mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-15 16:12:45 +00:00
Merge branch 'main' into dead_code_removal
This commit is contained in:
commit
9886520b40
927 changed files with 171924 additions and 102933 deletions
|
|
@ -10,6 +10,6 @@ from .config import AnthropicConfig
|
|||
async def get_adapter_impl(config: AnthropicConfig, _deps):
|
||||
from .anthropic import AnthropicInferenceAdapter
|
||||
|
||||
impl = AnthropicInferenceAdapter(config)
|
||||
impl = AnthropicInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -4,13 +4,19 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from collections.abc import Iterable
|
||||
|
||||
from anthropic import AsyncAnthropic
|
||||
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import AnthropicConfig
|
||||
|
||||
|
||||
class AnthropicInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
class AnthropicInferenceAdapter(OpenAIMixin):
|
||||
config: AnthropicConfig
|
||||
|
||||
provider_data_api_key_field: str = "anthropic_api_key"
|
||||
# source: https://docs.claude.com/en/docs/build-with-claude/embeddings
|
||||
# TODO: add support for voyageai, which is where these models are hosted
|
||||
# embedding_model_metadata = {
|
||||
|
|
@ -23,22 +29,11 @@ class AnthropicInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
# "voyage-multimodal-3": {"embedding_dimension": 1024, "context_length": 32000},
|
||||
# }
|
||||
|
||||
def __init__(self, config: AnthropicConfig) -> None:
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="anthropic",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="anthropic_api_key",
|
||||
)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
await super().shutdown()
|
||||
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key or ""
|
||||
|
||||
def get_base_url(self):
|
||||
return "https://api.anthropic.com/v1"
|
||||
|
||||
async def list_provider_model_ids(self) -> Iterable[str]:
|
||||
return [m.id async for m in AsyncAnthropic(api_key=self.get_api_key()).models.list()]
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -19,7 +20,7 @@ class AnthropicProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class AnthropicConfig(BaseModel):
|
||||
class AnthropicConfig(RemoteInferenceProviderConfig):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Anthropic models",
|
||||
|
|
|
|||
|
|
@ -10,6 +10,6 @@ from .config import AzureConfig
|
|||
async def get_adapter_impl(config: AzureConfig, _deps):
|
||||
from .azure import AzureInferenceAdapter
|
||||
|
||||
impl = AzureInferenceAdapter(config)
|
||||
impl = AzureInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -4,31 +4,20 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
from urllib.parse import urljoin
|
||||
|
||||
from llama_stack.apis.inference import ChatCompletionRequest
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
|
||||
LiteLLMOpenAIMixin,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import AzureConfig
|
||||
|
||||
|
||||
class AzureInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
def __init__(self, config: AzureConfig) -> None:
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="azure",
|
||||
api_key_from_config=config.api_key.get_secret_value(),
|
||||
provider_data_api_key_field="azure_api_key",
|
||||
openai_compat_api_base=str(config.api_base),
|
||||
)
|
||||
self.config = config
|
||||
class AzureInferenceAdapter(OpenAIMixin):
|
||||
config: AzureConfig
|
||||
|
||||
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
provider_data_api_key_field: str = "azure_api_key"
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
|
|
@ -37,26 +26,3 @@ class AzureInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
Returns the Azure API base URL from the configuration.
|
||||
"""
|
||||
return urljoin(str(self.config.api_base), "/openai/v1")
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict[str, Any]:
|
||||
# Get base parameters from parent
|
||||
params = await super()._get_params(request)
|
||||
|
||||
# Add Azure specific parameters
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data:
|
||||
if getattr(provider_data, "azure_api_key", None):
|
||||
params["api_key"] = provider_data.azure_api_key
|
||||
if getattr(provider_data, "azure_api_base", None):
|
||||
params["api_base"] = provider_data.azure_api_base
|
||||
if getattr(provider_data, "azure_api_version", None):
|
||||
params["api_version"] = provider_data.azure_api_version
|
||||
if getattr(provider_data, "azure_api_type", None):
|
||||
params["api_type"] = provider_data.azure_api_type
|
||||
else:
|
||||
params["api_key"] = self.config.api_key.get_secret_value()
|
||||
params["api_base"] = str(self.config.api_base)
|
||||
params["api_version"] = self.config.api_version
|
||||
params["api_type"] = self.config.api_type
|
||||
|
||||
return params
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field, HttpUrl, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -30,7 +31,7 @@ class AzureProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class AzureConfig(BaseModel):
|
||||
class AzureConfig(RemoteInferenceProviderConfig):
|
||||
api_key: SecretStr = Field(
|
||||
description="Azure API key for Azure",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,39 +5,30 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from botocore.client import BaseClient
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import OpenAICompletion
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
||||
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
get_sampling_strategy_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
|
|
@ -86,7 +77,6 @@ def _to_inference_profile_id(model_id: str, region: str = None) -> str:
|
|||
class BedrockInferenceAdapter(
|
||||
ModelRegistryHelper,
|
||||
Inference,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
):
|
||||
def __init__(self, config: BedrockConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
||||
|
|
@ -106,71 +96,6 @@ class BedrockInferenceAdapter(
|
|||
if self._client is not None:
|
||||
self._client.close()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params_for_chat_completion(request)
|
||||
res = self.client.invoke_model(**params)
|
||||
chunk = next(res["body"])
|
||||
result = json.loads(chunk.decode("utf-8"))
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"],
|
||||
text=result["generation"],
|
||||
)
|
||||
|
||||
response = OpenAICompatCompletionResponse(choices=[choice])
|
||||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params_for_chat_completion(request)
|
||||
res = self.client.invoke_model_with_response_stream(**params)
|
||||
event_stream = res["body"]
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
for chunk in event_stream:
|
||||
chunk = chunk["chunk"]["bytes"]
|
||||
result = json.loads(chunk.decode("utf-8"))
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"],
|
||||
text=result["generation"],
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(choices=[choice])
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> dict:
|
||||
bedrock_model = request.model
|
||||
|
||||
|
|
@ -235,3 +160,31 @@ class BedrockInferenceAdapter(
|
|||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError("OpenAI completion not supported by the Bedrock provider")
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by the Bedrock provider")
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ async def get_adapter_impl(config: CerebrasImplConfig, _deps):
|
|||
|
||||
assert isinstance(config, CerebrasImplConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = CerebrasInferenceAdapter(config)
|
||||
impl = CerebrasInferenceAdapter(config=config)
|
||||
|
||||
await impl.initialize()
|
||||
|
||||
|
|
|
|||
|
|
@ -4,53 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator
|
||||
from urllib.parse import urljoin
|
||||
|
||||
from cerebras.cloud.sdk import AsyncCerebras
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
TopKSamplingStrategy,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
)
|
||||
|
||||
from .config import CerebrasImplConfig
|
||||
|
||||
|
||||
class CerebrasInferenceAdapter(
|
||||
OpenAIMixin,
|
||||
ModelRegistryHelper,
|
||||
Inference,
|
||||
):
|
||||
def __init__(self, config: CerebrasImplConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
# TODO: make this use provider data, etc. like other providers
|
||||
self._cerebras_client = AsyncCerebras(
|
||||
base_url=self.config.base_url,
|
||||
api_key=self.config.api_key.get_secret_value(),
|
||||
)
|
||||
class CerebrasInferenceAdapter(OpenAIMixin):
|
||||
config: CerebrasImplConfig
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
|
@ -58,86 +21,6 @@ class CerebrasInferenceAdapter(
|
|||
def get_base_url(self) -> str:
|
||||
return urljoin(self.config.base_url, "v1")
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
|
||||
r = await self._cerebras_client.completions.create(**params)
|
||||
|
||||
return process_chat_completion_response(r, request)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = await self._cerebras_client.completions.create(**params)
|
||||
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
if request.sampling_params and isinstance(
|
||||
request.sampling_params.strategy, TopKSamplingStrategy
|
||||
):
|
||||
raise ValueError("`top_k` not supported by Cerebras")
|
||||
|
||||
prompt = ""
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
prompt = await chat_completion_request_to_prompt(
|
||||
request, self.get_llama_model(request.model)
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown request type {type(request)}")
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
"prompt": prompt,
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
|||
|
|
@ -7,21 +7,22 @@
|
|||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic import Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
DEFAULT_BASE_URL = "https://api.cerebras.ai"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CerebrasImplConfig(BaseModel):
|
||||
class CerebrasImplConfig(RemoteInferenceProviderConfig):
|
||||
base_url: str = Field(
|
||||
default=os.environ.get("CEREBRAS_BASE_URL", DEFAULT_BASE_URL),
|
||||
description="Base URL for the Cerebras API",
|
||||
)
|
||||
api_key: SecretStr = Field(
|
||||
default=SecretStr(os.environ.get("CEREBRAS_API_KEY")),
|
||||
default=SecretStr(os.environ.get("CEREBRAS_API_KEY")), # type: ignore[arg-type]
|
||||
description="Cerebras API Key",
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -11,6 +11,6 @@ async def get_adapter_impl(config: DatabricksImplConfig, _deps):
|
|||
from .databricks import DatabricksInferenceAdapter
|
||||
|
||||
assert isinstance(config, DatabricksImplConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = DatabricksInferenceAdapter(config)
|
||||
impl = DatabricksInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -6,19 +6,20 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic import Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DatabricksImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
class DatabricksImplConfig(RemoteInferenceProviderConfig):
|
||||
url: str | None = Field(
|
||||
default=None,
|
||||
description="The URL for the Databricks model serving endpoint",
|
||||
)
|
||||
api_token: SecretStr = Field(
|
||||
default=SecretStr(None),
|
||||
default=SecretStr(None), # type: ignore[arg-type]
|
||||
description="The Databricks API token",
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -4,27 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncIterator
|
||||
from collections.abc import Iterable
|
||||
from typing import Any
|
||||
|
||||
from databricks.sdk import WorkspaceClient
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
Model,
|
||||
OpenAICompletion,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.apis.inference import OpenAICompletion
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
|
|
@ -33,30 +18,31 @@ from .config import DatabricksImplConfig
|
|||
logger = get_logger(name=__name__, category="inference::databricks")
|
||||
|
||||
|
||||
class DatabricksInferenceAdapter(
|
||||
OpenAIMixin,
|
||||
Inference,
|
||||
):
|
||||
class DatabricksInferenceAdapter(OpenAIMixin):
|
||||
config: DatabricksImplConfig
|
||||
|
||||
# source: https://docs.databricks.com/aws/en/machine-learning/foundation-model-apis/supported-models
|
||||
embedding_model_metadata = {
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"databricks-gte-large-en": {"embedding_dimension": 1024, "context_length": 8192},
|
||||
"databricks-bge-large-en": {"embedding_dimension": 1024, "context_length": 512},
|
||||
}
|
||||
|
||||
def __init__(self, config: DatabricksImplConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_token.get_secret_value()
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
return f"{self.config.url}/serving-endpoints"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
async def list_provider_model_ids(self) -> Iterable[str]:
|
||||
return [
|
||||
endpoint.name
|
||||
for endpoint in WorkspaceClient(
|
||||
host=self.config.url, token=self.get_api_key()
|
||||
).serving_endpoints.list() # TODO: this is not async
|
||||
]
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return False
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
|
|
@ -82,47 +68,3 @@ class DatabricksInferenceAdapter(
|
|||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
self._model_cache = {} # from OpenAIMixin
|
||||
ws_client = WorkspaceClient(host=self.config.url, token=self.get_api_key()) # TODO: this is not async
|
||||
endpoints = ws_client.serving_endpoints.list()
|
||||
for endpoint in endpoints:
|
||||
model = Model(
|
||||
provider_id=self.__provider_id__,
|
||||
provider_resource_id=endpoint.name,
|
||||
identifier=endpoint.name,
|
||||
)
|
||||
if endpoint.task == "llm/v1/chat":
|
||||
model.model_type = ModelType.llm # this is redundant, but informative
|
||||
elif endpoint.task == "llm/v1/embeddings":
|
||||
if endpoint.name not in self.embedding_model_metadata:
|
||||
logger.warning(f"No metadata information available for embedding model {endpoint.name}, skipping.")
|
||||
continue
|
||||
model.model_type = ModelType.embedding
|
||||
model.metadata = self.embedding_model_metadata[endpoint.name]
|
||||
else:
|
||||
logger.warning(f"Unknown model type, skipping: {endpoint}")
|
||||
continue
|
||||
|
||||
self._model_cache[endpoint.name] = model
|
||||
|
||||
return list(self._model_cache.values())
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return False
|
||||
|
|
|
|||
|
|
@ -17,6 +17,6 @@ async def get_adapter_impl(config: FireworksImplConfig, _deps):
|
|||
from .fireworks import FireworksInferenceAdapter
|
||||
|
||||
assert isinstance(config, FireworksImplConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = FireworksInferenceAdapter(config)
|
||||
impl = FireworksInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -4,195 +4,27 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from fireworks.client import Fireworks
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import FireworksImplConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::fireworks")
|
||||
|
||||
|
||||
class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
embedding_model_metadata = {
|
||||
class FireworksInferenceAdapter(OpenAIMixin):
|
||||
config: FireworksImplConfig
|
||||
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"nomic-ai/nomic-embed-text-v1.5": {"embedding_dimension": 768, "context_length": 8192},
|
||||
"accounts/fireworks/models/qwen3-embedding-8b": {"embedding_dimension": 4096, "context_length": 40960},
|
||||
}
|
||||
|
||||
def __init__(self, config: FireworksImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self)
|
||||
self.config = config
|
||||
self.allowed_models = config.allowed_models
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
provider_data_api_key_field: str = "fireworks_api_key"
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
||||
if config_api_key:
|
||||
return config_api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.fireworks_api_key:
|
||||
raise ValueError(
|
||||
'Pass Fireworks API Key in the header X-LlamaStack-Provider-Data as { "fireworks_api_key": <your api key>}'
|
||||
)
|
||||
return provider_data.fireworks_api_key
|
||||
return self.config.api_key.get_secret_value() if self.config.api_key else None # type: ignore[return-value]
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
return "https://api.fireworks.ai/inference/v1"
|
||||
|
||||
def _get_client(self) -> Fireworks:
|
||||
fireworks_api_key = self.get_api_key()
|
||||
return Fireworks(api_key=fireworks_api_key)
|
||||
|
||||
def _preprocess_prompt_for_fireworks(self, prompt: str) -> str:
|
||||
"""Remove BOS token as Fireworks automatically prepends it"""
|
||||
if prompt.startswith("<|begin_of_text|>"):
|
||||
return prompt[len("<|begin_of_text|>") :]
|
||||
return prompt
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = await self._get_client().chat.completions.acreate(**params)
|
||||
else:
|
||||
r = await self._get_client().completion.acreate(**params)
|
||||
return process_chat_completion_response(r, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _to_async_generator():
|
||||
if "messages" in params:
|
||||
stream = self._get_client().chat.completions.acreate(**params)
|
||||
else:
|
||||
stream = self._get_client().completion.acreate(**params)
|
||||
async for chunk in stream:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: SamplingParams | None,
|
||||
fmt: ResponseFormat | None,
|
||||
logprobs: LogProbConfig | None,
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
options["response_format"] = {
|
||||
"type": "grammar",
|
||||
"grammar": fmt.bnf,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if logprobs and logprobs.top_k:
|
||||
options["logprobs"] = logprobs.top_k
|
||||
if options["logprobs"] <= 0 or options["logprobs"] >= 5:
|
||||
raise ValueError("Required range: 0 < top_k < 5")
|
||||
|
||||
return options
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
# TODO: tools are never added to the request, so we need to add them here
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
|
||||
else:
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
|
||||
# Fireworks always prepends with BOS
|
||||
if "prompt" in input_dict:
|
||||
if input_dict["prompt"].startswith("<|begin_of_text|>"):
|
||||
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
|
||||
|
||||
params = {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
"stream": bool(request.stream),
|
||||
**self._build_options(request.sampling_params, request.response_format, request.logprobs),
|
||||
}
|
||||
logger.debug(f"params to fireworks: {params}")
|
||||
|
||||
return params
|
||||
|
|
|
|||
|
|
@ -10,6 +10,6 @@ from .config import GeminiConfig
|
|||
async def get_adapter_impl(config: GeminiConfig, _deps):
|
||||
from .gemini import GeminiInferenceAdapter
|
||||
|
||||
impl = GeminiInferenceAdapter(config)
|
||||
impl = GeminiInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -19,7 +20,7 @@ class GeminiProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class GeminiConfig(BaseModel):
|
||||
class GeminiConfig(RemoteInferenceProviderConfig):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Gemini models",
|
||||
|
|
|
|||
|
|
@ -4,33 +4,21 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import GeminiConfig
|
||||
|
||||
|
||||
class GeminiInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
embedding_model_metadata = {
|
||||
class GeminiInferenceAdapter(OpenAIMixin):
|
||||
config: GeminiConfig
|
||||
|
||||
provider_data_api_key_field: str = "gemini_api_key"
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"text-embedding-004": {"embedding_dimension": 768, "context_length": 2048},
|
||||
}
|
||||
|
||||
def __init__(self, config: GeminiConfig) -> None:
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="gemini",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="gemini_api_key",
|
||||
)
|
||||
self.config = config
|
||||
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key or ""
|
||||
|
||||
def get_base_url(self):
|
||||
return "https://generativelanguage.googleapis.com/v1beta/openai/"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
await super().shutdown()
|
||||
|
|
|
|||
|
|
@ -11,5 +11,5 @@ async def get_adapter_impl(config: GroqConfig, _deps):
|
|||
# import dynamically so the import is used only when it is needed
|
||||
from .groq import GroqInferenceAdapter
|
||||
|
||||
adapter = GroqInferenceAdapter(config)
|
||||
adapter = GroqInferenceAdapter(config=config)
|
||||
return adapter
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -19,7 +20,7 @@ class GroqProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class GroqConfig(BaseModel):
|
||||
class GroqConfig(RemoteInferenceProviderConfig):
|
||||
api_key: str | None = Field(
|
||||
# The Groq client library loads the GROQ_API_KEY environment variable by default
|
||||
default=None,
|
||||
|
|
|
|||
|
|
@ -6,30 +6,16 @@
|
|||
|
||||
|
||||
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
|
||||
class GroqInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
_config: GroqConfig
|
||||
class GroqInferenceAdapter(OpenAIMixin):
|
||||
config: GroqConfig
|
||||
|
||||
def __init__(self, config: GroqConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="groq",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="groq_api_key",
|
||||
)
|
||||
self.config = config
|
||||
provider_data_api_key_field: str = "groq_api_key"
|
||||
|
||||
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key or ""
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
return f"{self.config.url}/openai/v1"
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
|
|
|||
|
|
@ -4,14 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import InferenceProvider
|
||||
|
||||
from .config import LlamaCompatConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: LlamaCompatConfig, _deps) -> InferenceProvider:
|
||||
async def get_adapter_impl(config: LlamaCompatConfig, _deps):
|
||||
# import dynamically so the import is used only when it is needed
|
||||
from .llama import LlamaCompatInferenceAdapter
|
||||
|
||||
adapter = LlamaCompatInferenceAdapter(config)
|
||||
adapter = LlamaCompatInferenceAdapter(config=config)
|
||||
return adapter
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -19,7 +20,7 @@ class LlamaProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class LlamaCompatConfig(BaseModel):
|
||||
class LlamaCompatConfig(RemoteInferenceProviderConfig):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Llama API key",
|
||||
|
|
|
|||
|
|
@ -3,40 +3,26 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.inference.inference import OpenAICompletion, OpenAIEmbeddingsResponse
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.remote.inference.llama_openai_compat.config import LlamaCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::llama_openai_compat")
|
||||
|
||||
|
||||
class LlamaCompatInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
class LlamaCompatInferenceAdapter(OpenAIMixin):
|
||||
config: LlamaCompatConfig
|
||||
|
||||
provider_data_api_key_field: str = "llama_api_key"
|
||||
"""
|
||||
Llama API Inference Adapter for Llama Stack.
|
||||
|
||||
Note: The inheritance order is important here. OpenAIMixin must come before
|
||||
LiteLLMOpenAIMixin to ensure that OpenAIMixin.check_model_availability()
|
||||
is used instead of ModelRegistryHelper.check_model_availability().
|
||||
|
||||
- OpenAIMixin.check_model_availability() queries the Llama API to check if a model exists
|
||||
- ModelRegistryHelper.check_model_availability() (inherited by LiteLLMOpenAIMixin) just returns False and shows a warning
|
||||
"""
|
||||
|
||||
_config: LlamaCompatConfig
|
||||
|
||||
def __init__(self, config: LlamaCompatConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="meta_llama",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="llama_api_key",
|
||||
openai_compat_api_base=config.openai_compat_api_base,
|
||||
)
|
||||
self.config = config
|
||||
|
||||
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key or ""
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
|
|
@ -46,8 +32,37 @@ class LlamaCompatInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
"""
|
||||
return self.config.openai_compat_api_base
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
|||
|
|
@ -15,7 +15,8 @@ async def get_adapter_impl(config: NVIDIAConfig, _deps) -> Inference:
|
|||
|
||||
if not isinstance(config, NVIDIAConfig):
|
||||
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||
adapter = NVIDIAInferenceAdapter(config)
|
||||
adapter = NVIDIAInferenceAdapter(config=config)
|
||||
await adapter.initialize()
|
||||
return adapter
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -7,13 +7,14 @@
|
|||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic import Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class NVIDIAConfig(BaseModel):
|
||||
class NVIDIAConfig(RemoteInferenceProviderConfig):
|
||||
"""
|
||||
Configuration for the NVIDIA NIM inference endpoint.
