mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 11:42:36 +00:00
feat: Add support for query rewrite in vector_store.search (#4171)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Python Package Build Test / build (3.12) (push) Successful in 15s
Python Package Build Test / build (3.13) (push) Successful in 20s
Test External API and Providers / test-external (venv) (push) Failing after 41s
Vector IO Integration Tests / test-matrix (push) Failing after 49s
UI Tests / ui-tests (22) (push) Successful in 51s
Unit Tests / unit-tests (3.13) (push) Failing after 1m27s
Unit Tests / unit-tests (3.12) (push) Failing after 1m45s
Pre-commit / pre-commit (22) (push) Failing after 2m30s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4m22s
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Python Package Build Test / build (3.12) (push) Successful in 15s
Python Package Build Test / build (3.13) (push) Successful in 20s
Test External API and Providers / test-external (venv) (push) Failing after 41s
Vector IO Integration Tests / test-matrix (push) Failing after 49s
UI Tests / ui-tests (22) (push) Successful in 51s
Unit Tests / unit-tests (3.13) (push) Failing after 1m27s
Unit Tests / unit-tests (3.12) (push) Failing after 1m45s
Pre-commit / pre-commit (22) (push) Failing after 2m30s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4m22s
# What does this PR do?
Actualize query rewrite in search API, add
`default_query_expansion_model` and `query_expansion_prompt` in
`VectorStoresConfig`.
Makes `rewrite_query` parameter functional in vector store search.
- `rewrite_query=false` (default): Use original query
- `rewrite_query=true`: Expand query via LLM, or fail gracefully if no
LLM available
Adds 4 parameters to`VectorStoresConfig`:
- `default_query_expansion_model`: LLM model for query expansion
(optional)
- `query_expansion_prompt`: Custom prompt template (optional, uses
built-in default)
- `query_expansion_max_tokens`: Configurable token limit (default: 100)
- `query_expansion_temperature`: Configurable temperature (default: 0.3)
Enabled `run.yaml`:
```yaml
vector_stores:
rewrite_query_params:
model:
provider_id: "ollama"
model_id: "llama3.2:3b-instruct-fp16"
# prompt defaults to built-in
# max_tokens defaults to 100
# temperature defaults to 0.3
```
Fully customized `run.yaml`:
```yaml
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
rewrite_query_params:
model:
provider_id: ollama
model_id: llama3.2:3b-instruct-fp16
prompt: "Rewrite this search query to improve retrieval results by expanding it with relevant synonyms and related terms: {query}"
max_tokens: 100
temperature: 0.3
```
## Test Plan
Added test and recording
Example script as well:
```python
import asyncio
from llama_stack_client import LlamaStackClient
from io import BytesIO
def gen_file(client, text: str=""):
file_buffer = BytesIO(text.encode('utf-8'))
file_buffer.name = "my_file.txt"
uploaded_file = client.files.create(
file=file_buffer,
purpose="assistants"
)
return uploaded_file
async def test_query_rewriting():
client = LlamaStackClient(base_url="http://0.0.0.0:8321/")
uploaded_file = gen_file(client, "banana banana apple")
uploaded_file2 = gen_file(client, "orange orange kiwi")
vs = client.vector_stores.create()
xf_vs = client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file.id)
xf_vs1 = client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file2.id)
response1 = client.vector_stores.search(
vector_store_id=vs.id,
query="apple",
max_num_results=3,
rewrite_query=False
)
response2 = client.vector_stores.search(
vector_store_id=vs.id,
query="kiwi",
max_num_results=3,
rewrite_query=True,
)
print(f"\n🔵 Response 1 (rewrite_query=False):\n\033[94m{response1}\033[0m")
print(f"\n🟢 Response 2 (rewrite_query=True):\n\033[92m{response2}\033[0m")
for f in [uploaded_file.id, uploaded_file2.id]:
client.files.delete(file_id=f)
client.vector_stores.delete(vector_store_id=vs.id)
if __name__ == "__main__":
asyncio.run(test_query_rewriting())
```
And see the screen shot of the server logs showing it worked.
<img width="1111" height="826" alt="Screenshot 2025-11-19 at 1 16 03 PM"
src="https://github.com/user-attachments/assets/2d188b44-1fef-4df5-b465-2d6728ca49ce"
/>
Notice the log:
```bash
Query rewritten:
'kiwi' → 'kiwi, a small brown or green fruit native to New Zealand, or a person having a fuzzy brown outer skin similar in appearance.'
```
So `kiwi` was expanded.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
This commit is contained in:
parent
ff375f1abb
commit
95b2948d11
22 changed files with 7636 additions and 20 deletions
|
|
@ -18,6 +18,7 @@ from llama_stack.core.storage.datatypes import (
|
|||
StorageConfig,
|
||||
)
|
||||
from llama_stack.log import LoggingConfig
|
||||
from llama_stack.providers.utils.memory.constants import DEFAULT_QUERY_REWRITE_PROMPT
|
||||
from llama_stack_api import (
|
||||
Api,
|
||||
Benchmark,
|
||||
|
|
@ -349,6 +350,27 @@ class QualifiedModel(BaseModel):
|
|||
model_id: str
|
||||
|
||||
|
||||
class RewriteQueryParams(BaseModel):
|
||||
"""Parameters for query rewriting/expansion."""
|
||||
|
||||
model: QualifiedModel | None = Field(
|
||||
default=None,
|
||||
description="LLM model for query rewriting/expansion in vector search.",
|
||||
)
|
||||
prompt: str = Field(
|
||||
default=DEFAULT_QUERY_REWRITE_PROMPT,
|
||||
description="Prompt template for query rewriting. Use {query} as placeholder for the original query.",
|
||||
)
|
||||
max_tokens: int = Field(
|
||||
default=100,
|
||||
description="Maximum number of tokens for query expansion responses.",
|
||||
)
|
||||
temperature: float = Field(
|
||||
default=0.3,
|
||||
description="Temperature for query expansion model (0.0 = deterministic, 1.0 = creative).",
|
||||
)
|
||||
|
||||
|
||||
class VectorStoresConfig(BaseModel):
|
||||
"""Configuration for vector stores in the stack."""
|
||||
|
||||
|
|
@ -360,6 +382,10 @@ class VectorStoresConfig(BaseModel):
|
|||
default=None,
|
||||
description="Default embedding model configuration for vector stores.",
|
||||
)
|
||||
rewrite_query_params: RewriteQueryParams | None = Field(
|
||||
default=None,
|
||||
description="Parameters for query rewriting/expansion. None disables query rewriting.",
|
||||
)
|
||||
|
||||
|
||||
class SafetyConfig(BaseModel):
|
||||
|
|
|
|||
|
|
@ -199,6 +199,13 @@ def specs_for_autorouted_apis(apis_to_serve: list[str] | set[str]) -> dict[str,
|
|||
)
|
||||
}
|
||||
|
||||
# Add inference as an optional dependency for vector_io to enable query rewriting
|
||||
optional_deps = []
|
||||
deps_list = [info.routing_table_api.value]
|
||||
if info.router_api == Api.vector_io:
|
||||
optional_deps = [Api.inference]
|
||||
deps_list.append(Api.inference.value)
|
||||
|
||||
specs[info.router_api.value] = {
|
||||
"__builtin__": ProviderWithSpec(
|
||||
provider_id="__autorouted__",
|
||||
|
|
@ -209,7 +216,8 @@ def specs_for_autorouted_apis(apis_to_serve: list[str] | set[str]) -> dict[str,
|
|||
module="llama_stack.core.routers",
|
||||
routing_table_api=info.routing_table_api,
|
||||
api_dependencies=[info.routing_table_api],
|
||||
deps__=([info.routing_table_api.value]),
|
||||
optional_api_dependencies=optional_deps,
|
||||
deps__=deps_list,
|
||||
),
|
||||
)
|
||||
}
|
||||
|
|
@ -315,6 +323,13 @@ async def instantiate_providers(
|
|||
api = Api(api_str)
|
||||
impls[api] = impl
|
||||
|
||||
# Post-instantiation: Inject VectorIORouter into VectorStoresRoutingTable
|
||||
if Api.vector_io in impls and Api.vector_stores in impls:
|
||||
vector_io_router = impls[Api.vector_io]
|
||||
vector_stores_routing_table = impls[Api.vector_stores]
|
||||
if hasattr(vector_stores_routing_table, "vector_io_router"):
|
||||
vector_stores_routing_table.vector_io_router = vector_io_router
|
||||
|
||||
return impls
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -87,6 +87,7 @@ async def get_auto_router_impl(
|
|||
api_to_dep_impl["store"] = inference_store
|
||||
elif api == Api.vector_io:
|
||||
api_to_dep_impl["vector_stores_config"] = run_config.vector_stores
|
||||
api_to_dep_impl["inference_api"] = deps.get(Api.inference)
|
||||
elif api == Api.safety:
|
||||
api_to_dep_impl["safety_config"] = run_config.safety
|
||||
|
||||
|
|
|
|||
|
|
@ -16,12 +16,15 @@ from llama_stack_api import (
|
|||
Chunk,
|
||||
HealthResponse,
|
||||
HealthStatus,
|
||||
Inference,
|
||||
InterleavedContent,
|
||||
ModelNotFoundError,
|
||||
ModelType,
|
||||
ModelTypeError,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
|
||||
OpenAICreateVectorStoreRequestWithExtraBody,
|
||||
OpenAIUserMessageParam,
|
||||
QueryChunksResponse,
|
||||
RoutingTable,
|
||||
SearchRankingOptions,
|
||||
|
|
@ -51,10 +54,11 @@ class VectorIORouter(VectorIO):
|
|||
self,
|
||||
routing_table: RoutingTable,
|
||||
vector_stores_config: VectorStoresConfig | None = None,
|
||||
inference_api: Inference | None = None,
|
||||
) -> None:
|
||||
logger.debug("Initializing VectorIORouter")
|
||||
self.routing_table = routing_table
|
||||
self.vector_stores_config = vector_stores_config
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("VectorIORouter.initialize")
|
||||
|
|
@ -64,6 +68,46 @@ class VectorIORouter(VectorIO):
|
|||
logger.debug("VectorIORouter.shutdown")
|
||||
pass
|
||||
|
||||
async def _rewrite_query_for_search(self, query: str) -> str:
|
||||
"""Rewrite a search query using the configured LLM model for better retrieval results."""
|
||||
if (
|
||||
not self.vector_stores_config
|
||||
or not self.vector_stores_config.rewrite_query_params
|
||||
or not self.vector_stores_config.rewrite_query_params.model
|
||||
):
|
||||
logger.warning(
|
||||
"User is trying to use vector_store query rewriting, but it is not configured. Please configure rewrite_query_params.model in vector_stores config."
|
||||
)
|
||||
raise ValueError("Query rewriting is not available")
|
||||
|
||||
if not self.inference_api:
|
||||
logger.warning("Query rewriting requires inference API but it is not available")
|
||||
raise ValueError("Query rewriting is not available")
|
||||
|
||||
model = self.vector_stores_config.rewrite_query_params.model
|
||||
model_id = f"{model.provider_id}/{model.model_id}"
|
||||
|
||||
prompt = self.vector_stores_config.rewrite_query_params.prompt.format(query=query)
|
||||
|
||||
request = OpenAIChatCompletionRequestWithExtraBody(
|
||||
model=model_id,
|
||||
messages=[OpenAIUserMessageParam(role="user", content=prompt)],
|
||||
max_tokens=self.vector_stores_config.rewrite_query_params.max_tokens or 100,
|
||||
temperature=self.vector_stores_config.rewrite_query_params.temperature or 0.3,
|
||||
)
|
||||
|
||||
try:
|
||||
response = await self.inference_api.openai_chat_completion(request)
|
||||
content = response.choices[0].message.content
|
||||
if content is None:
|
||||
logger.error(f"LLM returned None content for query rewriting. Model: {model_id}")
|
||||
raise RuntimeError("Query rewrite failed due to an internal error")
|
||||
rewritten_query: str = content.strip()
|
||||
return rewritten_query
|
||||
except Exception as e:
|
||||
logger.error(f"Query rewrite failed with LLM call error. Model: {model_id}, Error: {e}")
|
||||
raise RuntimeError("Query rewrite failed due to an internal error") from e
|
||||
|
||||
async def _get_embedding_model_dimension(self, embedding_model_id: str) -> int:
|
||||
"""Get the embedding dimension for a specific embedding model."""
|
||||
all_models = await self.routing_table.get_all_with_type("model")
|
||||
|
|
@ -292,14 +336,24 @@ class VectorIORouter(VectorIO):
|
|||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
logger.debug(f"VectorIORouter.openai_search_vector_store: {vector_store_id}")
|
||||
|
||||
# Handle query rewriting at the router level
|
||||
search_query = query
|
||||
if rewrite_query:
|
||||
if isinstance(query, list):
|
||||
original_query = " ".join(query)
|
||||
else:
|
||||
original_query = query
|
||||
search_query = await self._rewrite_query_for_search(original_query)
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
query=query,
|
||||
query=search_query,
|
||||
filters=filters,
|
||||
max_num_results=max_num_results,
|
||||
ranking_options=ranking_options,
|
||||
rewrite_query=rewrite_query,
|
||||
rewrite_query=False, # Already handled at router level
|
||||
search_mode=search_mode,
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -40,6 +40,15 @@ class VectorStoresRoutingTable(CommonRoutingTableImpl):
|
|||
Only provides internal routing functionality for VectorIORouter.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
impls_by_provider_id: dict[str, Any],
|
||||
dist_registry: Any,
|
||||
policy: list[Any],
|
||||
) -> None:
|
||||
super().__init__(impls_by_provider_id, dist_registry, policy)
|
||||
self.vector_io_router = None # Will be set post-instantiation
|
||||
|
||||
# Internal methods only - no public API exposure
|
||||
|
||||
async def register_vector_store(
|
||||
|
|
@ -133,6 +142,20 @@ class VectorStoresRoutingTable(CommonRoutingTableImpl):
|
|||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
|
||||
# Delegate to VectorIORouter if available (which handles query rewriting)
|
||||
if self.vector_io_router is not None:
|
||||
return await self.vector_io_router.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
query=query,
|
||||
filters=filters,
|
||||
max_num_results=max_num_results,
|
||||
ranking_options=ranking_options,
|
||||
rewrite_query=rewrite_query,
|
||||
search_mode=search_mode,
|
||||
)
|
||||
|
||||
# Fallback to direct provider call if VectorIORouter not available
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ import yaml
|
|||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl
|
||||
from llama_stack.core.datatypes import Provider, SafetyConfig, StackConfig, VectorStoresConfig
|
||||
from llama_stack.core.datatypes import Provider, QualifiedModel, SafetyConfig, StackConfig, VectorStoresConfig
|
||||
from llama_stack.core.distribution import get_provider_registry
|
||||
from llama_stack.core.inspect import DistributionInspectConfig, DistributionInspectImpl
|
||||
from llama_stack.core.prompts.prompts import PromptServiceConfig, PromptServiceImpl
|
||||
|
|
@ -221,35 +221,71 @@ async def validate_vector_stores_config(vector_stores_config: VectorStoresConfig
|
|||
if vector_stores_config is None:
|
||||
return
|
||||
|
||||
default_embedding_model = vector_stores_config.default_embedding_model
|
||||
if default_embedding_model is None:
|
||||
return
|
||||
# Validate default embedding model
|
||||
if vector_stores_config.default_embedding_model is not None:
|
||||
await _validate_embedding_model(vector_stores_config.default_embedding_model, impls)
|
||||
|
||||
provider_id = default_embedding_model.provider_id
|
||||
model_id = default_embedding_model.model_id
|
||||
default_model_id = f"{provider_id}/{model_id}"
|
||||
# Validate rewrite query params
|
||||
if vector_stores_config.rewrite_query_params:
|
||||
if vector_stores_config.rewrite_query_params.model:
|
||||
await _validate_rewrite_query_model(vector_stores_config.rewrite_query_params.model, impls)
|
||||
if "{query}" not in vector_stores_config.rewrite_query_params.prompt:
|
||||
raise ValueError("'{query}' placeholder is required in the prompt template")
|
||||
|
||||
|
||||
async def _validate_embedding_model(embedding_model: QualifiedModel, impls: dict[Api, Any]) -> None:
|
||||
"""Validate that an embedding model exists and has required metadata."""
|
||||
provider_id = embedding_model.provider_id
|
||||
model_id = embedding_model.model_id
|
||||
model_identifier = f"{provider_id}/{model_id}"
|
||||
|
||||
if Api.models not in impls:
|
||||
raise ValueError(f"Models API is not available but vector_stores config requires model '{default_model_id}'")
|
||||
raise ValueError(f"Models API is not available but vector_stores config requires model '{model_identifier}'")
|
||||
|
||||
models_impl = impls[Api.models]
|
||||
response = await models_impl.list_models()
|
||||
models_list = {m.identifier: m for m in response.data if m.model_type == "embedding"}
|
||||
|
||||
default_model = models_list.get(default_model_id)
|
||||
if default_model is None:
|
||||
raise ValueError(f"Embedding model '{default_model_id}' not found. Available embedding models: {models_list}")
|
||||
model = models_list.get(model_identifier)
|
||||
if model is None:
|
||||
raise ValueError(
|
||||
f"Embedding model '{model_identifier}' not found. Available embedding models: {list(models_list.keys())}"
|
||||
)
|
||||
|
||||
embedding_dimension = default_model.metadata.get("embedding_dimension")
|
||||
embedding_dimension = model.metadata.get("embedding_dimension")
|
||||
if embedding_dimension is None:
|
||||
raise ValueError(f"Embedding model '{default_model_id}' is missing 'embedding_dimension' in metadata")
|
||||
raise ValueError(f"Embedding model '{model_identifier}' is missing 'embedding_dimension' in metadata")
|
||||
|
||||
try:
|
||||
int(embedding_dimension)
|
||||
except ValueError as err:
|
||||
raise ValueError(f"Embedding dimension '{embedding_dimension}' cannot be converted to an integer") from err
|
||||
|
||||
logger.debug(f"Validated default embedding model: {default_model_id} (dimension: {embedding_dimension})")
|
||||
logger.debug(f"Validated embedding model: {model_identifier} (dimension: {embedding_dimension})")
|
||||
|
||||
|
||||
async def _validate_rewrite_query_model(rewrite_query_model: QualifiedModel, impls: dict[Api, Any]) -> None:
|
||||
"""Validate that a rewrite query model exists and is accessible."""
|
||||
provider_id = rewrite_query_model.provider_id
|
||||
model_id = rewrite_query_model.model_id
|
||||
model_identifier = f"{provider_id}/{model_id}"
|
||||
|
||||
if Api.models not in impls:
|
||||
raise ValueError(
|
||||
f"Models API is not available but vector_stores config requires rewrite query model '{model_identifier}'"
|
||||
)
|
||||
|
||||
models_impl = impls[Api.models]
|
||||
response = await models_impl.list_models()
|
||||
llm_models_list = {m.identifier: m for m in response.data if m.model_type == "llm"}
|
||||
|
||||
model = llm_models_list.get(model_identifier)
|
||||
if model is None:
|
||||
raise ValueError(
|
||||
f"Rewrite query model '{model_identifier}' not found. Available LLM models: {list(llm_models_list.keys())}"
|
||||
)
|
||||
|
||||
logger.debug(f"Validated rewrite query model: {model_identifier}")
|
||||
|
||||
|
||||
async def validate_safety_config(safety_config: SafetyConfig | None, impls: dict[Api, Any]):
|
||||
|
|
|
|||
|
|
@ -3,3 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .constants import DEFAULT_QUERY_REWRITE_PROMPT
|
||||
|
||||
__all__ = ["DEFAULT_QUERY_REWRITE_PROMPT"]
|
||||
|
|
|
|||
8
src/llama_stack/providers/utils/memory/constants.py
Normal file
8
src/llama_stack/providers/utils/memory/constants.py
Normal file
|
|
@ -0,0 +1,8 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Default prompt template for query rewriting in vector search
|
||||
DEFAULT_QUERY_REWRITE_PROMPT = "Expand this query with relevant synonyms and related terms. Return only the improved query, no explanations:\n\n{query}\n\nImproved query:"
|
||||
|
|
@ -592,7 +592,11 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
str | None
|
||||
) = "vector", # Using str instead of Literal due to OpenAPI schema generator limitations
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
"""Search for chunks in a vector store."""
|
||||
"""Search for chunks in a vector store.
|
||||
|
||||
Note: Query rewriting is handled at the router level, not here.
|
||||
The rewrite_query parameter is kept for API compatibility but is ignored.
|
||||
"""
|
||||
max_num_results = max_num_results or 10
|
||||
|
||||
# Validate search_mode
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue