||||
while True:
|
||||
obj = self.request_socket.recv_pyobj()
|
||||
if obj == _END_SENTINEL:
|
||||
break
|
||||
finally:
|
||||
self.running = False
|
45
toolchain/inference/quantization/build_conda.sh
Normal file
45
toolchain/inference/quantization/build_conda.sh
Normal file
|
@ -0,0 +1,45 @@
|
|||
#!/bin/bash
|
||||
|
||||
if [[ $# -ne 1 ]]; then
|
||||
echo "Error: Please provide the name of CONDA environment you wish to create"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ENV_NAME=$1
|
||||
|
||||
set -eu
|
||||
eval "$(conda shell.bash hook)"
|
||||
|
||||
echo "Will build env (or overwrite) named '$ENV_NAME'"
|
||||
|
||||
set -x
|
||||
|
||||
run_build() {
|
||||
# Set CUDA 9.0a targets
|
||||
export CUDA_ARCH_LIST="8.0;9.0a"
|
||||
export NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_90a,code=sm_90a"
|
||||
export TORCH_CUDA_ARCH_LIST=$CUDA_ARCH_LIST
|
||||
|
||||
# Set up the conda environment
|
||||
yes | conda remove --name $ENV_NAME --all
|
||||
yes | conda create -n $ENV_NAME python=3.10
|
||||
conda activate $ENV_NAME
|
||||
yes | conda install --channel "nvidia/label/cuda-12.1.0" cuda
|
||||
yes | conda install cuda-nvtx cuda-nvtx-dev conda-forge::nccl
|
||||
|
||||
|
||||
# ############# Hack to get CUDA path #############
|
||||
ln -s $CONDA_PREFIX/targets/x86_64-linux/include/* $CONDA_PREFIX/include/ || true
|
||||
export CUDA_HOME=$CONDA_PREFIX
|
||||
export CUDA_BIN_PATH=$CUDA_HOME
|
||||
# #################################################
|
||||
|
||||
# PT nightly
|
||||
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121
|
||||
pip install --pre torchvision --index-url https://download.pytorch.org/whl/nightly/cu121
|
||||
|
||||
# install dependencies for `llama-agentic-system`
|
||||
pip install -r fp8_requirements.txt
|
||||
}
|
||||
|
||||
run_build
|
165
toolchain/inference/quantization/fp8_impls.py
Normal file
165
toolchain/inference/quantization/fp8_impls.py
Normal file
|
@ -0,0 +1,165 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
||||
|
||||
import collections
|
||||
from enum import Enum, unique
|
||||
from typing import Optional, Type
|
||||
|
||||
try:
|
||||
import fbgemm_gpu.experimental.gen_ai # noqa: F401
|
||||
|
||||
print("Using efficient FP8 operators in FBGEMM.")
|
||||
except (ImportError, ModuleNotFoundError):
|
||||
print("No efficient FP8 operators. Please install FBGEMM in fp8_requirements.txt.")
|
||||
|
||||
import torch
|
||||
from torch import nn, Tensor
|
||||
|
||||
|
||||
@unique
|
||||
class FfnQuantizeMode(Enum):
|
||||
FP8_ROWWISE = "fp8_rowwise"
|
||||
NONE = "none"
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.value
|
||||
|
||||
|
||||
class Fp8ScaledWeights:
|
||||
# TODO: Ugly trick so torch allows us to replace parameters
|
||||
# with our custom Fp8Weights instance. Do this properly.
|
||||
@property
|
||||
def __class__(self) -> Type[nn.parameter.Parameter]:
|
||||
return nn.Parameter
|
||||
|
||||
@property
|
||||
def grad_fn(self) -> None:
|
||||
return None
|
||||
|
||||
|
||||
# pyre-fixme[4]: Attribute annotation cannot be `Any`.
|
||||
# pyre-fixme[2]: Parameter annotation cannot be `Any`.
|
||||
class Fp8RowwiseWeights(
|
||||
Fp8ScaledWeights,
|
||||
collections.namedtuple(
|
||||
"Fp8RowwiseWeights",
|
||||
["weight", "scale", "shape", "activation_scale_ub"],
|
||||
),
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
def ffn_swiglu(
|
||||
x: Tensor,
|
||||
w1: Fp8RowwiseWeights,
|
||||
w3: Fp8RowwiseWeights,
|
||||
w2: Fp8RowwiseWeights,
|
||||
num_tokens: Optional[Tensor] = None,
|
||||
is_memory_bounded: bool = False,
|
||||
) -> Tensor:
|
||||
if (
|
||||
isinstance(w1, Fp8ScaledWeights)
|
||||
and isinstance(w3, Fp8ScaledWeights)
|
||||
and isinstance(w2, Fp8ScaledWeights)
|
||||
):
|
||||
return ffn_swiglu_fp8_dynamic(
|
||||
x, w1, w3, w2, w1.activation_scale_ub, num_tokens, is_memory_bounded
|
||||
)
|
||||
|
||||
(B, T, D) = x.shape
|
||||
(HD_L, D_) = w1.shape
|
||||
assert D_ == D
|
||||
|
||||
assert isinstance(w1, Tensor)
|
||||
assert isinstance(w3, Tensor)
|
||||
x1 = x.view(B * T, D) @ w1.T
|
||||
x2 = x.view(B * T, D) @ w3.T
|
||||
z = torch.nn.functional.silu(x1) * x2
|
||||
del x1, x2
|
||||
assert isinstance(w2, Tensor)
|
||||
return (z @ w2.T).view(B, T, D)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def quantize_fp8(
|
||||
w: Tensor,
|
||||
fp8_activation_scale_ub: float,
|
||||
mode: Optional[FfnQuantizeMode] = None,
|
||||
output_device: Optional[torch.device] = None,
|
||||
) -> Fp8RowwiseWeights:
|
||||
"""Quantize [n, k] weight tensor.
|
||||
|
||||
Args:
|
||||
w (Tensor): [n, k] input high precision tensor to quantize.
|
||||
fp8_activation_scale_ub (float): Upper bound for activation max.
|
||||
mode (FfnQuantizeMode): Quantization mode.
|
||||
"""
|
||||
activation_scale_ub = torch.tensor(
|
||||
[fp8_activation_scale_ub],
|
||||
dtype=torch.float,
|
||||
device="cuda",
|
||||
)
|
||||
if mode is not None and mode == FfnQuantizeMode.FP8_ROWWISE: # rowwise
|
||||
wq, w_scale = torch.ops.fbgemm.quantize_fp8_per_row(w)
|
||||
del w
|
||||
return Fp8RowwiseWeights(
|
||||
weight=wq,
|
||||
scale=w_scale,
|
||||
shape=wq.shape,
|
||||
activation_scale_ub=activation_scale_ub,
|
||||
)
|
||||
|
||||
|
||||
def fc_fp8_dynamic(
|
||||
x: Tensor,
|
||||
w: Fp8RowwiseWeights,
|
||||
activation_scale_ub: Optional[Tensor] = None,
|
||||
num_tokens: Optional[Tensor] = None,
|
||||
is_memory_bounded: bool = False,
|
||||
) -> Tensor:
|
||||
"""
|
||||
Single w8a8 fc layer with dynamic row-wise scaling.
|
||||
"""
|
||||
if isinstance(w, Fp8RowwiseWeights):
|
||||
xq, x_scale = torch.ops.fbgemm.quantize_fp8_per_row(
|
||||
x, num_tokens, activation_scale_ub
|
||||
)
|
||||
y = torch.ops.fbgemm.f8f8bf16_rowwise(
|
||||
xq, w.weight, x_scale, w.scale, use_fast_accum=True
|
||||
)
|
||||
del xq
|
||||
return y
|
||||
|
||||
|
||||
def ffn_swiglu_fp8_dynamic(
|
||||
x: Tensor,
|
||||
w1: Fp8RowwiseWeights,
|
||||
w3: Fp8RowwiseWeights,
|
||||
w2: Fp8RowwiseWeights,
|
||||
activation_scale_ub: Optional[Tensor] = None,
|
||||
num_tokens: Optional[Tensor] = None,
|
||||
is_memory_bounded: bool = False,
|
||||
) -> Tensor:
|
||||
(B, T, D) = x.shape
|
||||
HD_L = w1.shape[0]
|
||||
assert HD_L == w3.shape[0]
|
||||
x1 = fc_fp8_dynamic(
|
||||
x.view(B * T, D),
|
||||
w1,
|
||||
activation_scale_ub,
|
||||
num_tokens,
|
||||
is_memory_bounded,
|
||||
)
|
||||
x2 = fc_fp8_dynamic(
|
||||
x.view(B * T, D),
|
||||
w3,
|
||||
activation_scale_ub,
|
||||
num_tokens,
|
||||
is_memory_bounded,
|
||||
)
|
||||
z = torch.nn.functional.silu(x1) * x2
|
||||
del x1, x2
|
||||
|
||||
z_ = fc_fp8_dynamic(z, w2, activation_scale_ub, num_tokens, is_memory_bounded)
|
||||
|
||||
return z_.view(B, T, D)
|
5
toolchain/inference/quantization/fp8_requirements.txt
Normal file
5
toolchain/inference/quantization/fp8_requirements.txt
Normal file
|
@ -0,0 +1,5 @@
|
|||
fairscale
|
||||
fire
|
||||
tiktoken
|
||||
blobfile
|
||||
fbgemm-gpu==0.8.0rc4
|
455
toolchain/inference/quantization/generation.py
Normal file
455
toolchain/inference/quantization/generation.py
Normal file
|
@ -0,0 +1,455 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
||||
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Tuple, TypedDict
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from fairscale.nn.model_parallel.initialize import (
|
||||
get_model_parallel_rank,
|
||||
initialize_model_parallel,
|
||||
model_parallel_is_initialized,
|
||||
)
|
||||
from fp8.fp8_impls import (
|
||||
FfnQuantizeMode,
|
||||
Fp8ScaledWeights,
|
||||
load_fp8,
|
||||
ModelLoadMode,
|
||||
quantize_fp8,
|
||||
)
|
||||
|
||||
from llama.model import ModelArgs, Transformer, TransformerBlock
|
||||
from llama.tokenizer import ChatFormat, Dialog, Message, ModelInput, Tokenizer
|
||||
|
||||
|
||||
class CompletionPrediction(TypedDict, total=False):
|
||||
generation: str
|
||||
tokens: List[str] # not required
|
||||
logprobs: List[float] # not required
|
||||
|
||||
|
||||
class ChatPrediction(TypedDict, total=False):
|
||||
generation: Message
|
||||
tokens: List[str] # not required
|
||||
logprobs: List[float] # not required
|
||||
|
||||
|
||||
class Llama:
|
||||
@staticmethod
|
||||
def build(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
max_seq_len: int,
|
||||
max_batch_size: int,
|
||||
model_parallel_size: Optional[int] = None,
|
||||
ffn_quantize_mode: Optional[FfnQuantizeMode] = FfnQuantizeMode.NONE,
|
||||
model_load_mode: Optional[ModelLoadMode] = ModelLoadMode.BF16,
|
||||
fp8_activation_scale_ub: Optional[float] = 1200.0,
|
||||
seed: int = 1,
|
||||
) -> "Llama":
|
||||
"""
|
||||
Build a Llama instance by initializing and loading a model checkpoint.
|
||||
|
||||
Args:
|
||||
ckpt_dir (str): Path to the directory containing checkpoint files.
|
||||
tokenizer_path (str): Path to the tokenizer file.
|
||||
max_seq_len (int): Maximum sequence length for input text.
|
||||
max_batch_size (int): Maximum batch size for inference.
|
||||
model_parallel_size (Optional[int], optional): Number of model parallel processes.
|
||||
If not provided, it's determined from the environment. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Llama: An instance of the Llama class with the loaded model and tokenizer.
|
||||
|
||||
Raises:
|
||||
AssertionError: If there are no checkpoint files in the specified directory,
|
||||
or if the model parallel size does not match the number of checkpoint files.
|
||||
|
||||
Note:
|
||||
This method initializes the distributed process group, sets the device to CUDA,
|
||||
and loads the pre-trained model and tokenizer.
|
||||
"""
|
||||
if not torch.distributed.is_initialized():
|
||||
torch.distributed.init_process_group("nccl")
|
||||
if not model_parallel_is_initialized():
|
||||
if model_parallel_size is None:
|
||||
model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
initialize_model_parallel(model_parallel_size)
|
||||
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
torch.cuda.set_device(local_rank)
|
||||
|
||||
# seed must be the same in all processes
|
||||
torch.manual_seed(seed)
|
||||
|
||||
if local_rank > 0:
|
||||
sys.stdout = open(os.devnull, "w")
|
||||
|
||||
start_time = time.time()
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
||||
assert model_parallel_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
ckpt_path = checkpoints[get_model_parallel_rank()]
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
params = json.loads(f.read())
|
||||
|
||||
model_args: ModelArgs = ModelArgs(
|
||||
max_seq_len=max_seq_len,
|
||||
max_batch_size=max_batch_size,
|
||||
**params,
|
||||
)
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
assert (
|
||||
model_args.vocab_size == tokenizer.n_words
|
||||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
|
||||
# load on CPU in bf16 so that fp8 conversion does not find an unexpected (fp32, e.g.) datatype
|
||||
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
||||
|
||||
model = Transformer(model_args)
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
|
||||
if torch.cuda.is_bf16_supported():
|
||||
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
|
||||
else:
|
||||
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
|
||||
print("ffn_quantize_mode: ", ffn_quantize_mode)
|
||||
if ffn_quantize_mode == FfnQuantizeMode.FP8_ROWWISE:
|
||||
# Move weights to GPU with quantization
|
||||
if model_load_mode == ModelLoadMode.FP8:
|
||||
fp8_scales_path = os.path.join(
|
||||
ckpt_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
)
|
||||
assert os.path.isfile(
|
||||
fp8_scales_path
|
||||
), f"fp8_scales_path not found for rank {get_model_parallel_rank()}"
|
||||
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
|
||||
|
||||
for block in model.layers:
|
||||
if isinstance(block, TransformerBlock):
|
||||
if block.layer_id == 0 or block.layer_id == (
|
||||
model.n_layers - 1
|
||||
):
|
||||
continue
|
||||
block.feed_forward.w1.weight = load_fp8(
|
||||
block.feed_forward.w1.weight,
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w1_{get_model_parallel_rank()}"
|
||||
],
|
||||
fp8_activation_scale_ub,
|
||||
)
|
||||
block.feed_forward.w3.weight = load_fp8(
|
||||
block.feed_forward.w3.weight,
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w3_{get_model_parallel_rank()}"
|
||||
],
|
||||
fp8_activation_scale_ub,
|
||||
)
|
||||
block.feed_forward.w2.weight = load_fp8(
|
||||
block.feed_forward.w2.weight,
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w2_{get_model_parallel_rank()}"
|
||||
],
|
||||
fp8_activation_scale_ub,
|
||||
)
|
||||
else:
|
||||
for block in model.layers:
|
||||
if isinstance(block, TransformerBlock):
|
||||
if block.layer_id == 0 or block.layer_id == (
|
||||
model.n_layers - 1
|
||||
):
|
||||
continue
|
||||
block.feed_forward.w1.weight = quantize_fp8(
|
||||
block.feed_forward.w1.weight,
|
||||
fp8_activation_scale_ub,
|
||||
ffn_quantize_mode,
|
||||
output_device=torch.device("cuda"),
|
||||
)
|
||||
block.feed_forward.w3.weight = quantize_fp8(
|
||||
block.feed_forward.w3.weight,
|
||||
fp8_activation_scale_ub,
|
||||
ffn_quantize_mode,
|
||||
output_device=torch.device("cuda"),
|
||||
)
|
||||
block.feed_forward.w2.weight = quantize_fp8(
|
||||
block.feed_forward.w2.weight,
|
||||
fp8_activation_scale_ub,
|
||||
ffn_quantize_mode,
|
||||
output_device=torch.device("cuda"),
|
||||
)
|
||||
|
||||
for _, parameter in model.named_parameters():
|
||||
if not isinstance(parameter, Fp8ScaledWeights):
|
||||
parameter.data = parameter.to(device="cuda")
|
||||
else:
|
||||
for _, parameter in model.named_parameters():
|
||||
parameter.data = parameter.to(device="cuda")
|
||||
|
||||
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||||
|
||||
return Llama(model, tokenizer, model_args)
|
||||
|
||||
def __init__(self, model: Transformer, tokenizer: Tokenizer, args: ModelArgs):
|
||||
self.args = args
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.formatter = ChatFormat(tokenizer)
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate(
|
||||
self,
|
||||
model_inputs: List[ModelInput],
|
||||
max_gen_len: int,
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
logprobs: bool = False,
|
||||
echo: bool = False,
|
||||
include_stop_token: bool = False,
|
||||
) -> Tuple[List[List[int]], Optional[List[List[float]]]]:
|
||||
"""
|
||||
Generate text sequences based on provided prompts using the language generation model.
|
||||
|
||||
Args:
|
||||
prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers.
|
||||
max_gen_len (int): Maximum length of the generated text sequence.
|
||||
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
|
||||
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
|
||||
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
|
||||
echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
|
||||
|
||||
Returns:
|
||||
Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities.
|
||||
|
||||
Note:
|
||||
This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness.
|
||||
If logprobs is True, token log probabilities are computed for each generated token.
|
||||
|
||||
"""
|
||||
params = self.model.params
|
||||
prompt_tokens = [m.tokens for m in model_inputs]
|
||||
bsz = len(prompt_tokens)
|
||||
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
|
||||
|
||||
min_prompt_len = min(len(t) for t in prompt_tokens)
|
||||
max_prompt_len = max(len(t) for t in prompt_tokens)
|
||||
assert max_prompt_len <= params.max_seq_len
|
||||
total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)
|
||||
|
||||
pad_id = self.tokenizer.pad_id
|
||||
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
|
||||
for k, t in enumerate(prompt_tokens):
|
||||
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
|
||||
if logprobs:
|
||||
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
|
||||
|
||||
prev_pos = 0
|
||||
eos_reached = torch.tensor([False] * bsz, device="cuda")
|
||||
input_text_mask = tokens != pad_id
|
||||
if min_prompt_len == total_len:
|
||||
logits = self.model.forward(tokens, prev_pos)
|
||||
token_logprobs = -F.cross_entropy(
|
||||
input=logits.transpose(1, 2),
|
||||
target=tokens,
|
||||
reduction="none",
|
||||
ignore_index=pad_id,
|
||||
)
|
||||
|
||||
stop_tokens = torch.tensor(list(self.tokenizer.stop_tokens))
|
||||
|
||||
for cur_pos in range(min_prompt_len, total_len):
|
||||
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
||||
|
||||
if temperature > 0:
|
||||
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
|
||||
next_token = sample_top_p(probs, top_p)
|
||||
else:
|
||||
next_token = torch.argmax(logits[:, -1], dim=-1)
|
||||
|
||||
next_token = next_token.reshape(-1)
|
||||
# only replace token if prompt has already been generated
|
||||
next_token = torch.where(
|
||||
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
|
||||
)
|
||||
tokens[:, cur_pos] = next_token
|
||||
|
||||
target = tokens[:, prev_pos + 1 : cur_pos + 1]
|
||||
|
||||
if logprobs:
|
||||
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
|
||||
input=logits.transpose(1, 2),
|
||||
target=tokens[:, prev_pos + 1 : cur_pos + 1],
|
||||
reduction="none",
|
||||
ignore_index=pad_id,
|
||||
)
|
||||
eos_reached |= (~input_text_mask[:, cur_pos]) & (
|
||||
torch.isin(next_token, stop_tokens)
|
||||
)
|
||||
prev_pos = cur_pos
|
||||
if all(eos_reached):
|
||||
break
|
||||
|
||||
if logprobs:
|
||||
token_logprobs = token_logprobs.tolist()
|
||||
out_tokens, out_logprobs = [], []
|
||||
for i, toks in enumerate(tokens.tolist()):
|
||||
# cut to max gen len
|
||||
start = 0 if echo else len(prompt_tokens[i])
|
||||
toks = toks[start : len(prompt_tokens[i]) + max_gen_len]
|
||||
probs = None
|
||||
if logprobs:
|
||||
probs = token_logprobs[i][start : len(prompt_tokens[i]) + max_gen_len]
|
||||
# cut to after eos tok if any
|
||||
for stop_token in self.tokenizer.stop_tokens:
|
||||
try:
|
||||
eos_idx = toks.index(stop_token)
|
||||
if include_stop_token:
|
||||
eos_idx += 1
|
||||
toks = toks[:eos_idx]
|
||||
probs = probs[:eos_idx] if logprobs else None
|
||||
except ValueError:
|
||||
pass
|
||||
out_tokens.append(toks)
|
||||
out_logprobs.append(probs)
|
||||
return (out_tokens, out_logprobs if logprobs else None)
|
||||
|
||||
def text_completion(
|
||||
self,
|
||||
prompts: List[str],
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
max_gen_len: Optional[int] = None,
|
||||
logprobs: bool = False,
|
||||
echo: bool = False,
|
||||
) -> List[CompletionPrediction]:
|
||||
"""
|
||||
Perform text completion for a list of prompts using the language generation model.
|
||||
|
||||
Args:
|
||||
prompts (List[str]): List of text prompts for completion.
|
||||
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
|
||||
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
|
||||
max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence.
|
||||
If not provided, it's set to the model's maximum sequence length minus 1.
|
||||
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
|
||||
echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
|
||||
|
||||
Returns:
|
||||
List[CompletionPrediction]: List of completion predictions, each containing the generated text completion.
|
||||
|
||||
Note:
|
||||
This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness.
|
||||
If logprobs is True, token log probabilities are computed for each generated token.
|
||||
|
||||
"""
|
||||
if max_gen_len is None:
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]
|
||||
generation_tokens, generation_logprobs = self.generate(
|
||||
model_inputs=[ModelInput(tokens=pt) for pt in prompt_tokens],
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=logprobs,
|
||||
echo=echo,
|
||||
)
|
||||
if logprobs:
|
||||
return [
|
||||
{
|
||||
"generation": self.tokenizer.decode(t),
|
||||
"tokens": [self.tokenizer.decode([x]) for x in t],
|
||||
"logprobs": logprobs_i,
|
||||
}
|
||||
for t, logprobs_i in zip(generation_tokens, generation_logprobs)
|
||||
]
|
||||
return [{"generation": self.tokenizer.decode(t)} for t in generation_tokens]
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
dialogs: List[Dialog],
|
||||
temperature: float = 0.6,
|
||||
top_p: float = 0.9,
|
||||
max_gen_len: Optional[int] = None,
|
||||
logprobs: bool = False,
|
||||
) -> List[ChatPrediction]:
|
||||
"""
|
||||
Generate assistant responses for a list of conversational dialogs using the language generation model.
|
||||
|
||||
Args:
|
||||
dialogs (List[Dialog]): List of conversational dialogs, where each dialog is a list of messages.
|
||||
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
|
||||
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
|
||||
max_gen_len (Optional[int], optional): Maximum length of the generated response sequence.
|
||||
If not provided, it's set to the model's maximum sequence length minus 1.
|
||||
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
|
||||
|
||||
Returns:
|
||||
List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response.
|
||||
|
||||
Note:
|
||||
This method generates assistant responses for the provided conversational dialogs.
|
||||
It employs nucleus sampling to introduce controlled randomness in text generation.
|
||||
If logprobs is True, token log probabilities are computed for each generated token.
|
||||
"""
|
||||
if max_gen_len is None:
|
||||
max_gen_len = self.model.params.max_seq_len - 1
|
||||
|
||||
model_inputs = [
|
||||
self.formatter.encode_dialog_prompt(dialog) for dialog in dialogs
|
||||
]
|
||||
generation_tokens, generation_logprobs = self.generate(
|
||||
model_inputs=model_inputs,
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=logprobs,
|
||||
include_stop_token=True,
|
||||
)
|
||||
if logprobs:
|
||||
return [
|
||||
{
|
||||
"generation": self.formatter.decode_assistant_message(t),
|
||||
"tokens": [self.tokenizer.decode([x]) for x in t],
|
||||
"logprobs": logprobs_i,
|
||||
}
|
||||
for t, logprobs_i in zip(generation_tokens, generation_logprobs)
|
||||
]
|
||||
return [
|
||||
{
|
||||
"generation": self.formatter.decode_assistant_message(t),
|
||||
}
|
||||
for t in generation_tokens
|
||||
]
|
||||
|
||||
|
||||
def sample_top_p(probs, p):
|
||||
"""
|
||||
Perform top-p (nucleus) sampling on a probability distribution.
|
||||
|
||||
Args:
|
||||
probs (torch.Tensor): Probability distribution tensor.
|
||||
p (float): Probability threshold for top-p sampling.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Sampled token indices.
|
||||
|
||||
Note:
|
||||
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
|
||||
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
|
||||
"""
|
||||
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
||||
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
||||
mask = probs_sum - probs_sort > p
|
||||
probs_sort[mask] = 0.0
|
||||
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
||||
next_token = torch.multinomial(probs_sort, num_samples=1)
|
||||
next_token = torch.gather(probs_idx, -1, next_token)
|
||||
return next_token
|
355
toolchain/inference/quantization/model.py
Normal file
355
toolchain/inference/quantization/model.py
Normal file
|
@ -0,0 +1,355 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import fairscale.nn.model_parallel.initialize as fs_init
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from fairscale.nn.model_parallel.layers import (
|
||||
ColumnParallelLinear,
|
||||
RowParallelLinear,
|
||||
VocabParallelEmbedding,
|
||||
)
|
||||
from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region
|
||||
from fp8.fp8_impls import ffn_swiglu
|
||||
from torch import nn
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
dim: int = 4096
|
||||
n_layers: int = 32
|
||||
n_heads: int = 32
|
||||
n_kv_heads: Optional[int] = None
|
||||
vocab_size: int = -1
|
||||
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
||||
ffn_dim_multiplier: Optional[float] = None
|
||||
norm_eps: float = 1e-5
|
||||
rope_theta: float = 500000
|
||||
use_scaled_rope: bool = False
|
||||
|
||||
max_batch_size: int = 32
|
||||
max_seq_len: int = 2048
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if hasattr(self, k):
|
||||
setattr(self, k, v)
|
||||
|
||||
if self.n_kv_heads is None:
|
||||
self.n_kv_heads = self.n_heads
|
||||
assert self.n_kv_heads <= self.n_heads
|
||||
assert self.n_heads % self.n_kv_heads == 0
|
||||
assert self.dim % self.n_heads == 0
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def _norm(self, x):
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
output = self._norm(x.float()).type_as(x)
|
||||
return output * self.weight
|
||||
|
||||
|
||||
def apply_scaling(freqs: torch.Tensor):
|
||||
# Values obtained from grid search
|
||||
scale_factor = 8
|
||||
low_freq_factor = 1
|
||||
high_freq_factor = 4
|
||||
old_context_len = 8192 # original llama3 length
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
new_freqs = []
|
||||
for freq in freqs:
|
||||
wavelen = 2 * math.pi / freq
|
||||
if wavelen < high_freq_wavelen:
|
||||
new_freqs.append(freq)
|
||||
elif wavelen > low_freq_wavelen:
|
||||
new_freqs.append(freq / scale_factor)
|
||||
else:
|
||||
assert low_freq_wavelen != high_freq_wavelen
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (
|
||||
high_freq_factor - low_freq_factor
|
||||
)
|
||||
new_freqs.append((1 - smooth) * freq / scale_factor + smooth * freq)
|
||||
return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device)
|
||||
|
||||
|
||||
def precompute_freqs_cis(
|
||||
dim: int, end: int, theta: float = 10000.0, use_scaled: bool = False
|
||||
):
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||
t = torch.arange(end, device=freqs.device, dtype=torch.float32)
|
||||
if use_scaled:
|
||||
freqs = apply_scaling(freqs)
|
||||
freqs = torch.outer(t, freqs)
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
||||
return freqs_cis
|
||||
|
||||
|
||||
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
||||
ndim = x.ndim
|
||||
assert 0 <= 1 < ndim
|
||||
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
||||
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis.view(*shape)
|
||||
|
||||
|
||||
def apply_rotary_emb(
|
||||
xq: torch.Tensor,
|
||||
xk: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
||||
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
||||
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||
|
||||
|
||||
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
||||
bs, slen, n_kv_heads, head_dim = x.shape
|
||||
if n_rep == 1:
|
||||
return x
|
||||
return (
|
||||
x[:, :, :, None, :]
|
||||
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
||||
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
||||
)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
||||
model_parallel_size = fs_init.get_model_parallel_world_size()
|
||||
self.n_local_heads = args.n_heads // model_parallel_size
|
||||
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
|
||||
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
||||
self.head_dim = args.dim // args.n_heads
|
||||
|
||||
self.wq = ColumnParallelLinear(
|
||||
args.dim,
|
||||
args.n_heads * self.head_dim,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
init_method=lambda x: x,
|
||||
)
|
||||
self.wk = ColumnParallelLinear(
|
||||
args.dim,
|
||||
self.n_kv_heads * self.head_dim,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
init_method=lambda x: x,
|
||||
)
|
||||
self.wv = ColumnParallelLinear(
|
||||
args.dim,
|
||||
self.n_kv_heads * self.head_dim,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
init_method=lambda x: x,
|
||||
)
|
||||
self.wo = RowParallelLinear(
|
||||
args.n_heads * self.head_dim,
|
||||
args.dim,
|
||||
bias=False,
|
||||
input_is_parallel=True,
|
||||
init_method=lambda x: x,
|
||||
)
|
||||
|
||||
self.cache_k = torch.zeros(
|
||||
(
|
||||
args.max_batch_size,
|
||||
args.max_seq_len,
|
||||
self.n_local_kv_heads,
|
||||
self.head_dim,
|
||||
)
|
||||
).cuda()
|
||||
self.cache_v = torch.zeros(
|
||||
(
|
||||
args.max_batch_size,
|
||||
args.max_seq_len,
|
||||
self.n_local_kv_heads,
|
||||
self.head_dim,
|
||||
)
|
||||
).cuda()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
start_pos: int,
|
||||
freqs_cis: torch.Tensor,
|
||||
mask: Optional[torch.Tensor],
|
||||
):
|
||||
bsz, seqlen, _ = x.shape
|
||||
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
||||
|
||||
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
||||
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
||||
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
||||
|
||||
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
|
||||
|
||||
self.cache_k = self.cache_k.to(xq)
|
||||
self.cache_v = self.cache_v.to(xq)
|
||||
|
||||
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
|
||||
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
|
||||
|
||||
keys = self.cache_k[:bsz, : start_pos + seqlen]
|
||||
values = self.cache_v[:bsz, : start_pos + seqlen]
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
keys = repeat_kv(
|
||||
keys, self.n_rep
|
||||
) # (bs, cache_len + seqlen, n_local_heads, head_dim)
|
||||
values = repeat_kv(
|
||||
values, self.n_rep
|
||||
) # (bs, cache_len + seqlen, n_local_heads, head_dim)
|
||||
|
||||
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
|
||||
keys = keys.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
|
||||
values = values.transpose(
|
||||
1, 2
|
||||
) # (bs, n_local_heads, cache_len + seqlen, head_dim)
|
||||
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
if mask is not None:
|
||||
scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen)
|
||||
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
||||
output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim)
|
||||
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
|
||||
return self.wo(output)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
hidden_dim: int,
|
||||
multiple_of: int,
|
||||
ffn_dim_multiplier: Optional[float],
|
||||
):
|
||||
super().__init__()
|
||||
hidden_dim = int(2 * hidden_dim / 3)
|
||||
# custom dim factor multiplier
|
||||
if ffn_dim_multiplier is not None:
|
||||
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
||||
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||||
|
||||
self.w1 = ColumnParallelLinear(
|
||||
dim,
|
||||
hidden_dim,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
init_method=lambda x: x,
|
||||
)
|
||||
self.w3 = ColumnParallelLinear(
|
||||
dim,
|
||||
hidden_dim,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
init_method=lambda x: x,
|
||||
)
|
||||
self.w2 = RowParallelLinear(
|
||||
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
out = ffn_swiglu(x, self.w1.weight, self.w3.weight, self.w2.weight)
|
||||
return reduce_from_model_parallel_region(out)
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, layer_id: int, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.n_heads = args.n_heads
|
||||
self.dim = args.dim
|
||||
self.head_dim = args.dim // args.n_heads
|
||||
self.attention = Attention(args)
|
||||
self.feed_forward = FeedForward(
|
||||
dim=args.dim,
|
||||
hidden_dim=4 * args.dim,
|
||||
multiple_of=args.multiple_of,
|
||||
ffn_dim_multiplier=args.ffn_dim_multiplier,
|
||||
)
|
||||
self.layer_id = layer_id
|
||||
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
start_pos: int,
|
||||
freqs_cis: torch.Tensor,
|
||||
mask: Optional[torch.Tensor],
|
||||
):
|
||||
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
|
||||
out = h + self.feed_forward(self.ffn_norm(h))
|
||||
return out
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, params: ModelArgs):
|
||||
super().__init__()
|
||||
self.params = params
|
||||
self.vocab_size = params.vocab_size
|
||||
self.n_layers = params.n_layers
|
||||
|
||||
self.tok_embeddings = VocabParallelEmbedding(
|
||||
params.vocab_size, params.dim, init_method=lambda x: x
|
||||
)
|
||||
|
||||
self.layers = torch.nn.ModuleList()
|
||||
for layer_id in range(params.n_layers):
|
||||
self.layers.append(TransformerBlock(layer_id, params))
|
||||
|
||||
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
||||
self.output = ColumnParallelLinear(
|
||||
params.dim, params.vocab_size, bias=False, init_method=lambda x: x
|
||||
)
|
||||
|
||||
self.freqs_cis = precompute_freqs_cis(
|
||||
params.dim // params.n_heads,
|
||||
params.max_seq_len * 2,
|
||||
params.rope_theta,
|
||||
params.use_scaled_rope,
|
||||
)
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, tokens: torch.Tensor, start_pos: int):
|
||||
_bsz, seqlen = tokens.shape
|
||||
h = self.tok_embeddings(tokens)
|
||||
self.freqs_cis = self.freqs_cis.to(h.device)
|
||||
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
|
||||
|
||||
mask = None
|
||||
if seqlen > 1:
|
||||
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device)
|
||||
|
||||
mask = torch.triu(mask, diagonal=1)
|
||||
|
||||
# When performing key-value caching, we compute the attention scores
|
||||
# only for the new sequence. Thus, the matrix of scores is of size
|
||||
# (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for
|
||||
# j > cache_len + i, since row i corresponds to token cache_len + i.
|
||||
mask = torch.hstack(
|
||||
[torch.zeros((seqlen, start_pos), device=tokens.device), mask]
|
||||
).type_as(h)
|
||||
|
||||
for layer in self.layers:
|
||||
h = layer(h, start_pos, freqs_cis, mask)
|
||||
h = self.norm(h)
|
||||
output = self.output(h).float()
|
||||
return output
|
155
toolchain/inference/quantization/quantize_checkpoint.py
Normal file
155
toolchain/inference/quantization/quantize_checkpoint.py
Normal file
|
@ -0,0 +1,155 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
||||
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import fire
|
||||
|
||||
import torch
|
||||
from fairscale.nn.model_parallel.initialize import (
|
||||
get_model_parallel_rank,
|
||||
initialize_model_parallel,
|
||||
model_parallel_is_initialized,
|
||||
)
|
||||
from fp8.fp8_impls import FfnQuantizeMode, quantize_fp8
|
||||
|
||||
from llama.model import ModelArgs, Transformer, TransformerBlock
|
||||
from llama.tokenizer import Tokenizer
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
def main(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
quantized_ckpt_dir: str,
|
||||
max_seq_len: Optional[int] = 512,
|
||||
max_batch_size: Optional[int] = 4,
|
||||
model_parallel_size: Optional[int] = None,
|
||||
ffn_quantize_mode: Optional[FfnQuantizeMode] = FfnQuantizeMode.FP8_ROWWISE,
|
||||
fp8_activation_scale_ub: Optional[float] = 1200.0,
|
||||
seed: int = 1,
|
||||
):
|
||||
""" """
|
||||
if not os.path.exists(quantized_ckpt_dir):
|
||||
os.makedirs(quantized_ckpt_dir)
|
||||
shutil.copy(
|
||||
os.path.join(ckpt_dir, "params.json"),
|
||||
os.path.join(quantized_ckpt_dir, "params.json"),
|
||||
)
|
||||
shutil.copy(
|
||||
os.path.join(ckpt_dir, "tokenizer.model"),
|
||||
os.path.join(quantized_ckpt_dir, "tokenizer.model"),
|
||||
)
|
||||
|
||||
if not torch.distributed.is_initialized():
|
||||
torch.distributed.init_process_group("nccl")
|
||||
if not model_parallel_is_initialized():
|
||||
if model_parallel_size is None:
|
||||
model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
initialize_model_parallel(model_parallel_size)
|
||||
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
torch.cuda.set_device(local_rank)
|
||||
|
||||
# seed must be the same in all processes
|
||||
torch.manual_seed(seed)
|
||||
|
||||
if local_rank > 0:
|
||||
sys.stdout = open(os.devnull, "w")
|
||||
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
||||
assert model_parallel_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
||||
ckpt_path = checkpoints[get_model_parallel_rank()]
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
params = json.loads(f.read())
|
||||
|
||||
model_args: ModelArgs = ModelArgs(
|
||||
max_seq_len=max_seq_len,
|
||||
max_batch_size=max_batch_size,
|
||||
**params,
|
||||
)
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
assert (
|
||||
model_args.vocab_size == tokenizer.n_words
|
||||
), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
||||
|
||||
# load on CPU in bf16 so that fp8 conversion does not find an unexpected (fp32, e.g.) datatype
|
||||
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
||||
|
||||
model = Transformer(model_args)
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
|
||||
if torch.cuda.is_bf16_supported():
|
||||
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
|
||||
else:
|
||||
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
|
||||
print(ckpt_path)
|
||||
assert (
|
||||
quantized_ckpt_dir is not None
|
||||
), "QUantized checkpoint directory should not be None"
|
||||
fp8_scales = {}
|
||||
for block in model.layers:
|
||||
if isinstance(block, TransformerBlock):
|
||||
if block.layer_id == 0 or block.layer_id == (model.n_layers - 1):
|
||||
continue
|
||||
|
||||
fp8_weight = quantize_fp8(
|
||||
block.feed_forward.w1.weight,
|
||||
fp8_activation_scale_ub,
|
||||
ffn_quantize_mode,
|
||||
output_device=torch.device("cpu"),
|
||||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w1.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w1_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
|
||||
fp8_weight = quantize_fp8(
|
||||
block.feed_forward.w3.weight,
|
||||
fp8_activation_scale_ub,
|
||||
ffn_quantize_mode,
|
||||
output_device=torch.device("cpu"),
|
||||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w3.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w3_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
|
||||
fp8_weight = quantize_fp8(
|
||||
block.feed_forward.w2.weight,
|
||||
fp8_activation_scale_ub,
|
||||
ffn_quantize_mode,
|
||||
output_device=torch.device("cpu"),
|
||||
)
|
||||
with torch.inference_mode():
|
||||
block.feed_forward.w2.weight = Parameter(fp8_weight.weight)
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w2_{get_model_parallel_rank()}"
|
||||
] = fp8_weight.scale
|
||||
|
||||
fp8_scales_path = os.path.join(
|
||||
quantized_ckpt_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
)
|
||||
torch.save(fp8_scales, fp8_scales_path)
|
||||
|
||||
ckpt_path = os.path.join(
|
||||
quantized_ckpt_dir,
|
||||
"consolidated.{:02d}.pth".format(get_model_parallel_rank()),
|
||||
)
|
||||
torch.save(model.state_dict(), ckpt_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
25
toolchain/inference/quantization/run_quantize_checkpoint.sh
Executable file
25
toolchain/inference/quantization/run_quantize_checkpoint.sh
Executable file
|
@ -0,0 +1,25 @@
|
|||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
set -x
|
||||
|
||||
cd $(git rev-parse --show-toplevel)
|
||||
|
||||
MASTER_HOST=$1
|
||||
RUN_ID=$2
|
||||
CKPT_DIR=$3
|
||||
QUANT_CKPT_DIR=$4
|
||||
TOKENIZER_PATH=$5
|
||||
NNODES=$6
|
||||
NPROC=$7
|
||||
|
||||
echo $MASTER_HOST, $RUN_ID, $CKPT_DIR, $QUANT_CKPT_DIR
|
||||
|
||||
NCCL_NET=Socket NCCL_SOCKET_IFNAME=eth TIKTOKEN_CACHE_DIR="" \
|
||||
torchrun \
|
||||
--nnodes=$NNODES --nproc_per_node=$NPROC \
|
||||
--rdzv_id=$RUN_ID \
|
||||
--rdzv_conf='timeout=120' \
|
||||
--rdzv_backend=c10d \
|
||||
--rdzv_endpoint="${MASTER_HOST}:29502" \
|
||||
quantize_checkpoint.py $CKPT_DIR $TOKENIZER_PATH $QUANT_CKPT_DIR
|
102
toolchain/inference/quantization/test_fp8.py
Normal file
102
toolchain/inference/quantization/test_fp8.py
Normal file
|
@ -0,0 +1,102 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from fp8_impls import attn_linear, ffn_swiglu_fp8_dynamic, quantize_fp8
|
||||
from hypothesis import given, settings, strategies as st
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
@unittest.skipIf(
|
||||
not torch.cuda.is_available()
|
||||
or torch.cuda.get_device_properties(torch.cuda.current_device()).major < 9,
|
||||
"Skip when H100 is not available",
|
||||
)
|
||||
class FP8Tests(unittest.TestCase):
|
||||
@settings(deadline=None)
|
||||
@given(
|
||||
D=st.sampled_from([4096, 8192]),
|
||||
HD_L=st.sampled_from([1280, 2560]),
|
||||
B=st.sampled_from([1, 2]),
|
||||
T=st.sampled_from([2048, 4096]),
|
||||
UB=st.sampled_from([1000, 10000]),
|
||||
)
|
||||
def test_fp8_ffn(
|
||||
self,
|
||||
D: int,
|
||||
HD_L: int,
|
||||
B: int,
|
||||
T: int,
|
||||
UB: float,
|
||||
) -> None:
|
||||
x = torch.randn(size=(B, T, D), dtype=torch.bfloat16, device="cuda") * 0.1
|
||||
w13 = (
|
||||
torch.randn(size=(2 * HD_L, D), dtype=torch.bfloat16, device="cuda") * 0.01
|
||||
)
|
||||
w2 = torch.randn(size=(D, HD_L), dtype=torch.bfloat16, device="cuda") * 0.1
|
||||
|
||||
x_q = quantize_fp8(x, UB)
|
||||
w13_q = quantize_fp8(w13, UB)
|
||||
w2_q = quantize_fp8(w2, UB)
|
||||
|
||||
def ref_ffn(x: Tensor, w13: Tensor, w2: Tensor) -> Tensor:
|
||||
(B, T, D) = x.shape
|
||||
(HD_L_2, D_) = w13.shape
|
||||
assert D_ == D
|
||||
HD_L = HD_L_2 // 2
|
||||
|
||||
y = x.view(B * T, D) @ w13.T
|
||||
x1 = y[:, :HD_L]
|
||||
x2 = y[:, HD_L:]
|
||||
|
||||
z = torch.nn.functional.silu(x1) * x2
|
||||
return (z @ w2.T).view(B, T, D).to(torch.bfloat16)
|
||||
|
||||
v = ffn_swiglu_fp8_dynamic(x, w13_q, w2_q)
|
||||
|
||||
# Fake quant
|
||||
x = x_q.weight.bfloat16() * x_q.scale
|
||||
w13 = w13_q.weight.bfloat16() * w13_q.scale
|
||||
w2 = w2_q.weight.bfloat16() * w2_q.scale
|
||||
|
||||
v_ref = ref_ffn(x, w13, w2)
|
||||
|
||||
torch.testing.assert_close(v_ref, v, atol=4.0e-3, rtol=4.0e-3)
|
||||
|
||||
@settings(deadline=None)
|
||||
@given(
|
||||
B_T=st.sampled_from([2048, 4096]),
|
||||
D=st.sampled_from([128, 256]),
|
||||
HD_L=st.sampled_from([256, 512]),
|
||||
UB=st.sampled_from([1000, 10000]),
|
||||
)
|
||||
def test_fp8_attn_linear(self, B_T: int, D: int, HD_L: int, UB: int) -> None:
|
||||
B_T = 4096
|
||||
D = 256
|
||||
HD_L = 512
|
||||
UB = float(UB)
|
||||
x = torch.randn(size=(B_T, D), dtype=torch.bfloat16, device="cuda") * 0.1
|
||||
wqkv = torch.randn(size=(HD_L, D), dtype=torch.bfloat16, device="cuda") * 0.01
|
||||
|
||||
x_q = quantize_fp8(x, UB)
|
||||
wqkv_q = quantize_fp8(wqkv, UB)
|
||||
|
||||
num_tokens = torch.tensor(B_T, dtype=torch.int64, device="cuda")
|
||||
|
||||
y = attn_linear(x, wqkv_q)
|
||||
y_nt = attn_linear(x, wqkv_q, num_tokens=num_tokens)
|
||||
|
||||
# Fake quant
|
||||
x = x_q.weight.bfloat16() * x_q.scale
|
||||
wqkv = wqkv_q.weight.bfloat16() * wqkv_q.scale
|
||||
y_ref = (x @ wqkv.T).to(torch.bfloat16)
|
||||
|
||||
torch.testing.assert_close(y_ref, y, atol=1.0e-3, rtol=1.0e-3)
|
||||
torch.testing.assert_close(y_ref, y_nt, atol=1.0e-3, rtol=1.0e-3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
117
toolchain/inference/server.py
Normal file
117
toolchain/inference/server.py
Normal file
|
@ -0,0 +1,117 @@
|
|||
import asyncio
|
||||
import signal
|
||||
|
||||
import fire
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from fastapi import FastAPI, HTTPException, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from toolchain.utils import get_config_dir, parse_config
|
||||
from .api.config import ModelInferenceHydraConfig
|
||||
from .api.endpoints import ChatCompletionRequest, ChatCompletionResponseStreamChunk
|
||||
|
||||
from .api_instance import get_inference_api_instance
|
||||
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
GLOBAL_CONFIG = None
|
||||
|
||||
|
||||
def get_config():
|
||||
return GLOBAL_CONFIG
|
||||
|
||||
|
||||
def handle_sigint(*args, **kwargs):
|
||||
print("SIGINT or CTRL-C detected. Exiting gracefully", args)
|
||||
loop = asyncio.get_event_loop()
|
||||
for task in asyncio.all_tasks(loop):
|
||||
task.cancel()
|
||||
loop.stop()
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup():
|
||||
global InferenceApiInstance
|
||||
|
||||
config = get_config()
|
||||
hydra_config = ModelInferenceHydraConfig(
|
||||
**OmegaConf.to_container(config["model_inference_config"], resolve=True)
|
||||
)
|
||||
model_inference_config = hydra_config.convert_to_model_inferene_config()
|
||||
|
||||
InferenceApiInstance = await get_inference_api_instance(
|
||||
model_inference_config,
|
||||
)
|
||||
await InferenceApiInstance.initialize()
|
||||
|
||||
|
||||
@app.on_event("shutdown")
|
||||
async def shutdown():
|
||||
global InferenceApiInstance
|
||||
|
||||
print("shutting down")
|
||||
await InferenceApiInstance.shutdown()
|
||||
|
||||
|
||||
# there's a single model parallel process running serving the model. for now,
|
||||
# we don't support multiple concurrent requests to this process.
|
||||
semaphore = asyncio.Semaphore(1)
|
||||
|
||||
|
||||
@app.post(
|
||||
"/inference/chat_completion", response_model=ChatCompletionResponseStreamChunk
|
||||
)
|
||||
def chat_completion(request: Request, exec_request: ChatCompletionRequest):
|
||||
if semaphore.locked():
|
||||
raise HTTPException(
|
||||
status_code=429,
|
||||
detail="Only a single concurrent request allowed right now.",
|
||||
)
|
||||
|
||||
async def sse_generator(event_gen):
|
||||
try:
|
||||
async for event in event_gen:
|
||||
yield f"data: {event.json()}\n\n"
|
||||
await asyncio.sleep(0.01)
|
||||
except asyncio.CancelledError:
|
||||
print("Generator cancelled")
|
||||
await event_gen.aclose()
|
||||
finally:
|
||||
semaphore.release()
|
||||
|
||||
async def event_gen():
|
||||
async for event in InferenceApiInstance.chat_completion(exec_request):
|
||||
yield event
|
||||
|
||||
return StreamingResponse(
|
||||
sse_generator(event_gen()),
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
|
||||
|
||||
def main(config_path: str, port: int = 5000, disable_ipv6: bool = False):
|
||||
global GLOBAL_CONFIG
|
||||
config_dir = get_config_dir()
|
||||
GLOBAL_CONFIG = parse_config(config_dir, config_path)
|
||||
|
||||
signal.signal(signal.SIGINT, handle_sigint)
|
||||
|
||||
import uvicorn
|
||||
|
||||
# FYI this does not do hot-reloads
|
||||
listen_host = "::" if not disable_ipv6 else "0.0.0.0"
|
||||
print(f"Listening on {listen_host}:{port}")
|
||||
uvicorn.run(app, host=listen_host, port=port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
Loading…
Add table
Add a link
Reference in a new issue