mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-15 14:08:00 +00:00
feat(responses): add MCP argument streaming and content part events
- Add content part events (response.content_part.added/done) for granular text streaming - Implement MCP-specific argument streaming (response.mcp_call.arguments.delta/done) - Differentiate between MCP and function call streaming events - Update unit and integration tests for new streaming events - Ensure proper event ordering and OpenAI spec compliance 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
parent
3972ddfd43
commit
975e70cab3
4 changed files with 242 additions and 35 deletions
|
@ -623,6 +623,58 @@ class OpenAIResponseObjectStreamResponseMcpCallCompleted(BaseModel):
|
|||
type: Literal["response.mcp_call.completed"] = "response.mcp_call.completed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPart(BaseModel):
|
||||
"""Base class for response content parts."""
|
||||
|
||||
id: str
|
||||
type: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartText(OpenAIResponseContentPart):
|
||||
"""Text content part for streaming responses."""
|
||||
|
||||
text: str
|
||||
type: Literal["text"] = "text"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseContentPartAdded(BaseModel):
|
||||
"""Streaming event for when a new content part is added to a response item.
|
||||
|
||||
:param response_id: Unique identifier of the response containing this content
|
||||
:param item_id: Unique identifier of the output item containing this content part
|
||||
:param part: The content part that was added
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.content_part.added"
|
||||
"""
|
||||
|
||||
response_id: str
|
||||
item_id: str
|
||||
part: OpenAIResponseContentPart
|
||||
sequence_number: int
|
||||
type: Literal["response.content_part.added"] = "response.content_part.added"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseContentPartDone(BaseModel):
|
||||
"""Streaming event for when a content part is completed.
|
||||
|
||||
:param response_id: Unique identifier of the response containing this content
|
||||
:param item_id: Unique identifier of the output item containing this content part
|
||||
:param part: The completed content part
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.content_part.done"
|
||||
"""
|
||||
|
||||
response_id: str
|
||||
item_id: str
|
||||
part: OpenAIResponseContentPart
|
||||
sequence_number: int
|
||||
type: Literal["response.content_part.done"] = "response.content_part.done"
|
||||
|
||||
|
||||
OpenAIResponseObjectStream = Annotated[
|
||||
OpenAIResponseObjectStreamResponseCreated
|
||||
| OpenAIResponseObjectStreamResponseOutputItemAdded
|
||||
|
@ -642,6 +694,8 @@ OpenAIResponseObjectStream = Annotated[
|
|||
| OpenAIResponseObjectStreamResponseMcpCallInProgress
|
||||
| OpenAIResponseObjectStreamResponseMcpCallFailed
|
||||
| OpenAIResponseObjectStreamResponseMcpCallCompleted
|
||||
| OpenAIResponseObjectStreamResponseContentPartAdded
|
||||
| OpenAIResponseObjectStreamResponseContentPartDone
|
||||
| OpenAIResponseObjectStreamResponseCompleted,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
|
|
@ -20,6 +20,7 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
ListOpenAIResponseInputItem,
|
||||
ListOpenAIResponseObject,
|
||||
OpenAIDeleteResponseObject,
|
||||
OpenAIResponseContentPartText,
|
||||
OpenAIResponseInput,
|
||||
OpenAIResponseInputFunctionToolCallOutput,
|
||||
OpenAIResponseInputMessageContent,
|
||||
|
@ -32,9 +33,13 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseContentPartAdded,
|
||||
OpenAIResponseObjectStreamResponseContentPartDone,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta,
|
||||
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone,
|
||||
OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta,
|
||||
OpenAIResponseObjectStreamResponseMcpCallArgumentsDone,
|
||||
OpenAIResponseObjectStreamResponseMcpCallCompleted,
|
||||
OpenAIResponseObjectStreamResponseMcpCallFailed,
|
||||
OpenAIResponseObjectStreamResponseMcpCallInProgress,
|
||||
|
@ -475,6 +480,9 @@ class OpenAIResponsesImpl:
|
|||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
# Track tool call items for streaming events
|
||||
tool_call_item_ids: dict[int, str] = {}
|
||||
# Track content parts for streaming events
|
||||
content_part_id: str | None = None
|
||||
content_part_emitted = False
|
||||
|
||||
async for chunk in completion_result:
|
||||
chat_response_id = chunk.id
|
||||
|
@ -483,6 +491,20 @@ class OpenAIResponsesImpl:
|
|||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
# Emit content_part.added event for first text chunk
|
||||
if not content_part_emitted:
|
||||
content_part_id = f"cp_text_{uuid.uuid4()}"
|
||||
content_part_emitted = True
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseContentPartAdded(
|
||||
response_id=response_id,
|
||||
item_id=message_item_id,
|
||||
part=OpenAIResponseContentPartText(
|
||||
id=content_part_id,
|
||||
text="", # Will be filled incrementally via text deltas
|
||||
),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
|
@ -529,16 +551,33 @@ class OpenAIResponsesImpl:
|
|||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Stream function call arguments as they arrive
|
||||
# Stream tool call arguments as they arrive (differentiate between MCP and function calls)
|
||||
if tool_call.function and tool_call.function.arguments:
|
||||
tool_call_item_id = tool_call_item_ids[tool_call.index]
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
|
||||
# Check if this is an MCP tool call
|
||||
is_mcp_tool = (
|
||||
ctx.mcp_tool_to_server
|
||||
and tool_call.function.name
|
||||
and tool_call.function.name in ctx.mcp_tool_to_server
|
||||
)
|
||||
if is_mcp_tool:
|
||||
# Emit MCP-specific argument delta event
|
||||
yield OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
else:
|
||||
# Emit function call argument delta event
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Accumulate arguments for final response (only for subsequent chunks)
|
||||
if not is_new_tool_call:
|
||||
|
@ -546,27 +585,56 @@ class OpenAIResponsesImpl:
|
|||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
|
||||
# Emit function_call_arguments.done events for completed tool calls
|
||||
# Emit arguments.done events for completed tool calls (differentiate between MCP and function calls)
|
||||
for tool_call_index in sorted(chat_response_tool_calls.keys()):
|
||||
tool_call_item_id = tool_call_item_ids[tool_call_index]
|
||||
final_arguments = chat_response_tool_calls[tool_call_index].function.arguments or ""
|
||||
tool_call_name = chat_response_tool_calls[tool_call_index].function.name
|
||||
|
||||
# Check if this is an MCP tool call
|
||||
is_mcp_tool = ctx.mcp_tool_to_server and tool_call_name and tool_call_name in ctx.mcp_tool_to_server
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(
|
||||
arguments=final_arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
if is_mcp_tool:
|
||||
# Emit MCP-specific argument done event
|
||||
yield OpenAIResponseObjectStreamResponseMcpCallArgumentsDone(
|
||||
arguments=final_arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
else:
|
||||
# Emit function call argument done event
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(
|
||||
arguments=final_arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
|
||||
# when there are tool calls, we need to clear the content
|
||||
chat_response_content = []
|
||||
else:
|
||||
tool_calls = None
|
||||
|
||||
# Emit content_part.done event if text content was streamed (before content gets cleared)
|
||||
if content_part_emitted and content_part_id:
|
||||
final_text = "".join(chat_response_content)
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseContentPartDone(
|
||||
response_id=response_id,
|
||||
item_id=message_item_id,
|
||||
part=OpenAIResponseContentPartText(
|
||||
id=content_part_id,
|
||||
text=final_text,
|
||||
),
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Clear content when there are tool calls (OpenAI spec behavior)
|
||||
if chat_response_tool_calls:
|
||||
chat_response_content = []
|
||||
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
|
|
|
@ -590,9 +590,17 @@ def test_response_streaming_multi_turn_tool_execution(compat_client, text_model_
|
|||
# Verify tool call streaming events are present
|
||||
chunk_types = [chunk.type for chunk in chunks]
|
||||
|
||||
# Should have function call arguments delta events for tool calls
|
||||
delta_events = [chunk for chunk in chunks if chunk.type == "response.function_call_arguments.delta"]
|
||||
done_events = [chunk for chunk in chunks if chunk.type == "response.function_call_arguments.done"]
|
||||
# Should have function call or MCP arguments delta/done events for tool calls
|
||||
delta_events = [
|
||||
chunk
|
||||
for chunk in chunks
|
||||
if chunk.type in ["response.function_call_arguments.delta", "response.mcp_call.arguments.delta"]
|
||||
]
|
||||
done_events = [
|
||||
chunk
|
||||
for chunk in chunks
|
||||
if chunk.type in ["response.function_call_arguments.done", "response.mcp_call.arguments.done"]
|
||||
]
|
||||
|
||||
# Should have output item events for tool calls
|
||||
item_added_events = [chunk for chunk in chunks if chunk.type == "response.output_item.added"]
|
||||
|
@ -606,8 +614,12 @@ def test_response_streaming_multi_turn_tool_execution(compat_client, text_model_
|
|||
assert len(chunks) > 10, f"Expected rich streaming with many events, got only {len(chunks)} chunks"
|
||||
|
||||
# Since this test involves MCP tool calls, we should see streaming events
|
||||
assert len(delta_events) > 0, f"Expected function_call_arguments.delta events, got chunk types: {chunk_types}"
|
||||
assert len(done_events) > 0, f"Expected function_call_arguments.done events, got chunk types: {chunk_types}"
|
||||
assert len(delta_events) > 0, (
|
||||
f"Expected function_call_arguments.delta or mcp_call.arguments.delta events, got chunk types: {chunk_types}"
|
||||
)
|
||||
assert len(done_events) > 0, (
|
||||
f"Expected function_call_arguments.done or mcp_call.arguments.done events, got chunk types: {chunk_types}"
|
||||
)
|
||||
|
||||
# Should have output item events for function calls
|
||||
assert len(item_added_events) > 0, f"Expected response.output_item.added events, got chunk types: {chunk_types}"
|
||||
|
@ -670,22 +682,32 @@ def test_response_streaming_multi_turn_tool_execution(compat_client, text_model_
|
|||
assert isinstance(done_event.output_index, int), "Output index should be integer"
|
||||
assert done_event.output_index >= 0, "Output index should be non-negative"
|
||||
|
||||
# Group function call argument events by item_id (these should have proper tracking)
|
||||
function_call_events_by_item_id = {}
|
||||
# Group function call and MCP argument events by item_id (these should have proper tracking)
|
||||
argument_events_by_item_id = {}
|
||||
for chunk in chunks:
|
||||
if hasattr(chunk, "item_id") and chunk.type in [
|
||||
"response.function_call_arguments.delta",
|
||||
"response.function_call_arguments.done",
|
||||
"response.mcp_call.arguments.delta",
|
||||
"response.mcp_call.arguments.done",
|
||||
]:
|
||||
item_id = chunk.item_id
|
||||
if item_id not in function_call_events_by_item_id:
|
||||
function_call_events_by_item_id[item_id] = []
|
||||
function_call_events_by_item_id[item_id].append(chunk)
|
||||
if item_id not in argument_events_by_item_id:
|
||||
argument_events_by_item_id[item_id] = []
|
||||
argument_events_by_item_id[item_id].append(chunk)
|
||||
|
||||
for item_id, related_events in function_call_events_by_item_id.items():
|
||||
# Should have at least one delta and one done event for a complete function call
|
||||
delta_events = [e for e in related_events if e.type == "response.function_call_arguments.delta"]
|
||||
done_events = [e for e in related_events if e.type == "response.function_call_arguments.done"]
|
||||
for item_id, related_events in argument_events_by_item_id.items():
|
||||
# Should have at least one delta and one done event for a complete tool call
|
||||
delta_events = [
|
||||
e
|
||||
for e in related_events
|
||||
if e.type in ["response.function_call_arguments.delta", "response.mcp_call.arguments.delta"]
|
||||
]
|
||||
done_events = [
|
||||
e
|
||||
for e in related_events
|
||||
if e.type in ["response.function_call_arguments.done", "response.mcp_call.arguments.done"]
|
||||
]
|
||||
|
||||
assert len(delta_events) > 0, f"Item {item_id} should have at least one delta event"
|
||||
assert len(done_events) == 1, f"Item {item_id} should have exactly one done event"
|
||||
|
@ -694,6 +716,43 @@ def test_response_streaming_multi_turn_tool_execution(compat_client, text_model_
|
|||
for event in related_events:
|
||||
assert event.item_id == item_id, f"Event should have consistent item_id {item_id}, got {event.item_id}"
|
||||
|
||||
# Verify content part events if they exist (for text streaming)
|
||||
content_part_added_events = [chunk for chunk in chunks if chunk.type == "response.content_part.added"]
|
||||
content_part_done_events = [chunk for chunk in chunks if chunk.type == "response.content_part.done"]
|
||||
|
||||
# Content part events should be paired (if any exist)
|
||||
if len(content_part_added_events) > 0:
|
||||
assert len(content_part_done_events) > 0, (
|
||||
"Should have content_part.done events if content_part.added events exist"
|
||||
)
|
||||
|
||||
# Verify content part event structure
|
||||
for added_event in content_part_added_events:
|
||||
assert hasattr(added_event, "response_id"), "Content part added event should have response_id"
|
||||
assert hasattr(added_event, "item_id"), "Content part added event should have item_id"
|
||||
