Merge branch 'evals_5' into evals_6

This commit is contained in:
Xi Yan 2024-10-24 13:53:00 -07:00
commit 97ca72288c
4 changed files with 19 additions and 40 deletions

View file

@ -4,20 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import (
Any,
Dict,
List,
Literal,
Optional,
Protocol,
runtime_checkable,
Union,
)
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.common.type_system import ParamType
@ -33,21 +23,19 @@ class Parameter(BaseModel):
# with standard metrics so they can be rolled up?
class LLMAsJudgeContext(BaseModel):
judge_model: str
prompt_template: Optional[str] = None
@json_schema_type
class CommonFunctionDef(BaseModel):
class ScoringFunctionDef(BaseModel):
identifier: str
description: Optional[str] = None
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this definition",
)
# Hack: same with memory_banks for union defs
provider_id: str = ""
@json_schema_type
class DeterministicFunctionDef(CommonFunctionDef):
type: Literal["deterministic"] = "deterministic"
parameters: List[Parameter] = Field(
description="List of parameters for the deterministic function",
default_factory=list,
@ -55,24 +43,17 @@ class DeterministicFunctionDef(CommonFunctionDef):
return_type: ParamType = Field(
description="The return type of the deterministic function",
)
context: Optional[LLMAsJudgeContext] = None
# We can optionally add information here to support packaging of code, etc.
@json_schema_type
class LLMJudgeFunctionDef(CommonFunctionDef):
type: Literal["judge"] = "judge"
model: str = Field(
description="The LLM model to use for the judge function",
class ScoringFunctionDefWithProvider(ScoringFunctionDef):
provider_id: str = Field(
description="ID of the provider which serves this dataset",
)
ScoringFunctionDef = Annotated[
Union[DeterministicFunctionDef, LLMJudgeFunctionDef], Field(discriminator="type")
]
ScoringFunctionDefWithProvider = ScoringFunctionDef
@runtime_checkable
class ScoringFunctions(Protocol):
@webmethod(route="/scoring_functions/list", method="GET")

View file

@ -95,17 +95,15 @@ class CommonRoutingTableImpl(RoutingTable):
for d in datasets:
d.provider_id = pid
add_objects(datasets)
elif api == Api.scoring:
p.scoring_function_store = self
scoring_functions = await p.list_scoring_functions()
# do in-memory updates due to pesky Annotated unions
for s in scoring_functions:
s.provider_id = pid
add_objects(scoring_functions)
add_objects(
[
ScoringFunctionDefWithProvider(**s.dict(), provider_id=pid)
for s in scoring_functions
]
)
async def shutdown(self) -> None:
for p in self.impls_by_provider_id.values():

View file

@ -17,7 +17,7 @@ class BaseScorer(ABC):
- aggregate(self, scorer_results)
"""
scoring_function_def: DeterministicFunctionDef
scoring_function_def: ScoringFunctionDef
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)

View file

@ -17,7 +17,7 @@ class EqualityScorer(BaseScorer):
A scorer that assigns a score of 1.0 if the input string matches the target string, and 0.0 otherwise.
"""
scoring_function_def = DeterministicFunctionDef(
scoring_function_def = ScoringFunctionDef(
identifier="equality",
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
parameters=[],