Fix Agents to support code and rag simultaneously (#908)

# What does this PR do?

Fixes a bug where agents were not working when both rag and
code-interpreter were added as tools.


## Test Plan

Added a new client_sdk test which tests for this scenario 
```
LLAMA_STACK_CONFIG=together pytest -s -v  tests/client-sdk -k 'test_rag_and_code_agent'
```

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
This commit is contained in:
Hardik Shah 2025-01-30 17:09:34 -08:00 committed by GitHub
parent 94051cfe9e
commit 97eb3eecea
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 83 additions and 8 deletions

View file

@ -66,6 +66,7 @@ from llama_stack.apis.vector_io import VectorIO
from llama_stack.providers.utils.kvstore import KVStore
from llama_stack.providers.utils.memory.vector_store import concat_interleaved_content
from llama_stack.providers.utils.telemetry import tracing
from .persistence import AgentPersistence
from .safety import SafetyException, ShieldRunnerMixin
@ -476,9 +477,12 @@ class ChatAgent(ShieldRunnerMixin):
)
span.set_attribute("output", retrieved_context)
span.set_attribute("tool_name", MEMORY_QUERY_TOOL)
if retrieved_context:
last_message = input_messages[-1]
last_message.context = retrieved_context
# append retrieved_context to the last user message
for message in input_messages[::-1]:
if isinstance(message, UserMessage):
message.context = retrieved_context
break
output_attachments = []

View file

@ -211,7 +211,7 @@ def test_code_interpreter_for_attachments(llama_stack_client, agent_config):
}
codex_agent = Agent(llama_stack_client, agent_config)
session_id = codex_agent.create_session("test-session")
session_id = codex_agent.create_session(f"test-session-{uuid4()}")
inflation_doc = AgentDocument(
content="https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv",
mime_type="text/csv",
@ -285,7 +285,8 @@ def test_rag_agent(llama_stack_client, agent_config):
llama_stack_client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
# small chunks help to get specific info out of the docs
chunk_size_in_tokens=128,
)
agent_config = {
**agent_config,
@ -299,11 +300,15 @@ def test_rag_agent(llama_stack_client, agent_config):
],
}
rag_agent = Agent(llama_stack_client, agent_config)
session_id = rag_agent.create_session("test-session")
session_id = rag_agent.create_session(f"test-session-{uuid4()}")
user_prompts = [
"What are the top 5 topics that were explained? Only list succinct bullet points.",
(
"Instead of the standard multi-head attention, what attention type does Llama3-8B use?",
"grouped-query",
),
("What command to use to get access to Llama3-8B-Instruct ?", "tune download"),
]
for prompt in user_prompts:
for prompt, expected_kw in user_prompts:
print(f"User> {prompt}")
response = rag_agent.create_turn(
messages=[{"role": "user", "content": prompt}],
@ -312,3 +317,69 @@ def test_rag_agent(llama_stack_client, agent_config):
logs = [str(log) for log in EventLogger().log(response) if log is not None]
logs_str = "".join(logs)
assert "Tool:query_from_memory" in logs_str
assert expected_kw in logs_str.lower()
def test_rag_and_code_agent(llama_stack_client, agent_config):
urls = ["chat.rst"]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
vector_db_id = "test-vector-db"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
)
llama_stack_client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=128,
)
agent_config = {
**agent_config,
"toolgroups": [
dict(
name="builtin::rag",
args={"vector_db_ids": [vector_db_id]},
),
"builtin::code_interpreter",
],
}
agent = Agent(llama_stack_client, agent_config)
inflation_doc = Document(
document_id="test_csv",
content="https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv",
mime_type="text/csv",
metadata={},
)
user_prompts = [
(
"Here is a csv file, can you describe it?",
[inflation_doc],
"code_interpreter",
),
(
"What are the top 5 topics that were explained? Only list succinct bullet points.",
[],
"query_from_memory",
),
]
for prompt, docs, tool_name in user_prompts:
print(f"User> {prompt}")
session_id = agent.create_session(f"test-session-{uuid4()}")
response = agent.create_turn(
messages=[{"role": "user", "content": prompt}],
session_id=session_id,
documents=docs,
)
logs = [str(log) for log in EventLogger().log(response) if log is not None]
logs_str = "".join(logs)
assert f"Tool:{tool_name}" in logs_str