Merge branch 'main' into add-batches

This commit is contained in:
Matthew Farrellee 2025-08-13 07:33:41 -04:00
commit 95a3ecdffc
67 changed files with 1158 additions and 424 deletions

View file

@ -706,6 +706,7 @@ class Agents(Protocol):
temperature: float | None = None,
text: OpenAIResponseText | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
include: list[str] | None = None,
max_infer_iters: int | None = 10, # this is an extension to the OpenAI API
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
"""Create a new OpenAI response.
@ -713,6 +714,7 @@ class Agents(Protocol):
:param input: Input message(s) to create the response.
:param model: The underlying LLM used for completions.
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
:param include: (Optional) Additional fields to include in the response.
:returns: An OpenAIResponseObject.
"""
...

View file

@ -170,6 +170,23 @@ class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
type: Literal["web_search_call"] = "web_search_call"
class OpenAIResponseOutputMessageFileSearchToolCallResults(BaseModel):
"""Search results returned by the file search operation.
:param attributes: (Optional) Key-value attributes associated with the file
:param file_id: Unique identifier of the file containing the result
:param filename: Name of the file containing the result
:param score: Relevance score for this search result (between 0 and 1)
:param text: Text content of the search result
"""
attributes: dict[str, Any]
file_id: str
filename: str
score: float
text: str
@json_schema_type
class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
"""File search tool call output message for OpenAI responses.
@ -185,7 +202,7 @@ class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
queries: list[str]
status: str
type: Literal["file_search_call"] = "file_search_call"
results: list[dict[str, Any]] | None = None
results: list[OpenAIResponseOutputMessageFileSearchToolCallResults] | None = None
@json_schema_type

View file

@ -67,5 +67,14 @@ class SessionNotFoundError(ValueError):
class ConflictError(ValueError):
"""raised when an operation cannot be performed due to a conflict with the current state"""
def __init__(self, message: str) -> None:
pass
class ModelTypeError(TypeError):
"""raised when a model is present but not the correct type"""
def __init__(self, model_name: str, model_type: str, expected_model_type: str) -> None:
message = (
f"Model '{model_name}' is of type '{model_type}' rather than the expected type '{expected_model_type}'"
)
super().__init__(message)

View file

@ -91,7 +91,7 @@ def get_provider_dependencies(
def print_pip_install_help(config: BuildConfig):
normal_deps, special_deps = get_provider_dependencies(config)
normal_deps, special_deps, _ = get_provider_dependencies(config)
cprint(
f"Please install needed dependencies using the following commands:\n\nuv pip install {' '.join(normal_deps)}",

View file

@ -18,7 +18,7 @@ from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.common.errors import ModelNotFoundError
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
from llama_stack.apis.inference import (
BatchChatCompletionResponse,
BatchCompletionResponse,
@ -65,7 +65,7 @@ from llama_stack.providers.datatypes import HealthResponse, HealthStatus, Routin
from llama_stack.providers.utils.inference.inference_store import InferenceStore
from llama_stack.providers.utils.telemetry.tracing import get_current_span
logger = get_logger(name=__name__, category="core")
logger = get_logger(name=__name__, category="inference")
class InferenceRouter(Inference):
@ -177,6 +177,15 @@ class InferenceRouter(Inference):
encoded = self.formatter.encode_content(messages)
return len(encoded.tokens) if encoded and encoded.tokens else 0
async def _get_model(self, model_id: str, expected_model_type: str) -> Model:
"""takes a model id and gets model after ensuring that it is accessible and of the correct type"""
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type != expected_model_type:
raise ModelTypeError(model_id, model.model_type, expected_model_type)
return model
async def chat_completion(
self,
model_id: str,
@ -195,11 +204,7 @@ class InferenceRouter(Inference):
)
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.embedding:
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
model = await self._get_model(model_id, ModelType.llm)
if tool_config:
if tool_choice and tool_choice != tool_config.tool_choice:
raise ValueError("tool_choice and tool_config.tool_choice must match")
@ -301,11 +306,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.completion: {model_id=}, {stream=}, {content=}, {sampling_params=}, {response_format=}",
)
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.embedding:
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
model = await self._get_model(model_id, ModelType.llm)
provider = await self.routing_table.get_provider_impl(model_id)
params = dict(
model_id=model_id,
@ -355,11 +356,7 @@ class InferenceRouter(Inference):
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
logger.debug(f"InferenceRouter.embeddings: {model_id}")
model = await self.routing_table.get_model(model_id)
if model is None:
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.llm:
raise ValueError(f"Model '{model_id}' is an LLM model and does not support embeddings")
await self._get_model(model_id, ModelType.embedding)
provider = await self.routing_table.get_provider_impl(model_id)
return await provider.embeddings(
model_id=model_id,
@ -395,12 +392,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ModelNotFoundError(model)
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support completions")
model_obj = await self._get_model(model, ModelType.llm)
params = dict(
model=model_obj.identifier,
prompt=prompt,
@ -476,11 +468,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ModelNotFoundError(model)
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
model_obj = await self._get_model(model, ModelType.llm)
# Use the OpenAI client for a bit of extra input validation without
# exposing the OpenAI client itself as part of our API surface
@ -567,12 +555,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.openai_embeddings: {model=}, input_type={type(input)}, {encoding_format=}, {dimensions=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ModelNotFoundError(model)
if model_obj.model_type != ModelType.embedding:
raise ValueError(f"Model '{model}' is not an embedding model")
model_obj = await self._get_model(model, ModelType.embedding)
params = dict(
model=model_obj.identifier,
input=input,
@ -871,4 +854,5 @@ class InferenceRouter(Inference):
model=model.identifier,
object="chat.completion",
)
logger.debug(f"InferenceRouter.completion_response: {final_response}")
await self.store.store_chat_completion(final_response, messages)

View file

@ -63,6 +63,8 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def get_provider_impl(self, model_id: str) -> Any:
model = await lookup_model(self, model_id)
if model.provider_id not in self.impls_by_provider_id:
raise ValueError(f"Provider {model.provider_id} not found in the routing table")
return self.impls_by_provider_id[model.provider_id]
async def register_model(

View file

@ -124,10 +124,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
return toolgroup
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
tool_group = await self.get_tool_group(toolgroup_id)
if tool_group is None:
raise ToolGroupNotFoundError(toolgroup_id)
await self.unregister_object(tool_group)
await self.unregister_object(await self.get_tool_group(toolgroup_id))
async def shutdown(self) -> None:
pass

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import TypeAdapter
from llama_stack.apis.common.errors import ModelNotFoundError, VectorStoreNotFoundError
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError, VectorStoreNotFoundError
from llama_stack.apis.models import ModelType
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
@ -66,7 +66,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
if model is None:
raise ModelNotFoundError(embedding_model)
if model.model_type != ModelType.embedding:
raise ValueError(f"Model {embedding_model} is not an embedding model")
raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding)
if "embedding_dimension" not in model.metadata:
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
vector_db_data = {

View file

@ -14,6 +14,7 @@ distribution_spec:
- provider_type: remote::openai
- provider_type: remote::anthropic
- provider_type: remote::gemini
- provider_type: remote::vertexai
- provider_type: remote::groq
- provider_type: remote::sambanova
- provider_type: inline::sentence-transformers

View file

@ -65,6 +65,11 @@ providers:
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:=}
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
provider_type: remote::vertexai
config:
project: ${env.VERTEX_AI_PROJECT:=}
location: ${env.VERTEX_AI_LOCATION:=us-central1}
- provider_id: groq
provider_type: remote::groq
config:

View file

@ -14,6 +14,7 @@ distribution_spec:
- provider_type: remote::openai
- provider_type: remote::anthropic
- provider_type: remote::gemini
- provider_type: remote::vertexai
- provider_type: remote::groq
- provider_type: remote::sambanova
- provider_type: inline::sentence-transformers

View file

@ -65,6 +65,11 @@ providers:
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:=}
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
provider_type: remote::vertexai
config:
project: ${env.VERTEX_AI_PROJECT:=}
location: ${env.VERTEX_AI_LOCATION:=us-central1}
- provider_id: groq
provider_type: remote::groq
config:

View file

@ -56,6 +56,7 @@ ENABLED_INFERENCE_PROVIDERS = [
"fireworks",
"together",
"gemini",
"vertexai",
"groq",
"sambanova",
"anthropic",
@ -71,6 +72,7 @@ INFERENCE_PROVIDER_IDS = {
"tgi": "${env.TGI_URL:+tgi}",
"cerebras": "${env.CEREBRAS_API_KEY:+cerebras}",
"nvidia": "${env.NVIDIA_API_KEY:+nvidia}",
"vertexai": "${env.VERTEX_AI_PROJECT:+vertexai}",
}
@ -246,6 +248,14 @@ def get_distribution_template() -> DistributionTemplate:
"",
"Gemini API Key",
),
"VERTEX_AI_PROJECT": (
"",
"Google Cloud Project ID for Vertex AI",
),
"VERTEX_AI_LOCATION": (
"us-central1",
"Google Cloud Location for Vertex AI",
),
"SAMBANOVA_API_KEY": (
"",
"SambaNova API Key",

