mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-04 14:32:16 +00:00
init commit
This commit is contained in:
parent
e3edca7739
commit
96039831c4
2 changed files with 284 additions and 0 deletions
278
llama_stack/templates/open-benchmark/open-benchmark.py
Normal file
278
llama_stack/templates/open-benchmark/open-benchmark.py
Normal file
|
|
@ -0,0 +1,278 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
from llama_stack.apis.models.models import ModelType
|
||||||
|
from llama_stack.distribution.datatypes import (
|
||||||
|
BenchmarkInput,
|
||||||
|
DatasetInput,
|
||||||
|
ModelInput,
|
||||||
|
Provider,
|
||||||
|
ShieldInput,
|
||||||
|
ToolGroupInput,
|
||||||
|
)
|
||||||
|
from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig
|
||||||
|
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
|
||||||
|
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
|
||||||
|
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
||||||
|
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
||||||
|
from llama_stack.providers.remote.inference.together.config import TogetherImplConfig
|
||||||
|
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
||||||
|
from llama_stack.providers.remote.vector_io.pgvector.config import PGVectorVectorIOConfig
|
||||||
|
from llama_stack.providers.utils.inference.model_registry import (
|
||||||
|
ProviderModelEntry,
|
||||||
|
)
|
||||||
|
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||||
|
|
||||||
|
|
||||||
|
def get_inference_providers() -> Tuple[List[Provider], List[ModelInput]]:
|
||||||
|
# in this template, we allow each API key to be optional
|
||||||
|
providers = [
|
||||||
|
(
|
||||||
|
"openai",
|
||||||
|
[
|
||||||
|
ProviderModelEntry(
|
||||||
|
provider_model_id="penai/gpt-4o",
|
||||||
|
model_type=ModelType.llm,
|
||||||
|
)
|
||||||
|
],
|
||||||
|
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:}"),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
"anthropic",
|
||||||
|
[
|
||||||
|
ProviderModelEntry(
|
||||||
|
provider_model_id="anthropic/claude-3-5-sonnet-latest",
|
||||||
|
model_type=ModelType.llm,
|
||||||
|
)
|
||||||
|
],
|
||||||
|
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:}"),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
"gemini",
|
||||||
|
[
|
||||||
|
ProviderModelEntry(
|
||||||
|
provider_model_id="gemini/gemini-1.5-flash",
|
||||||
|
model_type=ModelType.llm,
|
||||||
|
)
|
||||||
|
],
|
||||||
|
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:}"),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
"groq",
|
||||||
|
[
|
||||||
|
ProviderModelEntry(
|
||||||
|
provider_model_id="groq/llama-3.3-70b-versatile",
|
||||||
|
model_type=ModelType.llm,
|
||||||
|
)
|
||||||
|
],
|
||||||
|
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:}"),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
"together",
|
||||||
|
[
|
||||||
|
ProviderModelEntry(
|
||||||
|
provider_model_id="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
||||||
|
model_type=ModelType.llm,
|
||||||
|
)
|
||||||
|
],
|
||||||
|
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:}"),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
inference_providers = []
|
||||||
|
available_models = {}
|
||||||
|
for provider_id, model_entries, config in providers:
|
||||||
|
inference_providers.append(
|
||||||
|
Provider(
|
||||||
|
provider_id=provider_id,
|
||||||
|
provider_type=f"remote::{provider_id}",
|
||||||
|
config=config,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
available_models[provider_id] = model_entries
|
||||||
|
return inference_providers, available_models
|
||||||
|
|
||||||
|
|
||||||
|
def get_distribution_template() -> DistributionTemplate:
|
||||||
|
inference_providers, available_models = get_inference_providers()
|
||||||
|
providers = {
|
||||||
|
"inference": [p.provider_type for p in inference_providers],
|
||||||
|
"vector_io": ["inline::sqlite-vec", "remote::chromadb", "remote::pgvector"],
|
||||||
|
"safety": ["inline::llama-guard"],
|
||||||
|
"agents": ["inline::meta-reference"],
|
||||||
|
"telemetry": ["inline::meta-reference"],
|
||||||
|
"eval": ["inline::meta-reference"],
|
||||||
|
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||||
|
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||||
|
"tool_runtime": [
|
||||||
|
"remote::brave-search",
|
||||||
|
"remote::tavily-search",
|
||||||
|
"inline::code-interpreter",
|
||||||
|
"inline::rag-runtime",
|
||||||
|
"remote::model-context-protocol",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
name = "open-benchmark"
|
||||||
|
|
||||||
|
vector_io_providers = [
|
||||||
|
Provider(
|
||||||
|
provider_id="sqlite-vec",
|
||||||
|
provider_type="inline::sqlite-vec",
|
||||||
|
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||||
|
),
|
||||||
|
Provider(
|
||||||
|
provider_id="${env.ENABLE_CHROMADB+chromadb}",
|
||||||
|
provider_type="remote::chromadb",
|
||||||
|
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:}"),
|
||||||
|
),
|
||||||
|
Provider(
|
||||||
|
provider_id="${env.ENABLE_PGVECTOR+pgvector}",
|
||||||
|
provider_type="remote::pgvector",
|
||||||
|
config=PGVectorVectorIOConfig.sample_run_config(
|
||||||
|
db="${env.PGVECTOR_DB:}",
|
||||||
|
user="${env.PGVECTOR_USER:}",
|
||||||
|
password="${env.PGVECTOR_PASSWORD:}",
|
||||||
|
),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
default_tool_groups = [
|
||||||
|
ToolGroupInput(
|
||||||
|
toolgroup_id="builtin::websearch",
|
||||||
|
provider_id="tavily-search",
|
||||||
|
),
|
||||||
|
ToolGroupInput(
|
||||||
|
toolgroup_id="builtin::rag",
|
||||||
|
provider_id="rag-runtime",
|
||||||
|
),
|
||||||
|
ToolGroupInput(
|
||||||
|
toolgroup_id="builtin::code_interpreter",
|
||||||
|
provider_id="code-interpreter",
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
default_models = get_model_registry(available_models)
|
||||||
|
|
||||||
|
default_datasets = [
|
||||||
|
DatasetInput(
|
||||||
|
dataset_id="simpleqa",
|
||||||
|
provider_id="huggingface",
|
||||||
|
url={"uri": "https://huggingface.co/datasets/llamastack/simpleqa"},
|
||||||
|
metadata={
|
||||||
|
"path": "llamastack/simpleqa",
|
||||||
|
"split": "train",
|
||||||
|
},
|
||||||
|
dataset_schema={
|
||||||
|
"input_query": {"type": "string"},
|
||||||
|
"expected_answer": {"type": "string"},
|
||||||
|
"chat_completion_input": {"type": "string"},
|
||||||
|
},
|
||||||
|
),
|
||||||
|
DatasetInput(
|
||||||
|
dataset_id="mmlu_cot",
|
||||||
|
provider_id="huggingface",
|
||||||
|
url={"uri": "https://huggingface.co/datasets/llamastack/mmlu_cot"},
|
||||||
|
metadata={
|
||||||
|
"path": "llamastack/mmlu_cot",
|
||||||
|
"name": "all",
|
||||||
|
"split": "test",
|
||||||
|
},
|
||||||
|
dataset_schema={
|
||||||
|
"input_query": {"type": "string"},
|
||||||
|
"expected_answer": {"type": "string"},
|
||||||
|
"chat_completion_input": {"type": "string"},
|
||||||
|
},
|
||||||
|
),
|
||||||
|
DatasetInput(
|
||||||
|
dataset_id="gpqa_cot",
|
||||||
|
provider_id="huggingface",
|
||||||
|
url={"uri": "https://huggingface.co/datasets/llamastack/gpqa_0shot_cot"},
|
||||||
|
metadata={
|
||||||
|
"path": "llamastack/gpqa_0shot_cot",
|
||||||
|
"name": "main",
|
||||||
|
"split": "train",
|
||||||
|
},
|
||||||
|
dataset_schema={
|
||||||
|
"input_query": {"type": "string"},
|
||||||
|
"expected_answer": {"type": "string"},
|
||||||
|
"chat_completion_input": {"type": "string"},
|
||||||
|
},
|
||||||
|
),
|
||||||
|
DatasetInput(
|
||||||
|
dataset_id="math_500",
|
||||||
|
provider_id="huggingface",
|
||||||
|
url={"uri": "https://huggingface.co/datasets/llamastack/math_500"},
|
||||||
|
metadata={
|
||||||
|
"path": "llamastack/math_500",
|
||||||
|
"split": "test",
|
||||||
|
},
|
||||||
|
dataset_schema={
|
||||||
|
"input_query": {"type": "string"},
|
||||||
|
"expected_answer": {"type": "string"},
|
||||||
|
"chat_completion_input": {"type": "string"},
|
||||||
|
},
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
default_benchmarks = [
|
||||||
|
BenchmarkInput(
|
||||||
|
benchmark_id="meta-reference-simpleqa",
|
||||||
|
dataset_id="simpleqa",
|
||||||
|
scoring_functions=["llm-as-judge::405b-simpleqa"],
|
||||||
|
),
|
||||||
|
BenchmarkInput(
|
||||||
|
benchmark_id="meta-reference-mmlu-cot",
|
||||||
|
dataset_id="mmlu_cot",
|
||||||
|
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
||||||
|
),
|
||||||
|
BenchmarkInput(
|
||||||
|
benchmark_id="meta-reference-gpqa-cot",
|
||||||
|
dataset_id="gpqa_cot",
|
||||||
|
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
||||||
|
),
|
||||||
|
BenchmarkInput(
|
||||||
|
benchmark_id="meta-reference-math-500",
|
||||||
|
dataset_id="math_500",
|
||||||
|
scoring_functions=["basic::regex_parser_math_response"],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
return DistributionTemplate(
|
||||||
|
name=name,
|
||||||
|
distro_type="self_hosted",
|
||||||
|
description="Distribution for running e2e tests in CI",
|
||||||
|
container_image=None,
|
||||||
|
template_path=None,
|
||||||
|
providers=providers,
|
||||||
|
available_models_by_provider=available_models,
|
||||||
|
run_configs={
|
||||||
|
"run.yaml": RunConfigSettings(
|
||||||
|
provider_overrides={
|
||||||
|
"inference": inference_providers,
|
||||||
|
"vector_io": vector_io_providers,
|
||||||
|
},
|
||||||
|
default_models=default_models,
|
||||||
|
default_tool_groups=default_tool_groups,
|
||||||
|
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
||||||
|
default_datasets=default_datasets,
|
||||||
|
default_benchmarks=default_benchmarks,
|
||||||
|
),
|
||||||
|
},
|
||||||
|
run_config_env_vars={
|
||||||
|
"LLAMA_STACK_PORT": (
|
||||||
|
"5001",
|
||||||
|
"Port for the Llama Stack distribution server",
|
||||||
|
),
|
||||||
|
"FIREWORKS_API_KEY": (
|
||||||
|
"",
|
||||||
|
"Fireworks API Key",
|
||||||
|
),
|
||||||
|
"OPENAI_API_KEY": (
|
||||||
|
"",
|
||||||
|
"OpenAI API Key",
|
||||||
|
),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
@ -14,7 +14,9 @@ from pydantic import BaseModel, Field
|
||||||
from llama_stack.apis.models.models import ModelType
|
from llama_stack.apis.models.models import ModelType
|
||||||
from llama_stack.distribution.datatypes import (
|
from llama_stack.distribution.datatypes import (
|
||||||
Api,
|
Api,
|
||||||
|
BenchmarkInput,
|
||||||
BuildConfig,
|
BuildConfig,
|
||||||
|
DatasetInput,
|
||||||
DistributionSpec,
|
DistributionSpec,
|
||||||
ModelInput,
|
ModelInput,
|
||||||
Provider,
|
Provider,
|
||||||
|
|
@ -56,6 +58,8 @@ class RunConfigSettings(BaseModel):
|
||||||
default_models: Optional[List[ModelInput]] = None
|
default_models: Optional[List[ModelInput]] = None
|
||||||
default_shields: Optional[List[ShieldInput]] = None
|
default_shields: Optional[List[ShieldInput]] = None
|
||||||
default_tool_groups: Optional[List[ToolGroupInput]] = None
|
default_tool_groups: Optional[List[ToolGroupInput]] = None
|
||||||
|
default_datasets: Optional[List[DatasetInput]] = None
|
||||||
|
default_benchmarks: Optional[List[BenchmarkInput]] = None
|
||||||
|
|
||||||
def run_config(
|
def run_config(
|
||||||
self,
|
self,
|
||||||
|
|
@ -113,6 +117,8 @@ class RunConfigSettings(BaseModel):
|
||||||
models=self.default_models or [],
|
models=self.default_models or [],
|
||||||
shields=self.default_shields or [],
|
shields=self.default_shields or [],
|
||||||
tool_groups=self.default_tool_groups or [],
|
tool_groups=self.default_tool_groups or [],
|
||||||
|
datasets=self.default_datasets or [],
|
||||||
|
benchmarks=self.default_benchmarks or [],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue