Remove Weaviate unit tests

This commit is contained in:
ChristianZaccaria 2025-09-03 10:34:48 +01:00
parent c630a646e3
commit 980c7c244d
4 changed files with 34 additions and 292 deletions

View file

@ -104,11 +104,15 @@ class WeaviateIndex(EmbeddingIndex):
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True) sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
collection = self.client.collections.get(sanitized_collection_name) collection = self.client.collections.get(sanitized_collection_name)
results = collection.query.near_vector( try:
near_vector=embedding.tolist(), results = collection.query.near_vector(
limit=k, near_vector=embedding.tolist(),
return_metadata=wvc.query.MetadataQuery(distance=True), limit=k,
) return_metadata=wvc.query.MetadataQuery(distance=True),
)
except Exception as e:
log.error(f"Weaviate client vector search failed: {e}")
raise
chunks = [] chunks = []
scores = [] scores = []
@ -123,8 +127,8 @@ class WeaviateIndex(EmbeddingIndex):
if doc.metadata.distance is None: if doc.metadata.distance is None:
continue continue
# Convert cosine distance ∈ [0,2] → cosine similarity ∈ [-1,1] # Convert cosine distance ∈ [0,2] -> normalized cosine similarity ∈ [0,1]
score = 1.0 - float(doc.metadata.distance) score = 1.0 - (float(doc.metadata.distance) / 2.0)
if score < score_threshold: if score < score_threshold:
continue continue
@ -167,11 +171,15 @@ class WeaviateIndex(EmbeddingIndex):
collection = self.client.collections.get(sanitized_collection_name) collection = self.client.collections.get(sanitized_collection_name)
# Perform BM25 keyword search on chunk_content field # Perform BM25 keyword search on chunk_content field
results = collection.query.bm25( try:
query=query_string, results = collection.query.bm25(
limit=k, query=query_string,
return_metadata=wvc.query.MetadataQuery(score=True), limit=k,
) return_metadata=wvc.query.MetadataQuery(score=True),
)
except Exception as e:
log.error(f"Weaviate client keyword search failed: {e}")
raise
chunks = [] chunks = []
scores = [] scores = []
@ -229,14 +237,18 @@ class WeaviateIndex(EmbeddingIndex):
rerank = HybridFusion.RELATIVE_SCORE rerank = HybridFusion.RELATIVE_SCORE
# Perform hybrid search using Weaviate's native hybrid search # Perform hybrid search using Weaviate's native hybrid search
results = collection.query.hybrid( try:
query=query_string, results = collection.query.hybrid(
alpha=0.5, # Range <0, 1>, where 0.5 will equally favor vector and keyword search query=query_string,
vector=embedding.tolist(), alpha=0.5, # Range <0, 1>, where 0.5 will equally favor vector and keyword search
limit=k, vector=embedding.tolist(),
fusion_type=rerank, limit=k,
return_metadata=wvc.query.MetadataQuery(score=True), fusion_type=rerank,
) return_metadata=wvc.query.MetadataQuery(score=True),
)
except Exception as e:
log.error(f"Weaviate client hybrid search failed: {e}")
raise
chunks = [] chunks = []
scores = [] scores = []
@ -283,7 +295,7 @@ class WeaviateVectorIOAdapter(
self.openai_vector_stores: dict[str, dict[str, Any]] = {} self.openai_vector_stores: dict[str, dict[str, Any]] = {}
self.metadata_collection_name = "openai_vector_stores_metadata" self.metadata_collection_name = "openai_vector_stores_metadata"
def _get_client(self) -> weaviate.Client: def _get_client(self) -> weaviate.WeaviateClient:
if "localhost" in self.config.weaviate_cluster_url: if "localhost" in self.config.weaviate_cluster_url:
log.info("using Weaviate locally in container") log.info("using Weaviate locally in container")
host, port = self.config.weaviate_cluster_url.split(":") host, port = self.config.weaviate_cluster_url.split(":")

View file

@ -140,7 +140,6 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e
"inline::milvus": {"score_threshold": -1.0}, "inline::milvus": {"score_threshold": -1.0},
"inline::qdrant": {"score_threshold": -1.0}, "inline::qdrant": {"score_threshold": -1.0},
"remote::qdrant": {"score_threshold": -1.0}, "remote::qdrant": {"score_threshold": -1.0},
"remote::weaviate": {"score_threshold": -1.0},
} }
vector_db_name = "test_precomputed_embeddings_db" vector_db_name = "test_precomputed_embeddings_db"
register_response = client_with_empty_registry.vector_dbs.register( register_response = client_with_empty_registry.vector_dbs.register(

View file

@ -457,7 +457,7 @@ def weaviate_vec_db_path(tmp_path_factory):
@pytest.fixture @pytest.fixture
async def weaviate_vec_index(weaviate_vec_db_path, embedding_dimension): async def weaviate_vec_index(weaviate_vec_db_path):
import pytest_socket import pytest_socket
import weaviate import weaviate