|
||||
|
||||
|
|
|
|||
|
|
@ -4,44 +4,26 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import warnings
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from openai import NOT_GIVEN, APIConnectionError
|
||||
from openai import NOT_GIVEN
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolPromptFormat
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_openai_chat_completion_choice,
|
||||
convert_openai_chat_completion_stream,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from . import NVIDIAConfig
|
||||
from .openai_utils import (
|
||||
convert_chat_completion_request,
|
||||
)
|
||||
from .utils import _is_nvidia_hosted
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::nvidia")
|
||||
|
||||
|
||||
class NVIDIAInferenceAdapter(OpenAIMixin, Inference):
|
||||
class NVIDIAInferenceAdapter(OpenAIMixin):
|
||||
config: NVIDIAConfig
|
||||
|
||||
"""
|
||||
NVIDIA Inference Adapter for Llama Stack.
|
||||
|
||||
|
|
@ -56,32 +38,21 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference):
|
|||
"""
|
||||
|
||||
# source: https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
|
||||
embedding_model_metadata = {
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"nvidia/llama-3.2-nv-embedqa-1b-v2": {"embedding_dimension": 2048, "context_length": 8192},
|
||||
"nvidia/nv-embedqa-e5-v5": {"embedding_dimension": 512, "context_length": 1024},
|
||||
"nvidia/nv-embedqa-mistral-7b-v2": {"embedding_dimension": 512, "context_length": 4096},
|
||||
"snowflake/arctic-embed-l": {"embedding_dimension": 512, "context_length": 1024},
|
||||
}
|
||||
|
||||
def __init__(self, config: NVIDIAConfig) -> None:
|
||||
logger.info(f"Initializing NVIDIAInferenceAdapter({config.url})...")
|
||||
async def initialize(self) -> None:
|
||||
logger.info(f"Initializing NVIDIAInferenceAdapter({self.config.url})...")
|
||||
|
||||
if _is_nvidia_hosted(config):
|
||||
if not config.api_key:
|
||||
if _is_nvidia_hosted(self.config):
|
||||
if not self.config.api_key:
|
||||
raise RuntimeError(
|
||||
"API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM."
|
||||
)
|
||||
# elif self._config.api_key:
|
||||
#
|
||||
# we don't raise this warning because a user may have deployed their
|
||||
# self-hosted NIM with an API key requirement.
|
||||
#
|
||||
# warnings.warn(
|
||||
# "API key is not required for self-hosted NVIDIA NIM. "
|
||||
# "Consider removing the api_key from the configuration."
|
||||
# )
|
||||
|
||||
self._config = config
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
"""
|
||||
|
|
@ -89,7 +60,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference):
|
|||
|
||||
:return: The NVIDIA API key
|
||||
"""
|
||||
return self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"
|
||||
return self.config.api_key.get_secret_value() if self.config.api_key else "NO KEY"
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
|
|
@ -97,7 +68,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference):
|
|||
|
||||
:return: The NVIDIA API base URL
|
||||
"""
|
||||
return f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
|
||||
return f"{self.config.url}/v1" if self.config.append_api_version else self.config.url
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
|
|
@ -149,49 +120,3 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference):
|
|||
model=response.model,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
if tool_prompt_format:
|
||||
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring", stacklevel=2)
|
||||
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
request = await convert_chat_completion_request(
|
||||
request=ChatCompletionRequest(
|
||||
model=provider_model_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
tools=tools,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
),
|
||||
n=1,
|
||||
)
|
||||
|
||||
try:
|
||||
response = await self.client.chat.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
if stream:
|
||||
return convert_openai_chat_completion_stream(response, enable_incremental_tool_calls=False)
|
||||
else:
|
||||
# we pass n=1 to get only one completion
|
||||
return convert_openai_chat_completion_choice(response.choices[0])
|
||||
|
|
|
|||
|
|
@ -10,6 +10,6 @@ from .config import OllamaImplConfig
|
|||
async def get_adapter_impl(config: OllamaImplConfig, _deps):
|
||||
from .ollama import OllamaInferenceAdapter
|
||||
|
||||
impl = OllamaInferenceAdapter(config)
|
||||
impl = OllamaInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -6,12 +6,14 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
|
||||
DEFAULT_OLLAMA_URL = "http://localhost:11434"
|
||||
|
||||
|
||||
class OllamaImplConfig(BaseModel):
|
||||
class OllamaImplConfig(RemoteInferenceProviderConfig):
|
||||
url: str = DEFAULT_OLLAMA_URL
|
||||
refresh_models: bool = Field(
|
||||
default=False,
|
||||
|
|
|
|||
|
|
@ -6,72 +6,29 @@
|
|||
|
||||
|
||||
import asyncio
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any
|
||||
|
||||
from ollama import AsyncClient as AsyncOllamaClient
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.common.errors import UnsupportedModelError
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
GrammarResponseFormat,
|
||||
InferenceProvider,
|
||||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.datatypes import (
|
||||
HealthResponse,
|
||||
HealthStatus,
|
||||
ModelsProtocolPrivate,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.ollama.config import OllamaImplConfig
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
build_hf_repo_model_entry,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
convert_image_content_to_url,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::ollama")
|
||||
|
||||
|
||||
class OllamaInferenceAdapter(
|
||||
OpenAIMixin,
|
||||
ModelRegistryHelper,
|
||||
InferenceProvider,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
class OllamaInferenceAdapter(OpenAIMixin):
|
||||
config: OllamaImplConfig
|
||||
|
||||
# automatically set by the resolver when instantiating the provider
|
||||
__provider_id__: str
|
||||
|
||||
embedding_model_metadata = {
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"all-minilm:l6-v2": {
|
||||
"embedding_dimension": 384,
|
||||
"context_length": 512,
|
||||
|
|
@ -90,29 +47,8 @@ class OllamaInferenceAdapter(
|
|||
},
|
||||
}
|
||||
|
||||
def __init__(self, config: OllamaImplConfig) -> None:
|
||||
# TODO: remove ModelRegistryHelper.__init__ when completion and
|
||||
# chat_completion are. this exists to satisfy the input /
|
||||
# output processing for llama models. specifically,
|
||||
# tool_calling is handled by raw template processing,
|
||||
# instead of using the /api/chat endpoint w/ tools=...
|
||||
ModelRegistryHelper.__init__(
|
||||
self,
|
||||
model_entries=[
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.2:3b-instruct-fp16",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"llama-guard3:1b",
|
||||
CoreModelId.llama_guard_3_1b.value,
|
||||
),
|
||||
],
|
||||
)
|
||||
self.config = config
|
||||
# Ollama does not support image urls, so we need to download the image and convert it to base64
|
||||
self.download_images = True
|
||||
self._clients: dict[asyncio.AbstractEventLoop, AsyncOllamaClient] = {}
|
||||
download_images: bool = True
|
||||
_clients: dict[asyncio.AbstractEventLoop, AsyncOllamaClient] = {}
|
||||
|
||||
@property
|
||||
def ollama_client(self) -> AsyncOllamaClient:
|
||||
|
|
@ -156,134 +92,6 @@ class OllamaInferenceAdapter(
|
|||
async def shutdown(self) -> None:
|
||||
self._clients.clear()
|
||||
|
||||
async def _get_model(self, model_id: str) -> Model:
|
||||
if not self.model_store:
|
||||
raise ValueError("Model store not set")
|
||||
return await self.model_store.get_model(model_id)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self._get_model(model_id)
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError(f"Model {model_id} has no provider_resource_id set")
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
response_format=response_format,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
# This is needed since the Ollama API expects num_predict to be set
|
||||
# for early truncation instead of max_tokens.
|
||||
if sampling_options.get("max_tokens") is not None:
|
||||
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||
|
||||
input_dict: dict[str, Any] = {}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if media_present or not llama_model:
|
||||
contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages]
|
||||
# flatten the list of lists
|
||||
input_dict["messages"] = [item for sublist in contents for item in sublist]
|
||||
else:
|
||||
input_dict["raw"] = True
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(
|
||||
request,
|
||||
llama_model,
|
||||
)
|
||||
|
||||
if fmt := request.response_format:
|
||||
if isinstance(fmt, JsonSchemaResponseFormat):
|
||||
input_dict["format"] = fmt.json_schema
|
||||
elif isinstance(fmt, GrammarResponseFormat):
|
||||
raise NotImplementedError("Grammar response format is not supported")
|
||||
else:
|
||||
raise ValueError(f"Unknown response format type: {fmt.type}")
|
||||
|
||||
params = {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
"options": sampling_options,
|
||||
"stream": request.stream,
|
||||
}
|
||||
logger.debug(f"params to ollama: {params}")
|
||||
|
||||
return params
|
||||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = await self.ollama_client.chat(**params)
|
||||
else:
|
||||
r = await self.ollama_client.generate(**params)
|
||||
|
||||
if "message" in r:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["message"]["content"],
|
||||
)
|
||||
else:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["response"],
|
||||
)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
if "messages" in params:
|
||||
s = await self.ollama_client.chat(**params)
|
||||
else:
|
||||
s = await self.ollama_client.generate(**params)
|
||||
async for chunk in s:
|
||||
if "message" in chunk:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["message"]["content"],
|
||||
)
|
||||
else:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["response"],
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
if await self.check_model_availability(model.provider_model_id):
|
||||
return model
|
||||
|
|
@ -295,24 +103,3 @@ class OllamaInferenceAdapter(
|
|||
return model
|
||||
|
||||
raise UnsupportedModelError(model.provider_model_id, list(self._model_cache.keys()))
|
||||
|
||||
|
||||
async def convert_message_to_openai_dict_for_ollama(message: Message) -> list[dict]:
|
||||
async def _convert_content(content) -> dict:
|
||||
if isinstance(content, ImageContentItem):
|
||||
return {
|
||||
"role": message.role,
|
||||
"images": [await convert_image_content_to_url(content, download=True, include_format=False)],
|
||||
}
|
||||
else:
|
||||
text = content.text if isinstance(content, TextContentItem) else content
|
||||
assert isinstance(text, str)
|
||||
return {
|
||||
"role": message.role,
|
||||
"content": text,
|
||||
}
|
||||
|
||||
if isinstance(message.content, list):
|
||||
return [await _convert_content(c) for c in message.content]
|
||||
else:
|
||||
return [await _convert_content(message.content)]
|
||||
|
|
|
|||
|
|
@ -10,6 +10,6 @@ from .config import OpenAIConfig
|
|||
async def get_adapter_impl(config: OpenAIConfig, _deps):
|
||||
from .openai import OpenAIInferenceAdapter
|
||||
|
||||
impl = OpenAIInferenceAdapter(config)
|
||||
impl = OpenAIInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -19,7 +20,7 @@ class OpenAIProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIConfig(BaseModel):
|
||||
class OpenAIConfig(RemoteInferenceProviderConfig):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for OpenAI models",
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import OpenAIConfig
|
||||
|
|
@ -14,52 +13,24 @@ logger = get_logger(name=__name__, category="inference::openai")
|
|||
|
||||
|
||||
#
|
||||
# This OpenAI adapter implements Inference methods using two mixins -
|
||||
# This OpenAI adapter implements Inference methods using OpenAIMixin
|
||||
#
|
||||
# | Inference Method | Implementation Source |
|
||||
# |----------------------------|--------------------------|
|
||||
# | completion | LiteLLMOpenAIMixin |
|
||||
# | chat_completion | LiteLLMOpenAIMixin |
|
||||
# | embedding | LiteLLMOpenAIMixin |
|
||||
# | openai_completion | OpenAIMixin |
|
||||
# | openai_chat_completion | OpenAIMixin |
|
||||
# | openai_embeddings | OpenAIMixin |
|
||||
#
|
||||
class OpenAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
class OpenAIInferenceAdapter(OpenAIMixin):
|
||||
"""
|
||||
OpenAI Inference Adapter for Llama Stack.
|
||||
|
||||
Note: The inheritance order is important here. OpenAIMixin must come before
|
||||
LiteLLMOpenAIMixin to ensure that OpenAIMixin.check_model_availability()
|
||||
is used instead of ModelRegistryHelper.check_model_availability().
|
||||
|
||||
- OpenAIMixin.check_model_availability() queries the OpenAI API to check if a model exists
|
||||
- ModelRegistryHelper.check_model_availability() (inherited by LiteLLMOpenAIMixin) just returns False and shows a warning
|
||||
"""
|
||||
|
||||
embedding_model_metadata = {
|
||||
config: OpenAIConfig
|
||||
|
||||
provider_data_api_key_field: str = "openai_api_key"
|
||||
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"text-embedding-3-small": {"embedding_dimension": 1536, "context_length": 8192},
|
||||
"text-embedding-3-large": {"embedding_dimension": 3072, "context_length": 8192},
|
||||
}
|
||||
|
||||
def __init__(self, config: OpenAIConfig) -> None:
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="openai",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="openai_api_key",
|
||||
)
|
||||
self.config = config
|
||||
# we set is_openai_compat so users can use the canonical
|
||||
# openai model names like "gpt-4" or "gpt-3.5-turbo"
|
||||
# and the model name will be translated to litellm's
|
||||
# "openai/gpt-4" or "openai/gpt-3.5-turbo" transparently.
|
||||
# if we do not set this, users will be exposed to the
|
||||
# litellm specific model names, an abstraction leak.
|
||||
self.is_openai_compat = True
|
||||
|
||||
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key or ""
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
|
|
@ -68,9 +39,3 @@ class OpenAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
Returns the OpenAI API base URL from the configuration.
|
||||
"""
|
||||
return self.config.base_url
|
||||
|
||||
async def initialize(self) -> None:
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
await super().shutdown()
|
||||
|
|
|
|||
|
|
@ -6,13 +6,14 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic import Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PassthroughImplConfig(BaseModel):
|
||||
class PassthroughImplConfig(RemoteInferenceProviderConfig):
|
||||
url: str = Field(
|
||||
default=None,
|
||||
description="The URL for the passthrough endpoint",
|
||||
|
|
|
|||
|
|
@ -4,33 +4,22 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from llama_stack_client import AsyncLlamaStackClient
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.core.library_client import convert_pydantic_to_json_value, convert_to_pydantic
|
||||
from llama_stack.core.library_client import convert_pydantic_to_json_value
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||
|
||||
|
|
@ -42,12 +31,6 @@ class PassthroughInferenceAdapter(Inference):
|
|||
ModelRegistryHelper.__init__(self)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
|
|
@ -85,76 +68,6 @@ class PassthroughInferenceAdapter(Inference):
|
|||
provider_data=provider_data,
|
||||
)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
# TODO: revisit this remove tool_calls from messages logic
|
||||
for message in messages:
|
||||
if hasattr(message, "tool_calls"):
|
||||
message.tool_calls = None
|
||||
|
||||
request_params = {
|
||||
"model_id": model.provider_resource_id,
|
||||
"messages": messages,
|
||||
"sampling_params": sampling_params,
|
||||
"tools": tools,
|
||||
"tool_choice": tool_choice,
|
||||
"tool_prompt_format": tool_prompt_format,
|
||||
"response_format": response_format,
|
||||
"stream": stream,
|
||||
"logprobs": logprobs,
|
||||
}
|
||||
|
||||
# only pass through the not None params
|
||||
request_params = {key: value for key, value in request_params.items() if value is not None}
|
||||
|
||||
# cast everything to json dict
|
||||
json_params = self.cast_value_to_json_dict(request_params)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(json_params)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(json_params)
|
||||
|
||||
async def _nonstream_chat_completion(self, json_params: dict[str, Any]) -> ChatCompletionResponse:
|
||||
client = self._get_client()
|
||||
response = await client.inference.chat_completion(**json_params)
|
||||
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=response.completion_message.content.text,
|
||||
stop_reason=response.completion_message.stop_reason,
|
||||
tool_calls=response.completion_message.tool_calls,
|
||||
),
|
||||
logprobs=response.logprobs,
|
||||
)
|
||||
|
||||
async def _stream_chat_completion(self, json_params: dict[str, Any]) -> AsyncGenerator:
|
||||
client = self._get_client()
|
||||
stream_response = await client.inference.chat_completion(**json_params)
|
||||
|
||||
async for chunk in stream_response:
|
||||
chunk = chunk.to_dict()
|
||||
|
||||
# temporary hack to remove the metrics from the response
|
||||
chunk["metrics"] = []
|
||||
chunk = convert_to_pydantic(ChatCompletionResponseStreamChunk, chunk)
|
||||
yield chunk
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
|||
|
|
@ -6,13 +6,14 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RunpodImplConfig(BaseModel):
|
||||
class RunpodImplConfig(RemoteInferenceProviderConfig):
|
||||
url: str | None = Field(
|
||||
default=None,
|
||||
description="The URL for the Runpod model serving endpoint",
|
||||
|
|
|
|||
|
|
@ -3,9 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
||||
|
|
@ -16,9 +14,6 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
|
|
@ -54,7 +49,6 @@ MODEL_ENTRIES = [
|
|||
class RunpodInferenceAdapter(
|
||||
ModelRegistryHelper,
|
||||
Inference,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
):
|
||||
def __init__(self, config: RunpodImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
|
|
@ -62,64 +56,6 @@ class RunpodInferenceAdapter(
|
|||
)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
request = ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, client)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request, client)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: OpenAI
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = client.completions.create(**params)
|
||||
return process_chat_completion_response(r, request)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: OpenAI
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
|
||||
async def _to_async_generator():
|
||||
s = client.completions.create(**params)
|
||||
for chunk in s:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
return {
|
||||
"model": self.map_to_provider_model(request.model),
|
||||
|
|
|
|||
|
|
@ -11,6 +11,6 @@ async def get_adapter_impl(config: SambaNovaImplConfig, _deps):
|
|||
from .sambanova import SambaNovaInferenceAdapter
|
||||
|
||||
assert isinstance(config, SambaNovaImplConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = SambaNovaInferenceAdapter(config)
|
||||
impl = SambaNovaInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -19,7 +20,7 @@ class SambaNovaProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class SambaNovaImplConfig(BaseModel):
|
||||
class SambaNovaImplConfig(RemoteInferenceProviderConfig):
|
||||
url: str = Field(
|
||||
default="https://api.sambanova.ai/v1",
|
||||
description="The URL for the SambaNova AI server",
|
||||
|
|
|
|||
|
|
@ -5,39 +5,22 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import SambaNovaImplConfig
|
||||
|
||||
|
||||
class SambaNovaInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
class SambaNovaInferenceAdapter(OpenAIMixin):
|
||||
config: SambaNovaImplConfig
|
||||
|
||||
provider_data_api_key_field: str = "sambanova_api_key"
|
||||
download_images: bool = True # SambaNova does not support image downloads server-size, perform them on the client
|
||||
"""
|
||||
SambaNova Inference Adapter for Llama Stack.
|
||||
|
||||
Note: The inheritance order is important here. OpenAIMixin must come before
|
||||
LiteLLMOpenAIMixin to ensure that OpenAIMixin.check_model_availability()
|
||||
is used instead of LiteLLMOpenAIMixin.check_model_availability().
|
||||
|
||||
- OpenAIMixin.check_model_availability() queries the /v1/models to check if a model exists
|
||||
- LiteLLMOpenAIMixin.check_model_availability() checks the static registry within LiteLLM
|
||||
"""
|
||||
|
||||
def __init__(self, config: SambaNovaImplConfig):
|
||||
self.config = config
|
||||
self.environment_available_models: list[str] = []
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="sambanova",
|
||||
api_key_from_config=self.config.api_key.get_secret_value() if self.config.api_key else None,
|
||||
provider_data_api_key_field="sambanova_api_key",
|
||||
openai_compat_api_base=self.config.url,
|
||||
download_images=True, # SambaNova requires base64 image encoding
|
||||
json_schema_strict=False, # SambaNova doesn't support strict=True yet
|
||||
)
|
||||
|
||||
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_key.get_secret_value() if self.config.api_key else ""
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -7,11 +7,12 @@
|
|||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TGIImplConfig(BaseModel):
|
||||
class TGIImplConfig(RemoteInferenceProviderConfig):
|
||||
url: str = Field(
|
||||
description="The URL for the TGI serving endpoint",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,68 +5,21 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from collections.abc import AsyncGenerator
|
||||
from collections.abc import Iterable
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
build_hf_repo_model_entry,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_model_input_info,
|
||||
)
|
||||
|
||||
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
|
||||
|
||||
log = get_logger(name=__name__, category="inference::tgi")
|
||||
|
||||
|
||||
def build_hf_repo_model_entries():
|
||||
return [
|
||||
build_hf_repo_model_entry(
|
||||
model.huggingface_repo,
|
||||
model.descriptor(),
|
||||
)
|
||||
for model in all_registered_models()
|
||||
if model.huggingface_repo
|
||||
]
|
||||
|
||||
|
||||
class _HfAdapter(
|
||||
OpenAIMixin,
|
||||
Inference,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
class _HfAdapter(OpenAIMixin):
|
||||
url: str
|
||||
api_key: SecretStr
|
||||
|
||||
|
|
@ -76,152 +29,14 @@ class _HfAdapter(
|
|||
|
||||
overwrite_completion_id = True # TGI always returns id=""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
|
||||
self.huggingface_repo_to_llama_model_id = {
|
||||
model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo
|
||||
}
|
||||
|
||||
def get_api_key(self):
|
||||
return self.api_key.get_secret_value()
|
||||
|
||||
def get_base_url(self):
|
||||
return self.url
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
models = []
|
||||
async for model in self.client.models.list():
|
||||
models.append(
|
||||
Model(
|
||||
identifier=model.id,
|
||||
provider_resource_id=model.id,
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={},
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
if model.provider_resource_id != self.model_id:
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} does not match the model {self.model_id} served by TGI."
|
||||
)
|
||||
return model
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
def _get_max_new_tokens(self, sampling_params, input_tokens):
|
||||
return min(
|
||||
sampling_params.max_tokens or (self.max_tokens - input_tokens),
|
||||
self.max_tokens - input_tokens - 1,
|
||||
)
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
fmt: ResponseFormat = None,
|
||||
):
|
||||
options = get_sampling_options(sampling_params)
|
||||
# TGI does not support temperature=0 when using greedy sampling
|
||||
# We set it to 1e-3 instead, anything lower outputs garbage from TGI
|
||||
# We can use top_p sampling strategy to specify lower temperature
|
||||
if abs(options["temperature"]) < 1e-10:
|
||||
options["temperature"] = 1e-3
|
||||
|
||||
# delete key "max_tokens" from options since its not supported by the API
|
||||
options.pop("max_tokens", None)
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["grammar"] = {
|
||||
"type": "json",
|
||||
"value": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
raise ValueError("Grammar response format not supported yet")
|
||||
else:
|
||||
raise ValueError(f"Unexpected response format: {fmt.type}")
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await self.hf_client.text_generation(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r.details.finish_reason,
|
||||
text="".join(t.text for t in r.details.tokens),
|
||||
)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.hf_client.text_generation(**params)
|
||||
async for chunk in s:
|
||||
token_result = chunk.token
|
||||
|
||||
choice = OpenAICompatCompletionChoice(text=token_result.text)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
prompt, input_tokens = await chat_completion_request_to_model_input_info(
|
||||
request, self.register_helper.get_llama_model(request.model)
|
||||
)
|
||||
return dict(
|
||||
prompt=prompt,
|
||||
stream=request.stream,
|
||||
details=True,
|
||||
max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens),
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
)
|
||||
async def list_provider_model_ids(self) -> Iterable[str]:
|
||||
return [self.model_id]
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -17,6 +17,6 @@ async def get_adapter_impl(config: TogetherImplConfig, _deps):
|
|||
from .together import TogetherInferenceAdapter
|
||||
|
||||
assert isinstance(config, TogetherImplConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = TogetherInferenceAdapter(config)
|
||||
impl = TogetherInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -4,51 +4,30 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
from collections.abc import Iterable
|
||||
|
||||
from together import AsyncTogether
|
||||
from together.constants import BASE_URL
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import TogetherImplConfig
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::together")
|
||||
|
||||
|
||||
class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
embedding_model_metadata = {
|
||||
class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
|
||||
config: TogetherImplConfig
|
||||
|
||||
embedding_model_metadata: dict[str, dict[str, int]] = {
|
||||
"togethercomputer/m2-bert-80M-32k-retrieval": {"embedding_dimension": 768, "context_length": 32768},
|
||||
"BAAI/bge-large-en-v1.5": {"embedding_dimension": 1024, "context_length": 512},
|
||||
"BAAI/bge-base-en-v1.5": {"embedding_dimension": 768, "context_length": 512},
|
||||
|
|
@ -56,24 +35,16 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
|
|||
"intfloat/multilingual-e5-large-instruct": {"embedding_dimension": 1024, "context_length": 512},
|
||||
}
|
||||
|
||||
def __init__(self, config: TogetherImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self)
|
||||
self.config = config
|
||||
self.allowed_models = config.allowed_models
|
||||
self._model_cache: dict[str, Model] = {}
|
||||
_model_cache: dict[str, Model] = {}
|
||||
|
||||
provider_data_api_key_field: str = "together_api_key"
|
||||
|
||||
def get_api_key(self):
|
||||
return self.config.api_key.get_secret_value()
|
||||
return self.config.api_key.get_secret_value() if self.config.api_key else None
|
||||
|
||||
def get_base_url(self):
|
||||
return BASE_URL
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_client(self) -> AsyncTogether:
|
||||
together_api_key = None
|
||||
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
||||
|
|
@ -88,142 +59,13 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
|
|||
together_api_key = provider_data.together_api_key
|
||||
return AsyncTogether(api_key=together_api_key)
|
||||
|
||||
def _get_openai_client(self) -> AsyncOpenAI:
|
||||
together_client = self._get_client().client
|
||||
return AsyncOpenAI(
|
||||
base_url=together_client.base_url,
|
||||
api_key=together_client.api_key,
|
||||
)
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: SamplingParams | None,
|
||||
logprobs: LogProbConfig | None,
|
||||
fmt: ResponseFormat,
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
raise NotImplementedError("Grammar response format not supported yet")
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if logprobs and logprobs.top_k:
|
||||
if logprobs.top_k != 1:
|
||||
raise ValueError(
|
||||
f"Unsupported value: Together only supports logprobs top_k=1. {logprobs.top_k} was provided",
|
||||
)
|
||||
options["logprobs"] = 1
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
client = self._get_client()
|
||||
if "messages" in params:
|
||||
r = await client.chat.completions.create(**params)
|
||||
else:
|
||||
r = await client.completions.create(**params)
|
||||
return process_chat_completion_response(r, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
client = self._get_client()
|
||||
if "messages" in params:
|
||||
stream = await client.chat.completions.create(**params)
|
||||
else:
|
||||
stream = await client.completions.create(**params)
|
||||
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
|
||||
else:
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
|
||||
params = {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**self._build_options(request.sampling_params, request.logprobs, request.response_format),
|
||||
}
|
||||
logger.debug(f"params to together: {params}")
|
||||
return params
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
self._model_cache = {}
|
||||
async def list_provider_model_ids(self) -> Iterable[str]:
|
||||
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
|
||||
for m in await self._get_client().models.list():
|
||||
if m.type == "embedding":
|
||||
if m.id not in self.embedding_model_metadata:
|
||||
logger.warning(f"Unknown embedding dimension for model {m.id}, skipping.")