assert hasattr(added_event, "part"), "Content part added event should have part"
|
||||
# Part might be a dict or object, handle both cases
|
||||
if hasattr(added_event.part, "id"):
|
||||
assert added_event.part.id, "Content part should have id"
|
||||
assert added_event.part.type, "Content part should have type"
|
||||
else:
|
||||
assert "id" in added_event.part, "Content part should have id"
|
||||
assert "type" in added_event.part, "Content part should have type"
|
||||
|
||||
for done_event in content_part_done_events:
|
||||
assert hasattr(done_event, "response_id"), "Content part done event should have response_id"
|
||||
assert hasattr(done_event, "item_id"), "Content part done event should have item_id"
|
||||
assert hasattr(done_event, "part"), "Content part done event should have part"
|
||||
# Part might be a dict or object, handle both cases
|
||||
# Note: In some scenarios (e.g., with tool calls), text content might be empty
|
||||
if hasattr(done_event.part, "text"):
|
||||
# Text can be empty in tool call scenarios, so we just check it exists
|
||||
assert hasattr(done_event.part, "text"), "Content part should have text field when done"
|
||||
else:
|
||||
# For dict case, text field might not be present if content was empty
|
||||
# This is valid behavior when tool calls are present
|
||||
pass
|
||||
|
||||
# Basic pairing check: each output_item.added should be followed by some activity
|
||||
# (but we can't enforce strict 1:1 pairing due to the complexity of multi-turn scenarios)
|
||||
assert len(item_added_events) > 0, "Should have at least one output_item.added event"
|
||||
|
|
|
@ -136,9 +136,12 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
|
|||
input=input_text,
|
||||
model=model,
|
||||
temperature=0.1,
|
||||
stream=True, # Enable streaming to test content part events
|
||||
)
|
||||
|
||||
# Verify
|
||||
# For streaming response, collect all chunks
|
||||
chunks = [chunk async for chunk in result]
|
||||
|
||||
mock_inference_api.openai_chat_completion.assert_called_once_with(
|
||||
model=model,
|
||||
messages=[OpenAIUserMessageParam(role="user", content="What is the capital of Ireland?", name=None)],
|
||||
|
@ -147,11 +150,32 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
|
|||
stream=True,
|
||||
temperature=0.1,
|
||||
)
|
||||
|
||||
# Should have content part events for text streaming
|
||||
# Expected: response.created, content_part.added, output_text.delta, content_part.done, response.completed
|
||||
assert len(chunks) >= 4
|
||||
assert chunks[0].type == "response.created"
|
||||
|
||||
# Check for content part events
|
||||
content_part_added_events = [c for c in chunks if c.type == "response.content_part.added"]
|
||||
content_part_done_events = [c for c in chunks if c.type == "response.content_part.done"]
|
||||
text_delta_events = [c for c in chunks if c.type == "response.output_text.delta"]
|
||||
|
||||
assert len(content_part_added_events) >= 1, "Should have content_part.added event for text"
|
||||
assert len(content_part_done_events) >= 1, "Should have content_part.done event for text"
|
||||
assert len(text_delta_events) >= 1, "Should have text delta events"
|
||||
|
||||
# Verify final event is completion
|
||||
assert chunks[-1].type == "response.completed"
|
||||
|
||||
# When streaming, the final response is in the last chunk
|
||||
final_response = chunks[-1].response
|
||||
assert final_response.model == model
|
||||
assert len(final_response.output) == 1
|
||||
assert isinstance(final_response.output[0], OpenAIResponseMessage)
|
||||
|
||||
openai_responses_impl.responses_store.store_response_object.assert_called_once()
|
||||
assert result.model == model
|
||||
assert len(result.output) == 1
|
||||
assert isinstance(result.output[0], OpenAIResponseMessage)
|
||||
assert result.output[0].content[0].text == "Dublin"
|
||||
assert final_response.output[0].content[0].text == "Dublin"
|
||||
|
||||
|
||||
async def test_create_openai_response_with_string_input_with_tools(openai_responses_impl, mock_inference_api):
|
||||
|
@ -272,6 +296,8 @@ async def test_create_openai_response_with_tool_call_type_none(openai_responses_
|
|||
|
||||
# Check that we got the content from our mocked tool execution result
|
||||
chunks = [chunk async for chunk in result]
|
||||
|
||||
# Verify event types
|
||||
# Should have: response.created, output_item.added, function_call_arguments.delta,
|
||||
# function_call_arguments.done, output_item.done, response.completed
|
||||
assert len(chunks) == 6
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue