wip add datatypes

This commit is contained in:
Xi Yan 2024-10-10 19:56:19 -07:00
parent 99ed1425fc
commit 9816c9aae6
5 changed files with 175 additions and 57 deletions

View file

@ -4,10 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Protocol
from abc import ABC, abstractmethod
from typing import Dict, Generic, List, Protocol
from llama_models.schema_utils import webmethod
from pydantic import BaseModel
from llama_models.llama3.api.datatypes import * # noqa: F403
@ -22,19 +22,26 @@ class EvaluationJobLogStream(BaseModel):
job_uuid: str
class EvaluateTaskConfig(BaseModel):
# num examples to evaluate, evaluate all if None
n_samples: Optional[int] = None
# model evaluation params
sampling_params: SamplingParams = SamplingParams()
@json_schema_type
class EvalResult(BaseModel):
"""Evaluation result."""
metrics: Dict[str, str]
@json_schema_type
class SingleEvalResult(BaseModel):
"""Single evaluation result."""
score_data: Dict[str, float]
@json_schema_type
class EvaluateResponse(BaseModel):
"""Scores for evaluation."""
preprocess_output: GenerationOutput
metrics: Dict[str, str]
eval_result: EvalResult
formatted_report: Optional[str] = None
@json_schema_type
@ -56,6 +63,75 @@ class EvaluationJobCreateResponse(BaseModel):
job_uuid: str
@json_schema_type
class EvaluateTaskConfig(BaseModel):
# num examples to evaluate, evaluate all if None
n_samples: Optional[int] = None
# model evaluation params
sampling_params: SamplingParams = SamplingParams()
class BaseTask(
ABC,
Generic[
TDatasetSample,
TPreprocessedSample,
TPredictionSample,
TPostprocessedSample,
TSingleEvalResult,
],
):
"""
A task represents a single evaluation benchmark, including it's dataset, preprocessing, postprocessing and scoring methods.
Base class for all evaluation tasks. Each task needs to implement the following methods:
- F1: preprocess_sample(self)
- F2: postprocess_sample(self)
- F3: score_sample(self)
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self._name = self.__class__.__name__
@abstractmethod
def preprocess_sample(self, sample: TDatasetSample) -> TPreprocessedSample:
raise NotImplementedError()
@abstractmethod
def postprocess_sample(self, sample: TPredictionSample) -> TPostprocessedSample:
raise NotImplementedError()
@abstractmethod
def score_sample(
self, sample: TPostprocessedSample, ground_truth: TPreprocessedSample
):
raise NotImplementedError()
@abstractmethod
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
raise NotImplementedError()
def preprocess(
self, dataset: BaseDataset[TDatasetSample]
) -> List[TPreprocessedSample]:
return [self.preprocess_sample(sample) for sample in self.dataset]
def postprocess(
self, generation: List[TPredictionSample]
) -> List[TPostprocessedSample]:
return [self.postprocess_sample(sample) for sample in generation]
def score(
self,
postprocessed: List[TPostprocessedSample],
preprocessed_dataset: List[TPreprocessedSample],
) -> List[TSingleEvalResult]:
return [
self.score_sample(sample, ground_truth)
for sample, ground_truth in zip(postprocessed, self.preprocessed_dataset)
]
class Evals(Protocol):
@webmethod(route="/evals/run")
async def run_evals(