Merge branch 'main' into add-batches

This commit is contained in:
Matthew Farrellee 2025-08-13 07:33:41 -04:00
commit 95a3ecdffc
67 changed files with 1158 additions and 424 deletions

View file

@ -226,7 +226,7 @@ uv init
name = "llama-stack-provider-ollama"
version = "0.1.0"
description = "Ollama provider for Llama Stack"
requires-python = ">=3.10"
requires-python = ">=3.12"
dependencies = ["llama-stack", "pydantic", "ollama", "aiohttp"]
```

View file

@ -35,6 +35,7 @@ remote_runpod
remote_sambanova
remote_tgi
remote_together
remote_vertexai
remote_vllm
remote_watsonx
```

View file

@ -0,0 +1,40 @@
# remote::vertexai
## Description
Google Vertex AI inference provider enables you to use Google's Gemini models through Google Cloud's Vertex AI platform, providing several advantages:
• Enterprise-grade security: Uses Google Cloud's security controls and IAM
• Better integration: Seamless integration with other Google Cloud services
• Advanced features: Access to additional Vertex AI features like model tuning and monitoring
• Authentication: Uses Google Cloud Application Default Credentials (ADC) instead of API keys
Configuration:
- Set VERTEX_AI_PROJECT environment variable (required)
- Set VERTEX_AI_LOCATION environment variable (optional, defaults to us-central1)
- Use Google Cloud Application Default Credentials or service account key
Authentication Setup:
Option 1 (Recommended): gcloud auth application-default login
Option 2: Set GOOGLE_APPLICATION_CREDENTIALS to service account key path
Available Models:
- vertex_ai/gemini-2.0-flash
- vertex_ai/gemini-2.5-flash
- vertex_ai/gemini-2.5-pro
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `project` | `<class 'str'>` | No | | Google Cloud project ID for Vertex AI |
| `location` | `<class 'str'>` | No | us-central1 | Google Cloud location for Vertex AI |
## Sample Configuration
```yaml
project: ${env.VERTEX_AI_PROJECT:=}
location: ${env.VERTEX_AI_LOCATION:=us-central1}
```

View file

@ -12,6 +12,18 @@ That means you'll get fast and efficient vector retrieval.
- Lightweight and easy to use
- Fully integrated with Llama Stack
- GPU support
- **Vector search** - FAISS supports pure vector similarity search using embeddings
## Search Modes
**Supported:**
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
**Not Supported:**
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
## Usage

View file

@ -11,6 +11,7 @@ That means you're not limited to storing vectors in memory or in a separate serv
- Easy to use
- Fully integrated with Llama Stack
- Supports all search modes: vector, keyword, and hybrid search (both inline and remote configurations)
## Usage
@ -101,6 +102,92 @@ vector_io:
- **`client_pem_path`**: Path to the **client certificate** file (required for mTLS).
- **`client_key_path`**: Path to the **client private key** file (required for mTLS).
## Search Modes
Milvus supports three different search modes for both inline and remote configurations:
### Vector Search
Vector search uses semantic similarity to find the most relevant chunks based on embedding vectors. This is the default search mode and works well for finding conceptually similar content.
```python
# Vector search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="What is machine learning?",
search_mode="vector",
max_num_results=5,
)
```
### Keyword Search
Keyword search uses traditional text-based matching to find chunks containing specific terms or phrases. This is useful when you need exact term matches.
```python
# Keyword search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="Python programming language",
search_mode="keyword",
max_num_results=5,
)
```
### Hybrid Search
Hybrid search combines both vector and keyword search methods to provide more comprehensive results. It leverages the strengths of both semantic similarity and exact term matching.
#### Basic Hybrid Search
```python
# Basic hybrid search example (uses RRF ranker with default impact_factor=60.0)
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
)
```
**Note**: The default `impact_factor` value of 60.0 was empirically determined to be optimal in the original RRF research paper: ["Reciprocal Rank Fusion outperforms Condorcet and individual Rank Learning Methods"](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) (Cormack et al., 2009).
#### Hybrid Search with RRF (Reciprocal Rank Fusion) Ranker
RRF combines rankings from vector and keyword search by using reciprocal ranks. The impact factor controls how much weight is given to higher-ranked results.
```python
# Hybrid search with custom RRF parameters
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "rrf",
"impact_factor": 100.0, # Higher values give more weight to top-ranked results
}
},
)
```
#### Hybrid Search with Weighted Ranker
Weighted ranker linearly combines normalized scores from vector and keyword search. The alpha parameter controls the balance between the two search methods.
```python
# Hybrid search with weighted ranker
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "weighted",
"alpha": 0.7, # 70% vector search, 30% keyword search
}
},
)
```
For detailed documentation on RRF and Weighted rankers, please refer to the [Milvus Reranking Guide](https://milvus.io/docs/reranking.md).
## Documentation
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.