feat(starter)!: simplify starter distro; litellm model registry changes (#2916)

This commit is contained in:
Ashwin Bharambe 2025-07-25 15:02:04 -07:00 committed by GitHub
parent 3344d8a9e5
commit 9583f468f8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
64 changed files with 2027 additions and 4092 deletions

View file

@ -249,12 +249,6 @@
],
"source": [
"from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient\n",
"import os\n",
"\n",
"os.environ[\"ENABLE_OLLAMA\"] = \"ollama\"\n",
"os.environ[\"OLLAMA_INFERENCE_MODEL\"] = \"llama3.2:3b\"\n",
"os.environ[\"OLLAMA_EMBEDDING_MODEL\"] = \"all-minilm:l6-v2\"\n",
"os.environ[\"OLLAMA_EMBEDDING_DIMENSION\"] = \"384\"\n",
"\n",
"vector_db_id = \"my_demo_vector_db\"\n",
"client = LlamaStackClient(base_url=\"http://0.0.0.0:8321\")\n",

View file

@ -40,16 +40,16 @@ The following environment variables can be configured:
The following models are available by default:
- `meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)`
- `meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)`
- `meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
- `meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
- `meta/llama-3.3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `meta/llama3-8b-instruct `
- `meta/llama3-70b-instruct `
- `meta/llama-3.1-8b-instruct `
- `meta/llama-3.1-70b-instruct `
- `meta/llama-3.1-405b-instruct `
- `meta/llama-3.2-1b-instruct `
- `meta/llama-3.2-3b-instruct `
- `meta/llama-3.2-11b-vision-instruct `
- `meta/llama-3.2-90b-vision-instruct `
- `meta/llama-3.3-70b-instruct `
- `nvidia/llama-3.2-nv-embedqa-1b-v2 `
- `nvidia/nv-embedqa-e5-v5 `
- `nvidia/nv-embedqa-mistral-7b-v2 `

View file

@ -158,7 +158,7 @@ export ENABLE_PGVECTOR=__disabled__
The starter distribution uses several patterns for provider IDs:
1. **Direct provider IDs**: `faiss`, `ollama`, `vllm`
2. **Environment-based provider IDs**: `${env.ENABLE_SQLITE_VEC+sqlite-vec}`
2. **Environment-based provider IDs**: `${env.ENABLE_SQLITE_VEC:+sqlite-vec}`
3. **Model-based provider IDs**: `${env.OLLAMA_INFERENCE_MODEL:__disabled__}`
When using the `+` pattern (like `${env.ENABLE_SQLITE_VEC+sqlite-vec}`), the provider is enabled by default and can be disabled by setting the environment variable to `__disabled__`.

View file

@ -59,7 +59,7 @@ Now let's build and run the Llama Stack config for Ollama.
We use `starter` as template. By default all providers are disabled, this requires enable ollama by passing environment variables.
```bash
ENABLE_OLLAMA=ollama OLLAMA_INFERENCE_MODEL="llama3.2:3b" llama stack build --template starter --image-type venv --run
llama stack build --template starter --image-type venv --run
```
:::
:::{tab-item} Using `conda`
@ -70,7 +70,7 @@ which defines the providers and their settings.
Now let's build and run the Llama Stack config for Ollama.
```bash
ENABLE_OLLAMA=ollama INFERENCE_MODEL="llama3.2:3b" llama stack build --template starter --image-type conda --run
llama stack build --template starter --image-type conda --run
```
:::
:::{tab-item} Using a Container
@ -80,8 +80,6 @@ component that works with different inference providers out of the box. For this
configurations, please check out [this guide](../distributions/building_distro.md).
First lets setup some environment variables and create a local directory to mount into the containers file system.
```bash
export INFERENCE_MODEL="llama3.2:3b"
export ENABLE_OLLAMA=ollama
export LLAMA_STACK_PORT=8321
mkdir -p ~/.llama
```
@ -94,7 +92,6 @@ docker run -it \
-v ~/.llama:/root/.llama \
llamastack/distribution-starter \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
Note to start the container with Podman, you can do the same but replace `docker` at the start of the command with
@ -116,7 +113,6 @@ docker run -it \
--network=host \
llamastack/distribution-starter \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://localhost:11434
```
:::

View file

@ -19,7 +19,7 @@ ollama run llama3.2:3b --keepalive 60m
#### Step 2: Run the Llama Stack server
We will use `uv` to run the Llama Stack server.
```bash
ENABLE_OLLAMA=ollama OLLAMA_INFERENCE_MODEL=llama3.2:3b uv run --with llama-stack llama stack build --template starter --image-type venv --run
uv run --with llama-stack llama stack build --template starter --image-type venv --run
```
#### Step 3: Run the demo
Now open up a new terminal and copy the following script into a file named `demo_script.py`.

View file

@ -13,7 +13,7 @@ Anthropic inference provider for accessing Claude models and Anthropic's AI serv
## Sample Configuration
```yaml
api_key: ${env.ANTHROPIC_API_KEY}
api_key: ${env.ANTHROPIC_API_KEY:=}
```

View file

@ -15,7 +15,7 @@ Cerebras inference provider for running models on Cerebras Cloud platform.
```yaml
base_url: https://api.cerebras.ai
api_key: ${env.CEREBRAS_API_KEY}
api_key: ${env.CEREBRAS_API_KEY:=}
```

View file

@ -14,8 +14,8 @@ Databricks inference provider for running models on Databricks' unified analytic
## Sample Configuration
```yaml
url: ${env.DATABRICKS_URL}
api_token: ${env.DATABRICKS_API_TOKEN}
url: ${env.DATABRICKS_URL:=}
api_token: ${env.DATABRICKS_API_TOKEN:=}
```

View file

@ -16,7 +16,7 @@ Fireworks AI inference provider for Llama models and other AI models on the Fire
```yaml
url: https://api.fireworks.ai/inference/v1
api_key: ${env.FIREWORKS_API_KEY}
api_key: ${env.FIREWORKS_API_KEY:=}
```

View file

@ -13,7 +13,7 @@ Google Gemini inference provider for accessing Gemini models and Google's AI ser
## Sample Configuration
```yaml
api_key: ${env.GEMINI_API_KEY}
api_key: ${env.GEMINI_API_KEY:=}
```

View file

@ -15,7 +15,7 @@ Groq inference provider for ultra-fast inference using Groq's LPU technology.
```yaml
url: https://api.groq.com
api_key: ${env.GROQ_API_KEY}
api_key: ${env.GROQ_API_KEY:=}
```

View file

@ -13,7 +13,7 @@ OpenAI inference provider for accessing GPT models and other OpenAI services.
## Sample Configuration
```yaml
api_key: ${env.OPENAI_API_KEY}
api_key: ${env.OPENAI_API_KEY:=}
```

View file

@ -15,7 +15,7 @@ SambaNova OpenAI-compatible provider for using SambaNova models with OpenAI API
```yaml
openai_compat_api_base: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
api_key: ${env.SAMBANOVA_API_KEY:=}
```

View file

@ -15,7 +15,7 @@ SambaNova inference provider for running models on SambaNova's dataflow architec
```yaml
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
api_key: ${env.SAMBANOVA_API_KEY:=}
```

View file

@ -13,7 +13,7 @@ Text Generation Inference (TGI) provider for HuggingFace model serving.
## Sample Configuration
```yaml
url: ${env.TGI_URL}
url: ${env.TGI_URL:=}
```

View file

@ -16,7 +16,7 @@ Together AI inference provider for open-source models and collaborative AI devel
```yaml
url: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY}
api_key: ${env.TOGETHER_API_KEY:=}
```

View file

@ -15,7 +15,7 @@ SambaNova's safety provider for content moderation and safety filtering.
```yaml
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
api_key: ${env.SAMBANOVA_API_KEY:=}
```