chore(api): remove deprecated embeddings impls (#3301)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 7s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 10s
UI Tests / ui-tests (22) (push) Successful in 39s
Pre-commit / pre-commit (push) Successful in 1m25s

# What does this PR do?

remove deprecated embeddings implementations
This commit is contained in:
Matthew Farrellee 2025-09-29 14:45:09 -04:00 committed by GitHub
parent aab22dc759
commit 975ead1d6a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
19 changed files with 3 additions and 632 deletions

View file

@ -1035,50 +1035,6 @@
]
}
},
"/v1/inference/embeddings": {
"post": {
"responses": {
"200": {
"description": "An array of embeddings, one for each content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}.",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/EmbeddingsResponse"
}
}
}
},
"400": {
"$ref": "#/components/responses/BadRequest400"
},
"429": {
"$ref": "#/components/responses/TooManyRequests429"
},
"500": {
"$ref": "#/components/responses/InternalServerError500"
},
"default": {
"$ref": "#/components/responses/DefaultError"
}
},
"tags": [
"Inference"
],
"summary": "Generate embeddings for content pieces using the specified model.",
"description": "Generate embeddings for content pieces using the specified model.",
"parameters": [],
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/EmbeddingsRequest"
}
}
},
"required": true
}
}
},
"/v1alpha/eval/benchmarks/{benchmark_id}/evaluations": {
"post": {
"responses": {
@ -10547,80 +10503,6 @@
"title": "OpenAIDeleteResponseObject",
"description": "Response object confirming deletion of an OpenAI response."
},
"EmbeddingsRequest": {
"type": "object",
"properties": {
"model_id": {
"type": "string",
"description": "The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint."
},
"contents": {
"oneOf": [
{
"type": "array",
"items": {
"type": "string"
}
},
{
"type": "array",
"items": {
"$ref": "#/components/schemas/InterleavedContentItem"
}
}
],
"description": "List of contents to generate embeddings for. Each content can be a string or an InterleavedContentItem (and hence can be multimodal). The behavior depends on the model and provider. Some models may only support text."
},
"text_truncation": {
"type": "string",
"enum": [
"none",
"start",
"end"
],
"description": "(Optional) Config for how to truncate text for embedding when text is longer than the model's max sequence length."
},
"output_dimension": {
"type": "integer",
"description": "(Optional) Output dimensionality for the embeddings. Only supported by Matryoshka models."
},
"task_type": {
"type": "string",
"enum": [
"query",
"document"
],
"description": "(Optional) How is the embedding being used? This is only supported by asymmetric embedding models."
}
},
"additionalProperties": false,
"required": [
"model_id",
"contents"
],
"title": "EmbeddingsRequest"
},
"EmbeddingsResponse": {
"type": "object",
"properties": {
"embeddings": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
}
},
"description": "List of embedding vectors, one per input content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}"
}
},
"additionalProperties": false,
"required": [
"embeddings"
],
"title": "EmbeddingsResponse",
"description": "Response containing generated embeddings."
},
"AgentCandidate": {
"type": "object",
"properties": {

View file

@ -720,41 +720,6 @@ paths:
required: true
schema:
type: string
/v1/inference/embeddings:
post:
responses:
'200':
description: >-
An array of embeddings, one for each content. Each embedding is a list
of floats. The dimensionality of the embedding is model-specific; you
can check model metadata using /models/{model_id}.
content:
application/json:
schema:
$ref: '#/components/schemas/EmbeddingsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
summary: >-
Generate embeddings for content pieces using the specified model.
description: >-
Generate embeddings for content pieces using the specified model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/EmbeddingsRequest'
required: true
/v1alpha/eval/benchmarks/{benchmark_id}/evaluations:
post:
responses:
@ -7795,72 +7760,6 @@ components:
title: OpenAIDeleteResponseObject
description: >-
Response object confirming deletion of an OpenAI response.
EmbeddingsRequest:
type: object
properties:
model_id:
type: string
description: >-
The identifier of the model to use. The model must be an embedding model
registered with Llama Stack and available via the /models endpoint.
contents:
oneOf:
- type: array
items:
type: string
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
description: >-
List of contents to generate embeddings for. Each content can be a string
or an InterleavedContentItem (and hence can be multimodal). The behavior
depends on the model and provider. Some models may only support text.
text_truncation:
type: string
enum:
- none
- start
- end
description: >-
(Optional) Config for how to truncate text for embedding when text is
longer than the model's max sequence length.
output_dimension:
type: integer
description: >-
(Optional) Output dimensionality for the embeddings. Only supported by
Matryoshka models.
task_type:
type: string
enum:
- query
- document
description: >-
(Optional) How is the embedding being used? This is only supported by
asymmetric embedding models.
additionalProperties: false
required:
- model_id
- contents
title: EmbeddingsRequest
EmbeddingsResponse:
type: object
properties:
embeddings:
type: array
items:
type: array
items:
type: number
description: >-
List of embedding vectors, one per input content. Each embedding is a
list of floats. The dimensionality of the embedding is model-specific;
you can check model metadata using /models/{model_id}
additionalProperties: false
required:
- embeddings
title: EmbeddingsResponse
description: >-
Response containing generated embeddings.
AgentCandidate:
type: object
properties: