mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-12 05:54:38 +00:00
test
# What does this PR do? ## Test Plan
This commit is contained in:
parent
f50ce11a3b
commit
972f2395a1
29 changed files with 1726 additions and 2149 deletions
|
@ -13,6 +13,7 @@ import pytest
|
|||
from llama_stack.apis.inference import (
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAIChoice,
|
||||
ToolChoice,
|
||||
)
|
||||
|
@ -56,13 +57,14 @@ async def test_old_vllm_tool_choice(vllm_inference_adapter):
|
|||
mock_client_property.return_value = mock_client
|
||||
|
||||
# No tools but auto tool choice
|
||||
await vllm_inference_adapter.openai_chat_completion(
|
||||
"mock-model",
|
||||
[],
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model="mock-model",
|
||||
messages=[{"role": "user", "content": "test"}],
|
||||
stream=False,
|
||||
tools=None,
|
||||
tool_choice=ToolChoice.auto.value,
|
||||
)
|
||||
await vllm_inference_adapter.openai_chat_completion(params)
|
||||
mock_client.chat.completions.create.assert_called()
|
||||
call_args = mock_client.chat.completions.create.call_args
|
||||
# Ensure tool_choice gets converted to none for older vLLM versions
|
||||
|
@ -171,9 +173,12 @@ async def test_openai_chat_completion_is_async(vllm_inference_adapter):
|
|||
)
|
||||
|
||||
async def do_inference():
|
||||
await vllm_inference_adapter.openai_chat_completion(
|
||||
"mock-model", messages=["one fish", "two fish"], stream=False
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model="mock-model",
|
||||
messages=[{"role": "user", "content": "one fish two fish"}],
|
||||
stream=False,
|
||||
)
|
||||
await vllm_inference_adapter.openai_chat_completion(params)
|
||||
|
||||
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_create_client:
|
||||
mock_client = MagicMock()
|
||||
|
@ -186,3 +191,48 @@ async def test_openai_chat_completion_is_async(vllm_inference_adapter):
|
|||
|
||||
assert mock_create_client.call_count == 4 # no cheating
|
||||
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
|
||||
|
||||
|
||||
async def test_extra_body_forwarding(vllm_inference_adapter):
|
||||
"""
|
||||
Test that extra_body parameters (e.g., chat_template_kwargs) are correctly
|
||||
forwarded to the underlying OpenAI client.
|
||||
"""
|
||||
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
|
||||
vllm_inference_adapter.model_store.get_model.return_value = mock_model
|
||||
|
||||
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(
|
||||
return_value=OpenAIChatCompletion(
|
||||
id="chatcmpl-abc123",
|
||||
created=1,
|
||||
model="mock-model",
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=OpenAIAssistantMessageParam(
|
||||
content="test response",
|
||||
),
|
||||
finish_reason="stop",
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
)
|
||||
)
|
||||
mock_client_property.return_value = mock_client
|
||||
|
||||
# Test with chat_template_kwargs for Granite thinking mode
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model="mock-model",
|
||||
messages=[{"role": "user", "content": "test"}],
|
||||
stream=False,
|
||||
chat_template_kwargs={"thinking": True},
|
||||
)
|
||||
await vllm_inference_adapter.openai_chat_completion(params)
|
||||
|
||||
# Verify that the client was called with extra_body containing chat_template_kwargs
|
||||
mock_client.chat.completions.create.assert_called_once()
|
||||
call_kwargs = mock_client.chat.completions.create.call_args.kwargs
|
||||
assert "extra_body" in call_kwargs
|
||||
assert "chat_template_kwargs" in call_kwargs["extra_body"]
|
||||
assert call_kwargs["extra_body"]["chat_template_kwargs"] == {"thinking": True}
|
||||
|
|
|
@ -12,7 +12,7 @@ from unittest.mock import AsyncMock, MagicMock, Mock, PropertyMock, patch
|
|||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import Model, OpenAIUserMessageParam
|
||||
from llama_stack.apis.inference import Model, OpenAIChatCompletionRequestParams, OpenAIUserMessageParam
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.request_headers import request_provider_data_context
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
|
@ -271,7 +271,8 @@ class TestOpenAIMixinImagePreprocessing:
|
|||
with patch("llama_stack.providers.utils.inference.openai_mixin.localize_image_content") as mock_localize:
|
||||
mock_localize.return_value = (b"fake_image_data", "jpeg")
|
||||
|
||||
await mixin.openai_chat_completion(model="test-model", messages=[message])
|
||||
params = OpenAIChatCompletionRequestParams(model="test-model", messages=[message])
|
||||
await mixin.openai_chat_completion(params)
|
||||
|
||||
mock_localize.assert_called_once_with("http://example.com/image.jpg")
|
||||
|
||||
|
@ -303,7 +304,8 @@ class TestOpenAIMixinImagePreprocessing:
|
|||
|
||||
with patch.object(type(mixin), "client", new_callable=PropertyMock, return_value=mock_client):
|
||||
with patch("llama_stack.providers.utils.inference.openai_mixin.localize_image_content") as mock_localize:
|
||||
await mixin.openai_chat_completion(model="test-model", messages=[message])
|
||||
params = OpenAIChatCompletionRequestParams(model="test-model", messages=[message])
|
||||
await mixin.openai_chat_completion(params)
|
||||
|
||||
mock_localize.assert_not_called()
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue