mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-22 20:43:59 +00:00
update distributions/readmes
This commit is contained in:
parent
7b8748c53e
commit
985ff4d6ce
5 changed files with 102 additions and 8 deletions
|
@ -4,11 +4,9 @@ services:
|
|||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./run.yaml:/root/llamastack-run-fireworks.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-fireworks.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
|
|
|
@ -10,6 +10,13 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo
|
|||
|
||||
### Start the Distribution (Single Node GPU)
|
||||
|
||||
```
|
||||
$ cd distributions/meta-reference-gpu
|
||||
$ ls
|
||||
build.yaml compose.yaml README.md run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a local server with access to your GPU.
|
||||
|
||||
|
@ -18,7 +25,7 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo
|
|||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
To download and start running a pre-built docker container, you may use the following commands:
|
||||
This will download and start running a pre-built docker container. Alternatively, you may use the following commands:
|
||||
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
|
||||
|
@ -26,3 +33,54 @@ docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.
|
|||
|
||||
### Alternative (Build and start distribution locally via conda)
|
||||
- You may checkout the [Getting Started](../../docs/getting_started.md) for more details on building locally via conda and starting up a meta-reference distribution.
|
||||
|
||||
### Start Distribution With pgvector/chromadb Memory Provider
|
||||
##### pgvector
|
||||
1. Start running the pgvector server:
|
||||
|
||||
```
|
||||
docker run --network host --name mypostgres -it -p 5432:5432 -e POSTGRES_PASSWORD=mysecretpassword -e POSTGRES_USER=postgres -e POSTGRES_DB=postgres pgvector/pgvector:pg16
|
||||
```
|
||||
|
||||
2. Edit the `run.yaml` file to point to the pgvector server.
|
||||
```
|
||||
memory:
|
||||
- provider_id: pgvector
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: 127.0.0.1
|
||||
port: 5432
|
||||
db: postgres
|
||||
user: postgres
|
||||
password: mysecretpassword
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> If you get a `RuntimeError: Vector extension is not installed.`. You will need to run `CREATE EXTENSION IF NOT EXISTS vector;` to include the vector extension. E.g.
|
||||
|
||||
```
|
||||
docker exec -it mypostgres ./bin/psql -U postgres
|
||||
postgres=# CREATE EXTENSION IF NOT EXISTS vector;
|
||||
postgres=# SELECT extname from pg_extension;
|
||||
extname
|
||||
```
|
||||
|
||||
3. Run `docker compose up` with the updated `run.yaml` file.
|
||||
|
||||
##### chromadb
|
||||
1. Start running chromadb server
|
||||
```
|
||||
docker run -it --network host --name chromadb -p 6000:6000 -v ./chroma_vdb:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest
|
||||
```
|
||||
|
||||
2. Edit the `run.yaml` file to point to the chromadb server.
|
||||
```
|
||||
memory:
|
||||
- provider_id: remote::chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
host: localhost
|
||||
port: 6000
|
||||
```
|
||||
|
||||
3. Run `docker compose up` with the updated `run.yaml` file.
|
||||
|
|
35
distributions/meta-reference-gpu/compose.yaml
Normal file
35
distributions/meta-reference-gpu/compose.yaml
Normal file
|
@ -0,0 +1,35 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-meta-reference-gpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
|
@ -33,9 +33,14 @@ providers:
|
|||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
- provider_id: pgvector
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: 127.0.0.1
|
||||
port: 5432
|
||||
db: postgres
|
||||
user: postgres
|
||||
password: mysecretpassword
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
|
|
|
@ -4,11 +4,9 @@ services:
|
|||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./run.yaml:/root/llamastack-run-together.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-together.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue