mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
drop classes for functions
This commit is contained in:
parent
c2b7b462e9
commit
95a5982524
1 changed files with 41 additions and 50 deletions
|
@ -21,65 +21,56 @@ from llama_toolchain.inference.api import * # noqa: F403
|
|||
|
||||
|
||||
async def generate_rag_query(
|
||||
generator_config: MemoryQueryGeneratorConfig,
|
||||
config: MemoryQueryGeneratorConfig,
|
||||
messages: List[Message],
|
||||
**kwargs,
|
||||
):
|
||||
if generator_config.type == MemoryQueryGenerator.default.value:
|
||||
generator = DefaultRAGQueryGenerator(generator_config, **kwargs)
|
||||
elif generator_config.type == MemoryQueryGenerator.llm.value:
|
||||
generator = LLMRAGQueryGenerator(generator_config, **kwargs)
|
||||
"""
|
||||
Generates a query that will be used for
|
||||
retrieving relevant information from the memory bank.
|
||||
"""
|
||||
if config.type == MemoryQueryGenerator.default.value:
|
||||
query = await default_rag_query_generator(config, messages, **kwargs)
|
||||
elif config.type == MemoryQueryGenerator.llm.value:
|
||||
query = await llm_rag_query_generator(config, messages, **kwargs)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unsupported memory query generator {generator_config.type}"
|
||||
)
|
||||
|
||||
query = await generator.gen(messages)
|
||||
raise NotImplementedError(f"Unsupported memory query generator {config.type}")
|
||||
# cprint(f"Generated query >>>: {query}", color="green")
|
||||
return query
|
||||
|
||||
|
||||
class DefaultRAGQueryGenerator:
|
||||
def __init__(self, config: DefaultMemoryQueryGeneratorConfig, **kwargs):
|
||||
self.config = config
|
||||
async def default_rag_query_generator(
|
||||
config: DefaultMemoryQueryGeneratorConfig,
|
||||
messages: List[Message],
|
||||
**kwargs,
|
||||
):
|
||||
return config.sep.join(interleaved_text_media_as_str(m.content) for m in messages)
|
||||
|
||||
async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
|
||||
query = self.config.sep.join(
|
||||
interleaved_text_media_as_str(m.content) for m in messages
|
||||
|
||||
async def llm_rag_query_generator(
|
||||
config: LLMMemoryQueryGeneratorConfig,
|
||||
messages: List[Message],
|
||||
**kwargs,
|
||||
):
|
||||
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
|
||||
inference_api = kwargs["inference_api"]
|
||||
|
||||
m_dict = {"messages": [m.model_dump() for m in messages]}
|
||||
|
||||
template = Template(config.template)
|
||||
content = template.render(m_dict)
|
||||
|
||||
model = config.model
|
||||
message = UserMessage(content=content)
|
||||
response = inference_api.chat_completion(
|
||||
ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=[message],
|
||||
stream=False,
|
||||
)
|
||||
return query
|
||||
)
|
||||
|
||||
async for chunk in response:
|
||||
query = chunk.completion_message.content
|
||||
|
||||
class LLMRAGQueryGenerator:
|
||||
def __init__(self, config: LLMMemoryQueryGeneratorConfig, **kwargs):
|
||||
self.config = config
|
||||
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
|
||||
self.inference_api = kwargs["inference_api"]
|
||||
|
||||
async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
|
||||
"""
|
||||
Generates a query that will be used for
|
||||
retrieving relevant information from the memory bank.
|
||||
"""
|
||||
# get template from user
|
||||
# user template will assume data has the format of
|
||||
# pydantic object representing List[Message]
|
||||
m_dict = {"messages": [m.model_dump() for m in messages]}
|
||||
|
||||
template = Template(self.config.template)
|
||||
content = template.render(m_dict)
|
||||
|
||||
model = self.config.model
|
||||
message = UserMessage(content=content)
|
||||
response = self.inference_api.chat_completion(
|
||||
ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=[message],
|
||||
stream=False,
|
||||
)
|
||||
)
|
||||
|
||||
async for chunk in response:
|
||||
query = chunk.completion_message.content
|
||||
|
||||
return query
|
||||
return query
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue