feat: Add support for query rewrite in vector_store.search (#4171)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Python Package Build Test / build (3.12) (push) Successful in 15s
Python Package Build Test / build (3.13) (push) Successful in 20s
Test External API and Providers / test-external (venv) (push) Failing after 41s
Vector IO Integration Tests / test-matrix (push) Failing after 49s
UI Tests / ui-tests (22) (push) Successful in 51s
Unit Tests / unit-tests (3.13) (push) Failing after 1m27s
Unit Tests / unit-tests (3.12) (push) Failing after 1m45s
Pre-commit / pre-commit (22) (push) Failing after 2m30s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4m22s

# What does this PR do?

Actualize query rewrite in search API, add
`default_query_expansion_model` and `query_expansion_prompt` in
`VectorStoresConfig`.

Makes `rewrite_query` parameter functional in vector store search.
  - `rewrite_query=false` (default): Use original query
- `rewrite_query=true`: Expand query via LLM, or fail gracefully if no
LLM available

Adds 4 parameters to`VectorStoresConfig`:
- `default_query_expansion_model`: LLM model for query expansion
(optional)
- `query_expansion_prompt`: Custom prompt template (optional, uses
built-in default)
- `query_expansion_max_tokens`: Configurable token limit (default: 100)
- `query_expansion_temperature`: Configurable temperature (default: 0.3)

Enabled `run.yaml`:
```yaml
  vector_stores:
    rewrite_query_params:
      model:
        provider_id: "ollama"
        model_id: "llama3.2:3b-instruct-fp16"
      # prompt defaults to built-in
      # max_tokens defaults to 100
      # temperature defaults to 0.3
```

  Fully customized `run.yaml`:
```yaml
  vector_stores:
    default_provider_id: faiss
    default_embedding_model:
      provider_id: sentence-transformers
      model_id: nomic-ai/nomic-embed-text-v1.5
    rewrite_query_params:
      model:
        provider_id: ollama
        model_id: llama3.2:3b-instruct-fp16
      prompt: "Rewrite this search query to improve retrieval results by expanding it with relevant synonyms and related terms: {query}"
      max_tokens: 100
      temperature: 0.3
```

## Test Plan
Added test and recording

Example script as well:

```python
import asyncio
from llama_stack_client import LlamaStackClient
from io import BytesIO

def gen_file(client, text: str=""):
    file_buffer = BytesIO(text.encode('utf-8'))
    file_buffer.name = "my_file.txt"

    uploaded_file = client.files.create(
        file=file_buffer,
        purpose="assistants"
    )
    return uploaded_file

async def test_query_rewriting():
    client = LlamaStackClient(base_url="http://0.0.0.0:8321/")
    uploaded_file = gen_file(client, "banana banana apple")
    uploaded_file2 = gen_file(client, "orange orange kiwi")

    vs = client.vector_stores.create()
    xf_vs = client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file.id)
    xf_vs1 = client.vector_stores.files.create(vector_store_id=vs.id, file_id=uploaded_file2.id)
    response1 = client.vector_stores.search(
                vector_store_id=vs.id,
                query="apple",
                max_num_results=3,
                rewrite_query=False
            )
    response2 = client.vector_stores.search(
                vector_store_id=vs.id,
                query="kiwi",
                max_num_results=3,
                rewrite_query=True,
            )

    print(f"\n🔵 Response 1 (rewrite_query=False):\n\033[94m{response1}\033[0m")
    print(f"\n🟢 Response 2 (rewrite_query=True):\n\033[92m{response2}\033[0m")

    for f in [uploaded_file.id, uploaded_file2.id]:
        client.files.delete(file_id=f)
    client.vector_stores.delete(vector_store_id=vs.id)

if __name__ == "__main__":
    asyncio.run(test_query_rewriting())
```

And see the screen shot of the server logs showing it worked. 
<img width="1111" height="826" alt="Screenshot 2025-11-19 at 1 16 03 PM"
src="https://github.com/user-attachments/assets/2d188b44-1fef-4df5-b465-2d6728ca49ce"
/>

Notice the log:
```bash
 Query rewritten:
         'kiwi' → 'kiwi, a small brown or green fruit native to New Zealand, or a person having a fuzzy brown outer skin similar in appearance.'
```
So `kiwi` was expanded.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
This commit is contained in:
Francisco Javier Arceo 2025-12-10 10:06:19 -05:00 committed by GitHub
parent ff375f1abb
commit 95b2948d11
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 7636 additions and 20 deletions

View file

@ -153,3 +153,156 @@ async def test_create_vector_store_with_wrong_model_type_raises_error():
with pytest.raises(ModelTypeError, match="Model 'text-model' is of type"):
await router.openai_create_vector_store(request)
async def test_query_rewrite_functionality():
"""Test query rewriting at the router level."""
from unittest.mock import MagicMock
from llama_stack.core.datatypes import QualifiedModel, RewriteQueryParams, VectorStoresConfig
from llama_stack.providers.utils.memory.constants import DEFAULT_QUERY_REWRITE_PROMPT
from llama_stack_api import VectorStoreSearchResponsePage
mock_routing_table = Mock()
# Mock provider that returns search results
mock_provider = Mock()
mock_search_response = VectorStoreSearchResponsePage(search_query=["rewritten test query"], data=[], has_more=False)
mock_provider.openai_search_vector_store = AsyncMock(return_value=mock_search_response)
mock_routing_table.get_provider_impl = AsyncMock(return_value=mock_provider)
# Mock inference API for query rewriting
mock_inference_api = Mock()
mock_inference_api.openai_chat_completion = AsyncMock(
return_value=MagicMock(choices=[MagicMock(message=MagicMock(content="rewritten test query"))])
)
# Create config with rewrite params
vector_stores_config = VectorStoresConfig(
rewrite_query_params=RewriteQueryParams(
model=QualifiedModel(provider_id="test", model_id="llama"),
max_tokens=100,
temperature=0.3,
)
)
router = VectorIORouter(mock_routing_table, vector_stores_config, mock_inference_api)
# Test query rewrite with rewrite_query=True
result = await router.openai_search_vector_store(
vector_store_id="vs_123",
query="test query",
rewrite_query=True,
max_num_results=5,
)
# Verify chat completion was called for query rewriting
assert mock_inference_api.openai_chat_completion.called
chat_call_args = mock_inference_api.openai_chat_completion.call_args[0][0]
assert chat_call_args.model == "test/llama"
# Verify default prompt is used
prompt_text = chat_call_args.messages[0].content
expected_prompt = DEFAULT_QUERY_REWRITE_PROMPT.format(query="test query")
assert prompt_text == expected_prompt
# Verify provider was called with rewritten query and rewrite_query=False
mock_provider.openai_search_vector_store.assert_called_once()
call_kwargs = mock_provider.openai_search_vector_store.call_args.kwargs
assert call_kwargs["query"] == "rewritten test query"
assert call_kwargs["rewrite_query"] is False # Should be False since router handled it
assert result is not None
async def test_query_rewrite_error_when_not_configured():
"""Test that query rewriting fails with proper error when not configured."""
mock_routing_table = Mock()
mock_provider = Mock()
mock_routing_table.get_provider_impl = AsyncMock(return_value=mock_provider)
# No config or inference API
router = VectorIORouter(mock_routing_table)
with pytest.raises(ValueError, match="Query rewriting is not available"):
await router.openai_search_vector_store(
vector_store_id="vs_123",
query="test query",
rewrite_query=True,
max_num_results=5,
)
async def test_query_rewrite_with_custom_prompt():
"""Test query rewriting with custom prompt."""
from unittest.mock import MagicMock
from llama_stack.core.datatypes import QualifiedModel, RewriteQueryParams, VectorStoresConfig
from llama_stack_api import VectorStoreSearchResponsePage
mock_routing_table = Mock()
mock_provider = Mock()
mock_search_response = VectorStoreSearchResponsePage(search_query=["custom rewrite"], data=[], has_more=False)
mock_provider.openai_search_vector_store = AsyncMock(return_value=mock_search_response)
mock_routing_table.get_provider_impl = AsyncMock(return_value=mock_provider)
mock_inference_api = Mock()
mock_inference_api.openai_chat_completion = AsyncMock(
return_value=MagicMock(choices=[MagicMock(message=MagicMock(content="custom rewrite"))])
)
vector_stores_config = VectorStoresConfig(
rewrite_query_params=RewriteQueryParams(
model=QualifiedModel(provider_id="test", model_id="llama"),
prompt="Custom prompt: {query}",
max_tokens=150,
temperature=0.7,
)
)
router = VectorIORouter(mock_routing_table, vector_stores_config, mock_inference_api)
await router.openai_search_vector_store(
vector_store_id="vs_123",
query="test query",
rewrite_query=True,
max_num_results=5,
)
# Verify custom prompt was used
chat_call_args = mock_inference_api.openai_chat_completion.call_args[0][0]
assert chat_call_args.messages[0].content == "Custom prompt: test query"
assert chat_call_args.max_tokens == 150
assert chat_call_args.temperature == 0.7
async def test_search_without_rewrite():
"""Test that search without rewrite_query doesn't call inference API."""
from llama_stack_api import VectorStoreSearchResponsePage
mock_routing_table = Mock()
mock_provider = Mock()
mock_search_response = VectorStoreSearchResponsePage(search_query=["test query"], data=[], has_more=False)
mock_provider.openai_search_vector_store = AsyncMock(return_value=mock_search_response)
mock_routing_table.get_provider_impl = AsyncMock(return_value=mock_provider)
mock_inference_api = Mock()
mock_inference_api.openai_chat_completion = AsyncMock()
router = VectorIORouter(mock_routing_table, inference_api=mock_inference_api)
await router.openai_search_vector_store(
vector_store_id="vs_123",
query="test query",
rewrite_query=False,
max_num_results=5,
)
# Verify inference API was NOT called
assert not mock_inference_api.openai_chat_completion.called
# Verify provider was called with original query
call_kwargs = mock_provider.openai_search_vector_store.call_args.kwargs
assert call_kwargs["query"] == "test query"

View file

@ -10,7 +10,13 @@ from unittest.mock import AsyncMock
import pytest
from llama_stack.core.datatypes import QualifiedModel, SafetyConfig, StackConfig, VectorStoresConfig
from llama_stack.core.datatypes import (
QualifiedModel,
RewriteQueryParams,
SafetyConfig,
StackConfig,
VectorStoresConfig,
)
from llama_stack.core.stack import validate_safety_config, validate_vector_stores_config
from llama_stack.core.storage.datatypes import ServerStoresConfig, StorageConfig
from llama_stack_api import Api, ListModelsResponse, ListShieldsResponse, Model, ModelType, Shield
@ -82,6 +88,17 @@ class TestVectorStoresValidation:
await validate_vector_stores_config(run_config.vector_stores, {Api.models: mock_models})
async def test_validate_rewrite_query_prompt_missing_placeholder(self):
"""Test validation fails when prompt template is missing {query} placeholder."""
config = VectorStoresConfig(
rewrite_query_params=RewriteQueryParams(
prompt="This prompt has no placeholder",
),
)
with pytest.raises(ValueError, match="'\\{query\\}' placeholder is required"):
await validate_vector_stores_config(config, {})
class TestSafetyConfigValidation:
async def test_validate_success(self):