View file

@ -1,269 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import ANY, MagicMock, patch
import numpy as np
import pytest
from llama_stack.apis.vector_io import QueryChunksResponse
# Mock the Weaviate client
weaviate_mock = MagicMock()
# Apply the mock before importing WeaviateIndex
with patch.dict("sys.modules", {"weaviate": weaviate_mock}):
from llama_stack.providers.remote.vector_io.weaviate.weaviate import WeaviateIndex
# This test is a unit test for the WeaviateIndex class. This should only contain
# tests which are specific to this class. More general (API-level) tests should be placed in
# tests/integration/vector_io/
#
# How to run this test:
#
# pytest tests/unit/providers/vector_io/remote/test_weaviate.py \
# -v -s --tb=short --disable-warnings --asyncio-mode=auto
WEAVIATE_PROVIDER = "weaviate"
@pytest.fixture
async def mock_weaviate_client() -> MagicMock:
"""Create a mock Weaviate client with common method behaviors."""
mock_client = MagicMock()
mock_collection = MagicMock()
# Mock collection data operations
mock_collection.data.insert_many.return_value = None
mock_collection.data.delete_many.return_value = None
# Mock collection search operations
mock_collection.query.near_vector.return_value = None
mock_collection.query.bm25.return_value = None
mock_collection.query.hybrid.return_value = None
mock_results = MagicMock()
mock_results.objects = [MagicMock(), MagicMock()]
mock_collection.query.near_vector.return_value = mock_results
# Mock client collection operations
mock_client.collections.get.return_value = mock_collection
mock_client.collections.exists.return_value = True
mock_client.collections.delete.return_value = None
# Mock client close operation
mock_client.close.return_value = None
return mock_client
@pytest.fixture
async def weaviate_index(mock_weaviate_client):
"""Create a WeaviateIndex with mocked client."""
index = WeaviateIndex(client=mock_weaviate_client, collection_name="Testcollection")
yield index
# No real cleanup needed since we're using mocks
async def test_add_chunks(weaviate_index, sample_chunks, sample_embeddings, mock_weaviate_client):
# Setup: Add chunks first
await weaviate_index.add_chunks(sample_chunks, sample_embeddings)
# Assert
mock_weaviate_client.collections.get.assert_called_once_with("Testcollection")
mock_weaviate_client.collections.get.return_value.data.insert_many.assert_called_once()
# Verify the insert call had the right number of chunks
data_objects, _ = mock_weaviate_client.collections.get.return_value.data.insert_many.call_args
assert len(data_objects[0]) == len(sample_chunks)
async def test_query_chunks_vector(
weaviate_index, sample_chunks, sample_embeddings, embedding_dimension, mock_weaviate_client
):
# Setup: Add chunks first
await weaviate_index.add_chunks(sample_chunks, sample_embeddings)
# Create mock objects that match Weaviate's response structure
mock_objects = []
for i, chunk in enumerate(sample_chunks[:2]): # Return first 2 chunks
mock_obj = MagicMock()
mock_obj.properties = {"chunk_content": chunk.model_dump_json()}
mock_obj.metadata.distance = 0.1 + i * 0.1 # Mock distances
mock_objects.append(mock_obj)
mock_results = MagicMock()
mock_results.objects = mock_objects
mock_weaviate_client.collections.get.return_value.query.near_vector.return_value = mock_results
# Test vector search
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
response = await weaviate_index.query_vector(query_embedding, k=2, score_threshold=0.0)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) == 2
assert len(response.scores) == 2
mock_weaviate_client.collections.get.return_value.query.near_vector.assert_called_once_with(
near_vector=query_embedding.tolist(),
limit=2,
return_metadata=ANY,
)
async def test_query_chunks_keyword_search(weaviate_index, sample_chunks, sample_embeddings, mock_weaviate_client):
await weaviate_index.add_chunks(sample_chunks, sample_embeddings)
# Find chunks that contain "Sentence 5"
matching_chunks = [chunk for chunk in sample_chunks if "Sentence 5" in chunk.content]
# Create mock objects that match Weaviate's BM25 response structure
# Return the first 2 matching chunks
mock_objects = []
for i, chunk in enumerate(matching_chunks[:2]):
mock_obj = MagicMock()
mock_obj.properties = {"chunk_content": chunk.model_dump_json()}
mock_obj.metadata.score = 0.9 - i * 0.1
mock_objects.append(mock_obj)
mock_results = MagicMock()
mock_results.objects = mock_objects
mock_weaviate_client.collections.get.return_value.query.bm25.return_value = mock_results
# Test keyword search
query_string = "Sentence 5"
response = await weaviate_index.query_keyword(query_string=query_string, k=2, score_threshold=0.0)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) == 2
assert len(response.scores) == 2
# Verify that the returned chunks contain the search term
assert all("Sentence 5" in chunk.content for chunk in response.chunks)
mock_weaviate_client.collections.get.return_value.query.bm25.assert_called_once_with(
query=query_string,
limit=2,
return_metadata=ANY,
)
async def test_delete_collection(weaviate_index, mock_weaviate_client):
# Test collection deletion (when chunk_ids is None, it deletes the entire collection)
mock_weaviate_client.collections.exists.return_value = True
await weaviate_index.delete()
mock_weaviate_client.collections.exists.assert_called_once_with("Testcollection")
mock_weaviate_client.collections.delete.assert_called_once_with("Testcollection")
async def test_delete_chunks(weaviate_index, mock_weaviate_client):
# Test deleting specific chunks using ChunkForDeletion objects
from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion
chunks_for_deletion = [
ChunkForDeletion(chunk_id="chunk-1", document_id="doc-1"),
ChunkForDeletion(chunk_id="chunk-2", document_id="doc-1"),
ChunkForDeletion(chunk_id="chunk-3", document_id="doc-2"),
]
await weaviate_index.delete_chunks(chunks_for_deletion)
mock_weaviate_client.collections.get.assert_called_once_with("Testcollection")
mock_weaviate_client.collections.get.return_value.data.delete_many.assert_called_once()
async def test_query_hybrid_rrf(
weaviate_index, sample_chunks, sample_embeddings, embedding_dimension, mock_weaviate_client
):
# Test hybrid search with RRF reranking
from weaviate.classes.query import HybridFusion
from llama_stack.providers.utils.memory.vector_store import RERANKER_TYPE_RRF
await weaviate_index.add_chunks(sample_chunks, sample_embeddings)
# Find chunks that contain "Sentence 5"
matching_chunks = [chunk for chunk in sample_chunks if "Sentence 5" in chunk.content]
# Create mock objects for hybrid search response
mock_objects = []
for i, chunk in enumerate(matching_chunks[:2]):
mock_obj = MagicMock()
mock_obj.properties = {"chunk_content": chunk.model_dump_json()}
mock_obj.metadata.score = 0.85 + i * 0.05
mock_objects.append(mock_obj)
mock_results = MagicMock()
mock_results.objects = mock_objects
mock_weaviate_client.collections.get.return_value.query.hybrid.return_value = mock_results
# Test hybrid search with RRF
query_string = "Sentence 5"
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
response = await weaviate_index.query_hybrid(
embedding=query_embedding, query_string=query_string, k=2, score_threshold=0.0, reranker_type=RERANKER_TYPE_RRF
)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) == 2
assert len(response.scores) == 2
assert all("Sentence 5" in chunk.content for chunk in response.chunks)
# Verify the hybrid method was called with correct parameters
mock_weaviate_client.collections.get.return_value.query.hybrid.assert_called_once_with(
query=query_string,
alpha=0.5,
vector=query_embedding.tolist(),
limit=2,
fusion_type=HybridFusion.RANKED,
return_metadata=ANY,
)
async def test_query_hybrid_normalized(
weaviate_index, sample_chunks, sample_embeddings, embedding_dimension, mock_weaviate_client
):
from weaviate.classes.query import HybridFusion
await weaviate_index.add_chunks(sample_chunks, sample_embeddings)
# Find chunks that contain "Sentence 3" for different results
matching_chunks = [chunk for chunk in sample_chunks if "Sentence 3" in chunk.content]
# Create mock objects for hybrid search response
mock_objects = []
for i, chunk in enumerate(matching_chunks[:2]):
mock_obj = MagicMock()
mock_obj.properties = {"chunk_content": chunk.model_dump_json()}
mock_obj.metadata.score = 0.75 + i * 0.1 # Mock hybrid scores
mock_objects.append(mock_obj)
mock_results = MagicMock()
mock_results.objects = mock_objects
mock_weaviate_client.collections.get.return_value.query.hybrid.return_value = mock_results
# Test hybrid search with normalized reranking
query_string = "Sentence 3"
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
response = await weaviate_index.query_hybrid(
embedding=query_embedding, query_string=query_string, k=2, score_threshold=0.0, reranker_type="normalized"
)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) == 2
assert len(response.scores) == 2
assert all("Sentence 3" in chunk.content for chunk in response.chunks)
# Verify the hybrid method was called with correct parameters
mock_weaviate_client.collections.get.return_value.query.hybrid.assert_called_once_with(
query=query_string,
alpha=0.5,
vector=query_embedding.tolist(),
limit=2,
fusion_type=HybridFusion.RELATIVE_SCORE,
return_metadata=ANY,
)
# TODO: Write tests for the WeaviateVectorIOAdapter class.