View file

@ -32,6 +32,7 @@ CATEGORIES = [
"tools",
"client",
"telemetry",
"openai_responses",
]
# Initialize category levels with default level
@ -99,7 +100,8 @@ def parse_environment_config(env_config: str) -> dict[str, int]:
Dict[str, int]: A dictionary mapping categories to their log levels.
"""
category_levels = {}
for pair in env_config.split(";"):
delimiter = ","
for pair in env_config.split(delimiter):
if not pair.strip():
continue

View file

@ -236,6 +236,7 @@ class ChatFormat:
arguments_json=json.dumps(tool_arguments),
)
)
content = ""
return RawMessage(
role="assistant",

View file

@ -327,10 +327,21 @@ class MetaReferenceAgentsImpl(Agents):
temperature: float | None = None,
text: OpenAIResponseText | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
include: list[str] | None = None,
max_infer_iters: int | None = 10,
) -> OpenAIResponseObject:
return await self.openai_responses_impl.create_openai_response(
input, model, instructions, previous_response_id, store, stream, temperature, text, tools, max_infer_iters
input,
model,
instructions,
previous_response_id,
store,
stream,
temperature,
text,
tools,
include,
max_infer_iters,
)
async def list_openai_responses(

View file

@ -38,6 +38,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutputMessageContent,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageFileSearchToolCall,
OpenAIResponseOutputMessageFileSearchToolCallResults,
OpenAIResponseOutputMessageFunctionToolCall,
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseOutputMessageWebSearchToolCall,
@ -333,6 +334,7 @@ class OpenAIResponsesImpl:
temperature: float | None = None,
text: OpenAIResponseText | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
include: list[str] | None = None,
max_infer_iters: int | None = 10,
):
stream = bool(stream)
@ -486,8 +488,12 @@ class OpenAIResponsesImpl:
# Convert collected chunks to complete response
if chat_response_tool_calls:
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
# when there are tool calls, we need to clear the content
chat_response_content = []
else:
tool_calls = None
assistant_message = OpenAIAssistantMessageParam(
content="".join(chat_response_content),
tool_calls=tool_calls,
@ -826,12 +832,13 @@ class OpenAIResponsesImpl:
text = result.metadata["chunks"][i] if "chunks" in result.metadata else None
score = result.metadata["scores"][i] if "scores" in result.metadata else None
message.results.append(
{
"file_id": doc_id,
"filename": doc_id,
"text": text,
"score": score,
}
OpenAIResponseOutputMessageFileSearchToolCallResults(
file_id=doc_id,
filename=doc_id,
text=text,
score=score,
attributes={},
)
)
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
message.status = "failed"

View file

@ -15,6 +15,7 @@ from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
SafetyViolation,
ShieldStore,
ViolationLevel,
)
from llama_stack.apis.shields import Shield
@ -32,6 +33,8 @@ PROMPT_GUARD_MODEL = "Prompt-Guard-86M"
class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
shield_store: ShieldStore
def __init__(self, config: PromptGuardConfig, _deps) -> None:
self.config = config
@ -53,7 +56,7 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
self,
shield_id: str,
messages: list[Message],
params: dict[str, Any] = None,
params: dict[str, Any],
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
if not shield:
@ -61,6 +64,9 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
return await self.shield.run(messages)
async def run_moderation(self, input: str | list[str], model: str):
raise NotImplementedError("run_moderation not implemented for PromptGuard")
class PromptGuardShield:
def __init__(
@ -117,8 +123,10 @@ class PromptGuardShield:
elif self.config.guard_type == PromptGuardType.jailbreak.value and score_malicious > self.threshold:
violation = SafetyViolation(
violation_level=ViolationLevel.ERROR,
violation_type=f"prompt_injection:malicious={score_malicious}",
violation_return_message="Sorry, I cannot do this.",
user_message="Sorry, I cannot do this.",
metadata={
"violation_type": f"prompt_injection:malicious={score_malicious}",
},
)
return RunShieldResponse(violation=violation)

View file

@ -33,6 +33,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -128,11 +129,12 @@ class FaissIndex(EmbeddingIndex):
# Save updated index
await self._save_index()
async def delete_chunk(self, chunk_id: str) -> None:
if chunk_id not in self.chunk_ids:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
if not set(chunk_ids).issubset(self.chunk_ids):
return
async with self.chunk_id_lock:
def remove_chunk(chunk_id: str):
index = self.chunk_ids.index(chunk_id)
self.index.remove_ids(np.array([index]))
@ -146,6 +148,10 @@ class FaissIndex(EmbeddingIndex):
self.chunk_by_index = new_chunk_by_index
self.chunk_ids.pop(index)
async with self.chunk_id_lock:
for chunk_id in chunk_ids:
remove_chunk(chunk_id)
await self._save_index()
async def query_vector(
@ -174,7 +180,9 @@ class FaissIndex(EmbeddingIndex):
k: int,
score_threshold: float,
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in FAISS")
raise NotImplementedError(
"Keyword search is not supported - underlying DB FAISS does not support this search mode"
)
async def query_hybrid(
self,
@ -185,7 +193,9 @@ class FaissIndex(EmbeddingIndex):
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in FAISS")
raise NotImplementedError(
"Hybrid search is not supported - underlying DB FAISS does not support this search mode"
)
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
@ -293,8 +303,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a faiss index"""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a faiss index"""
faiss_index = self.cache[store_id].index
for chunk_id in chunk_ids:
await faiss_index.delete_chunk(chunk_id)
await faiss_index.delete_chunks(chunks_for_deletion)

View file

@ -31,6 +31,7 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIV
from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_RRF,
RERANKER_TYPE_WEIGHTED,
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -426,34 +427,36 @@ class SQLiteVecIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=chunks, scores=scores)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the SQLite vector store."""
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
def _delete_chunk():
def _delete_chunks():
connection = _create_sqlite_connection(self.db_path)
cur = connection.cursor()
try:
cur.execute("BEGIN TRANSACTION")
# Delete from metadata table
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id = ?", (chunk_id,))
placeholders = ",".join("?" * len(chunk_ids))
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id IN ({placeholders})", chunk_ids)
# Delete from vector table
cur.execute(f"DELETE FROM {self.vector_table} WHERE id = ?", (chunk_id,))
cur.execute(f"DELETE FROM {self.vector_table} WHERE id IN ({placeholders})", chunk_ids)
# Delete from FTS table
cur.execute(f"DELETE FROM {self.fts_table} WHERE id = ?", (chunk_id,))
cur.execute(f"DELETE FROM {self.fts_table} WHERE id IN ({placeholders})", chunk_ids)
connection.commit()
except Exception as e:
connection.rollback()
logger.error(f"Error deleting chunk {chunk_id}: {e}")
logger.error(f"Error deleting chunks: {e}")
raise
finally:
cur.close()
connection.close()
await asyncio.to_thread(_delete_chunk)
await asyncio.to_thread(_delete_chunks)
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
@ -551,12 +554,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a sqlite_vec index."""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a sqlite_vec index."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -213,6 +213,36 @@ def available_providers() -> list[ProviderSpec]:
description="Google Gemini inference provider for accessing Gemini models and Google's AI services.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="vertexai",
pip_packages=["litellm", "google-cloud-aiplatform"],
module="llama_stack.providers.remote.inference.vertexai",
config_class="llama_stack.providers.remote.inference.vertexai.VertexAIConfig",
provider_data_validator="llama_stack.providers.remote.inference.vertexai.config.VertexAIProviderDataValidator",
description="""Google Vertex AI inference provider enables you to use Google's Gemini models through Google Cloud's Vertex AI platform, providing several advantages:
Enterprise-grade security: Uses Google Cloud's security controls and IAM
Better integration: Seamless integration with other Google Cloud services
Advanced features: Access to additional Vertex AI features like model tuning and monitoring
Authentication: Uses Google Cloud Application Default Credentials (ADC) instead of API keys
Configuration:
- Set VERTEX_AI_PROJECT environment variable (required)
- Set VERTEX_AI_LOCATION environment variable (optional, defaults to us-central1)
- Use Google Cloud Application Default Credentials or service account key
Authentication Setup:
Option 1 (Recommended): gcloud auth application-default login
Option 2: Set GOOGLE_APPLICATION_CREDENTIALS to service account key path
Available Models:
- vertex_ai/gemini-2.0-flash
- vertex_ai/gemini-2.5-flash
- vertex_ai/gemini-2.5-pro""",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(

View file

@ -45,6 +45,18 @@ That means you'll get fast and efficient vector retrieval.
- Lightweight and easy to use
- Fully integrated with Llama Stack
- GPU support
- **Vector search** - FAISS supports pure vector similarity search using embeddings
## Search Modes
**Supported:**
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
**Not Supported:**
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
## Usage
@ -330,6 +342,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
""",
),
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
@ -338,6 +351,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
module="llama_stack.providers.inline.vector_io.chroma",
config_class="llama_stack.providers.inline.vector_io.chroma.ChromaVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
description="""
[Chroma](https://www.trychroma.com/) is an inline and remote vector
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
@ -452,6 +466,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
""",
),
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
@ -535,6 +550,7 @@ That means you're not limited to storing vectors in memory or in a separate serv
- Easy to use
- Fully integrated with Llama Stack
- Supports all search modes: vector, keyword, and hybrid search (both inline and remote configurations)
## Usage
@ -625,6 +641,92 @@ vector_io:
- **`client_pem_path`**: Path to the **client certificate** file (required for mTLS).
- **`client_key_path`**: Path to the **client private key** file (required for mTLS).
## Search Modes
Milvus supports three different search modes for both inline and remote configurations:
### Vector Search
Vector search uses semantic similarity to find the most relevant chunks based on embedding vectors. This is the default search mode and works well for finding conceptually similar content.
```python
# Vector search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="What is machine learning?",
search_mode="vector",
max_num_results=5,
)
```
### Keyword Search
Keyword search uses traditional text-based matching to find chunks containing specific terms or phrases. This is useful when you need exact term matches.
```python
# Keyword search example
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="Python programming language",
search_mode="keyword",
max_num_results=5,
)
```
### Hybrid Search
Hybrid search combines both vector and keyword search methods to provide more comprehensive results. It leverages the strengths of both semantic similarity and exact term matching.
#### Basic Hybrid Search
```python
# Basic hybrid search example (uses RRF ranker with default impact_factor=60.0)
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
)
```
**Note**: The default `impact_factor` value of 60.0 was empirically determined to be optimal in the original RRF research paper: ["Reciprocal Rank Fusion outperforms Condorcet and individual Rank Learning Methods"](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) (Cormack et al., 2009).
#### Hybrid Search with RRF (Reciprocal Rank Fusion) Ranker
RRF combines rankings from vector and keyword search by using reciprocal ranks. The impact factor controls how much weight is given to higher-ranked results.
```python
# Hybrid search with custom RRF parameters
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "rrf",
"impact_factor": 100.0, # Higher values give more weight to top-ranked results
}
},
)
```
#### Hybrid Search with Weighted Ranker
Weighted ranker linearly combines normalized scores from vector and keyword search. The alpha parameter controls the balance between the two search methods.
```python
# Hybrid search with weighted ranker
search_response = client.vector_stores.search(
vector_store_id=vector_store.id,
query="neural networks in Python",
search_mode="hybrid",
max_num_results=5,
ranking_options={
"ranker": {
"type": "weighted",
"alpha": 0.7, # 70% vector search, 30% keyword search
}
},
)
```
For detailed documentation on RRF and Weighted rankers, please refer to the [Milvus Reranking Guide](https://milvus.io/docs/reranking.md).
## Documentation
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.
@ -632,6 +734,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
""",
),
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,

View file

@ -235,6 +235,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
# TODO: tools are never added to the request, so we need to add them here
if media_present or not llama_model:
input_dict["messages"] = [
await convert_message_to_openai_dict(m, download=True) for m in request.messages
@ -378,6 +379,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
# Fireworks chat completions OpenAI-compatible API does not support
# tool calls properly.
llama_model = self.get_llama_model(model_obj.provider_resource_id)
if llama_model:
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(
self,
@ -431,4 +433,5 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
user=user,
)
logger.debug(f"fireworks params: {params}")
return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params)

View file

@ -457,9 +457,6 @@ class OllamaInferenceAdapter(
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
model_obj = await self._get_model(model)
if model_obj.model_type != ModelType.embedding:
raise ValueError(f"Model {model} is not an embedding model")
if model_obj.provider_resource_id is None:
raise ValueError(f"Model {model} has no provider_resource_id set")

View file

@ -0,0 +1,15 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import VertexAIConfig
async def get_adapter_impl(config: VertexAIConfig, _deps):
from .vertexai import VertexAIInferenceAdapter
impl = VertexAIInferenceAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,45 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type
class VertexAIProviderDataValidator(BaseModel):
vertex_project: str | None = Field(
default=None,
description="Google Cloud project ID for Vertex AI",
)
vertex_location: str | None = Field(
default=None,
description="Google Cloud location for Vertex AI (e.g., us-central1)",
)
@json_schema_type
class VertexAIConfig(BaseModel):
project: str = Field(
description="Google Cloud project ID for Vertex AI",
)
location: str = Field(
default="us-central1",
description="Google Cloud location for Vertex AI",
)
@classmethod
def sample_run_config(
cls,
project: str = "${env.VERTEX_AI_PROJECT:=}",
location: str = "${env.VERTEX_AI_LOCATION:=us-central1}",
**kwargs,
) -> dict[str, Any]:
return {
"project": project,
"location": location,
}

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.utils.inference.model_registry import (
ProviderModelEntry,
)
# Vertex AI model IDs with vertex_ai/ prefix as required by litellm
LLM_MODEL_IDS = [
"vertex_ai/gemini-2.0-flash",
"vertex_ai/gemini-2.5-flash",
"vertex_ai/gemini-2.5-pro",
]
SAFETY_MODELS_ENTRIES = list[ProviderModelEntry]()
MODEL_ENTRIES = [ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS] + SAFETY_MODELS_ENTRIES

View file

@ -0,0 +1,52 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.inference import ChatCompletionRequest
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
LiteLLMOpenAIMixin,
)
from .config import VertexAIConfig
from .models import MODEL_ENTRIES
class VertexAIInferenceAdapter(LiteLLMOpenAIMixin):
def __init__(self, config: VertexAIConfig) -> None:
LiteLLMOpenAIMixin.__init__(
self,
MODEL_ENTRIES,
litellm_provider_name="vertex_ai",
api_key_from_config=None, # Vertex AI uses ADC, not API keys
provider_data_api_key_field="vertex_project", # Use project for validation
)
self.config = config
def get_api_key(self) -> str:
# Vertex AI doesn't use API keys, it uses Application Default Credentials
# Return empty string to let litellm handle authentication via ADC
return ""
async def _get_params(self, request: ChatCompletionRequest) -> dict[str, Any]:
# Get base parameters from parent
params = await super()._get_params(request)
# Add Vertex AI specific parameters
provider_data = self.get_request_provider_data()
if provider_data:
if getattr(provider_data, "vertex_project", None):
params["vertex_project"] = provider_data.vertex_project
if getattr(provider_data, "vertex_location", None):
params["vertex_location"] = provider_data.vertex_location
else:
params["vertex_project"] = self.config.project
params["vertex_location"] = self.config.location
# Remove api_key since Vertex AI uses ADC
params.pop("api_key", None)
return params

View file

@ -26,6 +26,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -115,8 +116,10 @@ class ChromaIndex(EmbeddingIndex):
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in Chroma")
async def delete_chunk(self, chunk_id: str) -> None:
raise NotImplementedError("delete_chunk is not supported in Chroma")
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete a single chunk from the Chroma collection by its ID."""
ids = [f"{chunk.document_id}:{chunk.chunk_id}" for chunk in chunks_for_deletion]
await maybe_await(self.collection.delete(ids=ids))
async def query_hybrid(
self,
@ -144,6 +147,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.cache = {}
self.kvstore: KVStore | None = None
self.vector_db_store = None
self.files_api = files_api
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
@ -227,5 +231,10 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.cache[vector_db_id] = index
return index
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a Chroma vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise ValueError(f"Vector DB {store_id} not found")
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -28,6 +28,7 @@ from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_WEIGHTED,
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -287,14 +288,17 @@ class MilvusIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=filtered_chunks, scores=filtered_scores)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the Milvus collection."""
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
try:
# Use IN clause with square brackets and single quotes for VARCHAR field
chunk_ids_str = ", ".join(f"'{chunk_id}'" for chunk_id in chunk_ids)
await asyncio.to_thread(
self.client.delete, collection_name=self.collection_name, filter=f'chunk_id == "{chunk_id}"'
self.client.delete, collection_name=self.collection_name, filter=f"chunk_id in [{chunk_ids_str}]"
)
except Exception as e:
logger.error(f"Error deleting chunk {chunk_id} from Milvus collection {self.collection_name}: {e}")
logger.error(f"Error deleting chunks from Milvus collection {self.collection_name}: {e}")
raise
@ -420,12 +424,10 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete a chunk from a milvus vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -27,6 +27,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -163,10 +164,11 @@ class PGVectorIndex(EmbeddingIndex):
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the PostgreSQL table."""
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
cur.execute(f"DELETE FROM {self.table_name} WHERE id = %s", (chunk_id,))
cur.execute(f"DELETE FROM {self.table_name} WHERE id = ANY(%s)", (chunk_ids,))
class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
@ -275,12 +277,10 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
return self.cache[vector_db_id]
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete a chunk from a PostgreSQL vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -29,6 +29,7 @@ from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig a
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -88,15 +89,16 @@ class QdrantIndex(EmbeddingIndex):
await self.client.upsert(collection_name=self.collection_name, points=points)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the Qdrant collection."""
chunk_ids = [convert_id(c.chunk_id) for c in chunks_for_deletion]
try:
await self.client.delete(
collection_name=self.collection_name,
points_selector=models.PointIdsList(points=[convert_id(chunk_id)]),
points_selector=models.PointIdsList(points=chunk_ids),
)
except Exception as e:
log.error(f"Error deleting chunk {chunk_id} from Qdrant collection {self.collection_name}: {e}")
log.error(f"Error deleting chunks from Qdrant collection {self.collection_name}: {e}")
raise
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
@ -264,12 +266,14 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
) -> VectorStoreFileObject:
# Qdrant doesn't allow multiple clients to access the same storage path simultaneously.
async with self._qdrant_lock:
await super().openai_attach_file_to_vector_store(vector_store_id, file_id, attributes, chunking_strategy)
return await super().openai_attach_file_to_vector_store(
vector_store_id, file_id, attributes, chunking_strategy
)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a Qdrant vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise ValueError(f"Vector DB {store_id} not found")
for chunk_id in chunk_ids:
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -26,6 +26,7 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import (
OpenAIVectorStoreMixin,
)
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -67,6 +68,7 @@ class WeaviateIndex(EmbeddingIndex):
data_objects.append(
wvc.data.DataObject(
properties={
"chunk_id": chunk.chunk_id,
"chunk_content": chunk.model_dump_json(),
},
vector=embeddings[i].tolist(),
@ -79,10 +81,11 @@ class WeaviateIndex(EmbeddingIndex):
# TODO: make this async friendly
collection.data.insert_many(data_objects)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
collection = self.client.collections.get(sanitized_collection_name)
collection.data.delete_many(where=Filter.by_property("id").contains_any([chunk_id]))
chunk_ids = [chunk.chunk_id for chunk in chunks_for_deletion]
collection.data.delete_many(where=Filter.by_property("chunk_id").contains_any(chunk_ids))
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
@ -307,10 +310,10 @@ class WeaviateVectorIOAdapter(
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
sanitized_collection_name = sanitize_collection_name(store_id, weaviate_format=True)
index = await self._get_and_cache_vector_db_index(sanitized_collection_name)
if not index:
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
await index.delete(chunk_ids)
await index.index.delete_chunks(chunks_for_deletion)

View file

@ -70,7 +70,7 @@ from openai.types.chat.chat_completion_chunk import (
from openai.types.chat.chat_completion_content_part_image_param import (
ImageURL as OpenAIImageURL,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
from openai.types.chat.chat_completion_message_tool_call import (
Function as OpenAIFunction,
)
from pydantic import BaseModel

View file

@ -6,7 +6,6 @@
import asyncio
import json
import logging
import mimetypes
import time
import uuid
@ -37,10 +36,15 @@ from llama_stack.apis.vector_io import (
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
from llama_stack.log import get_logger
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
content_from_data_and_mime_type,
make_overlapped_chunks,
)
logger = logging.getLogger(__name__)
logger = get_logger(__name__, category="vector_io")
# Constants for OpenAI vector stores
CHUNK_MULTIPLIER = 5
@ -154,8 +158,8 @@ class OpenAIVectorStoreMixin(ABC):
self.openai_vector_stores = await self._load_openai_vector_stores()
@abstractmethod
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a vector store."""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a vector store."""
pass
@abstractmethod
@ -614,7 +618,7 @@ class OpenAIVectorStoreMixin(ABC):
)
vector_store_file_object.status = "completed"
except Exception as e:
logger.error(f"Error attaching file to vector store: {e}")
logger.exception("Error attaching file to vector store")
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
@ -767,7 +771,21 @@ class OpenAIVectorStoreMixin(ABC):
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
chunks = [Chunk.model_validate(c) for c in dict_chunks]
await self.delete_chunks(vector_store_id, [str(c.chunk_id) for c in chunks if c.chunk_id])
# Create ChunkForDeletion objects with both chunk_id and document_id
chunks_for_deletion = []
for c in chunks:
if c.chunk_id:
document_id = c.metadata.get("document_id") or (
c.chunk_metadata.document_id if c.chunk_metadata else None
)
if document_id:
chunks_for_deletion.append(ChunkForDeletion(chunk_id=str(c.chunk_id), document_id=document_id))
else:
logger.warning(f"Chunk {c.chunk_id} has no document_id, skipping deletion")
if chunks_for_deletion:
await self.delete_chunks(vector_store_id, chunks_for_deletion)
store_info = self.openai_vector_stores[vector_store_id].copy()

View file

@ -16,6 +16,7 @@ from urllib.parse import unquote
import httpx
import numpy as np
from numpy.typing import NDArray
from pydantic import BaseModel
from llama_stack.apis.common.content_types import (
URL,
@ -34,6 +35,18 @@ from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
log = logging.getLogger(__name__)
class ChunkForDeletion(BaseModel):
"""Information needed to delete a chunk from a vector store.
:param chunk_id: The ID of the chunk to delete
:param document_id: The ID of the document this chunk belongs to
"""
chunk_id: str
document_id: str
# Constants for reranker types
RERANKER_TYPE_RRF = "rrf"
RERANKER_TYPE_WEIGHTED = "weighted"
@ -232,7 +245,7 @@ class EmbeddingIndex(ABC):
raise NotImplementedError()
@abstractmethod
async def delete_chunk(self, chunk_id: str):
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]):
raise NotImplementedError()
@abstractmethod

View file

@ -175,7 +175,7 @@ const handleSubmitWithContent = async (content: string) => {
return (
<div className="flex flex-col h-full max-w-4xl mx-auto">
<div className="mb-4 flex justify-between items-center">
<h1 className="text-2xl font-bold">Chat Playground</h1>
<h1 className="text-2xl font-bold">Chat Playground (Completions)</h1>
<div className="flex gap-2">
<Select value={selectedModel} onValueChange={setSelectedModel} disabled={isModelsLoading || isGenerating}>
<SelectTrigger className="w-[180px]">

View file

@ -6,6 +6,8 @@ import {
MoveUpRight,
Database,
MessageCircle,
Settings2,
Compass,
} from "lucide-react";
import Link from "next/link";
import { usePathname } from "next/navigation";
@ -22,15 +24,16 @@ import {
SidebarMenuItem,
SidebarHeader,
} from "@/components/ui/sidebar";
// Extracted Chat Playground item
const chatPlaygroundItem = {
title: "Chat Playground",
url: "/chat-playground",
icon: MessageCircle,
};
// Removed Chat Playground from log items
const logItems = [
const createItems = [
{
title: "Chat Playground",
url: "/chat-playground",
icon: MessageCircle,
},
];
const manageItems = [
{
title: "Chat Completions",
url: "/logs/chat-completions",
@ -53,77 +56,96 @@ const logItems = [
},
];
const optimizeItems: { title: string; url: string; icon: React.ElementType }[] = [
{
title: "Evaluations",
url: "",
icon: Compass,
},
{
title: "Fine-tuning",
url: "",
icon: Settings2,
},
];
interface SidebarItem {
title: string;
url: string;
icon: React.ElementType;
}
export function AppSidebar() {
const pathname = usePathname();
return (
<Sidebar>
<SidebarHeader>
<Link href="/">Llama Stack</Link>
</SidebarHeader>
<SidebarContent>
{/* Chat Playground as its own section */}
<SidebarGroup>
<SidebarGroupContent>
<SidebarMenu>
<SidebarMenuItem>
const renderSidebarItems = (items: SidebarItem[]) => {
return items.map((item) => {
const isActive = pathname.startsWith(item.url);
return (
<SidebarMenuItem key={item.title}>
<SidebarMenuButton
asChild
className={cn(
"justify-start",
isActive &&
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100",
)}
>
<Link href={item.url}>
<item.icon
className={cn(
isActive && "text-gray-900 dark:text-gray-100",
"mr-2 h-4 w-4",
)}
/>
<span>{item.title}</span>
</Link>
</SidebarMenuButton>
</SidebarMenuItem>
);
});
};
return (
<Sidebar>
<SidebarHeader>
<Link href="/">Llama Stack</Link>
</SidebarHeader>
<SidebarContent>
<SidebarGroup>
<SidebarGroupLabel>Create</SidebarGroupLabel>
<SidebarGroupContent>
<SidebarMenu>{renderSidebarItems(createItems)}</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
<SidebarGroup>
<SidebarGroupLabel>Manage</SidebarGroupLabel>
<SidebarGroupContent>
<SidebarMenu>{renderSidebarItems(manageItems)}</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
<SidebarGroup>
<SidebarGroupLabel>Optimize</SidebarGroupLabel>
<SidebarGroupContent>
<SidebarMenu>
{optimizeItems.map((item) => (
<SidebarMenuItem key={item.title}>
<SidebarMenuButton
asChild
className={cn(
"justify-start",
pathname.startsWith(chatPlaygroundItem.url) &&
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100",
)}
disabled
className="justify-start opacity-60 cursor-not-allowed"
>
<Link href={chatPlaygroundItem.url}>
<chatPlaygroundItem.icon
className={cn(
pathname.startsWith(chatPlaygroundItem.url) && "text-gray-900 dark:text-gray-100",
"mr-2 h-4 w-4",
)}
/>
<span>{chatPlaygroundItem.title}</span>
</Link>
<item.icon className="mr-2 h-4 w-4" />
<span>{item.title}</span>
<span className="ml-2 text-xs text-gray-500">(Coming Soon)</span>
</SidebarMenuButton>
</SidebarMenuItem>
</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
{/* Logs section */}
<SidebarGroup>
<SidebarGroupLabel>Logs</SidebarGroupLabel>
<SidebarGroupContent>
<SidebarMenu>
{logItems.map((item) => {
const isActive = pathname.startsWith(item.url);
return (
<SidebarMenuItem key={item.title}>
<SidebarMenuButton
asChild
className={cn(
"justify-start",
isActive &&
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100",
)}
>
<Link href={item.url}>
<item.icon
className={cn(
isActive && "text-gray-900 dark:text-gray-100",
"mr-2 h-4 w-4",
)}
/>
<span>{item.title}</span>
</Link>
</SidebarMenuButton>
</SidebarMenuItem>
);
})}
</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
</SidebarContent>
</Sidebar>
))}
</SidebarMenu>
</SidebarGroupContent>
</SidebarGroup>
</SidebarContent>
</Sidebar>
);
}