|
||||
continue
|
||||
metadata = self.embedding_model_metadata[m.id]
|
||||
self._model_cache[m.id] = Model(
|
||||
provider_id=self.__provider_id__,
|
||||
provider_resource_id=m.id,
|
||||
identifier=m.id,
|
||||
model_type=ModelType.embedding,
|
||||
metadata=metadata,
|
||||
)
|
||||
else:
|
||||
self._model_cache[m.id] = Model(
|
||||
provider_id=self.__provider_id__,
|
||||
provider_resource_id=m.id,
|
||||
identifier=m.id,
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
|
||||
return self._model_cache.values()
|
||||
return [m.id for m in await self._get_client().models.list()]
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return True
|
||||
|
||||
async def check_model_availability(self, model):
|
||||
return model in self._model_cache
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
@ -264,4 +106,4 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
|
|||
)
|
||||
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
||||
|
||||
return response
|
||||
return response # type: ignore[no-any-return]
|
||||
|
|
|
|||
|
|
@ -10,6 +10,6 @@ from .config import VertexAIConfig
|
|||
async def get_adapter_impl(config: VertexAIConfig, _deps):
|
||||
from .vertexai import VertexAIInferenceAdapter
|
||||
|
||||
impl = VertexAIInferenceAdapter(config)
|
||||
impl = VertexAIInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -23,7 +24,7 @@ class VertexAIProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class VertexAIConfig(BaseModel):
|
||||
class VertexAIConfig(RemoteInferenceProviderConfig):
|
||||
project: str = Field(
|
||||
description="Google Cloud project ID for Vertex AI",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -4,29 +4,19 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
import google.auth.transport.requests
|
||||
from google.auth import default
|
||||
|
||||
from llama_stack.apis.inference import ChatCompletionRequest
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
|
||||
LiteLLMOpenAIMixin,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import VertexAIConfig
|
||||
|
||||
|
||||
class VertexAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
def __init__(self, config: VertexAIConfig) -> None:
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="vertex_ai",
|
||||
api_key_from_config=None, # Vertex AI uses ADC, not API keys
|
||||
provider_data_api_key_field="vertex_project", # Use project for validation
|
||||
)
|
||||
self.config = config
|
||||
class VertexAIInferenceAdapter(OpenAIMixin):
|
||||
config: VertexAIConfig
|
||||
|
||||
provider_data_api_key_field: str = "vertex_project"
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
"""
|
||||
|
|
@ -41,8 +31,7 @@ class VertexAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
credentials.refresh(google.auth.transport.requests.Request())
|
||||
return str(credentials.token)
|
||||
except Exception:
|
||||
# If we can't get credentials, return empty string to let LiteLLM handle it
|
||||
# This allows the LiteLLM mixin to work with ADC directly
|
||||
# If we can't get credentials, return empty string to let the env work with ADC directly
|
||||
return ""
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
|
|
@ -53,23 +42,3 @@ class VertexAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/start/openai
|
||||
"""
|
||||
return f"https://{self.config.location}-aiplatform.googleapis.com/v1/projects/{self.config.project}/locations/{self.config.location}/endpoints/openapi"
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict[str, Any]:
|
||||
# Get base parameters from parent
|
||||
params = await super()._get_params(request)
|
||||
|
||||
# Add Vertex AI specific parameters
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data:
|
||||
if getattr(provider_data, "vertex_project", None):
|
||||
params["vertex_project"] = provider_data.vertex_project
|
||||
if getattr(provider_data, "vertex_location", None):
|
||||
params["vertex_location"] = provider_data.vertex_location
|
||||
else:
|
||||
params["vertex_project"] = self.config.project
|
||||
params["vertex_location"] = self.config.location
|
||||
|
||||
# Remove api_key since Vertex AI uses ADC
|
||||
params.pop("api_key", None)
|
||||
|
||||
return params
|
||||
|
|
|
|||
|
|
@ -17,6 +17,6 @@ async def get_adapter_impl(config: VLLMInferenceAdapterConfig, _deps):
|
|||
from .vllm import VLLMInferenceAdapter
|
||||
|
||||
assert isinstance(config, VLLMInferenceAdapterConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = VLLMInferenceAdapter(config)
|
||||
impl = VLLMInferenceAdapter(config=config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -6,13 +6,14 @@
|
|||
|
||||
from pathlib import Path
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import Field, field_validator
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VLLMInferenceAdapterConfig(BaseModel):
|
||||
class VLLMInferenceAdapterConfig(RemoteInferenceProviderConfig):
|
||||
url: str | None = Field(
|
||||
default=None,
|
||||
description="The URL for the vLLM model serving endpoint",
|
||||
|
|
|
|||
|
|
@ -3,63 +3,26 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import httpx
|
||||
from openai import APIConnectionError, AsyncOpenAI
|
||||
from openai.types.chat.chat_completion_chunk import (
|
||||
ChatCompletionChunk as OpenAIChatCompletionChunk,
|
||||
)
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
TextDelta,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
GrammarResponseFormat,
|
||||
Inference,
|
||||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ModelStore,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool, StopReason, ToolCall
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.datatypes import (
|
||||
HealthResponse,
|
||||
HealthStatus,
|
||||
ModelsProtocolPrivate,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
build_hf_repo_model_entry,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
UnparseableToolCall,
|
||||
convert_message_to_openai_dict,
|
||||
convert_openai_chat_completion_stream,
|
||||
convert_tool_call,
|
||||
get_sampling_options,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
|
|
@ -68,210 +31,15 @@ from .config import VLLMInferenceAdapterConfig
|
|||
log = get_logger(name=__name__, category="inference::vllm")
|
||||
|
||||
|
||||
def build_hf_repo_model_entries():
|
||||
return [
|
||||
build_hf_repo_model_entry(
|
||||
model.huggingface_repo,
|
||||
model.descriptor(),
|
||||
)
|
||||
for model in all_registered_models()
|
||||
if model.huggingface_repo
|
||||
]
|
||||
class VLLMInferenceAdapter(OpenAIMixin):
|
||||
config: VLLMInferenceAdapterConfig
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
def _convert_to_vllm_tool_calls_in_response(
|
||||
tool_calls,
|
||||
) -> list[ToolCall]:
|
||||
if not tool_calls:
|
||||
return []
|
||||
provider_data_api_key_field: str = "vllm_api_token"
|
||||
|
||||
return [
|
||||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=call.function.arguments,
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
||||
|
||||
def _convert_to_vllm_tools_in_request(tools: list[ToolDefinition]) -> list[dict]:
|
||||
compat_tools = []
|
||||
|
||||
for tool in tools:
|
||||
# The tool.tool_name can be a str or a BuiltinTool enum. If
|
||||
# it's the latter, convert to a string.
|
||||
tool_name = tool.tool_name
|
||||
if isinstance(tool_name, BuiltinTool):
|
||||
tool_name = tool_name.value
|
||||
|
||||
compat_tool = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"description": tool.description,
|
||||
"parameters": tool.input_schema
|
||||
or {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
compat_tools.append(compat_tool)
|
||||
|
||||
return compat_tools
|
||||
|
||||
|
||||
def _convert_to_vllm_finish_reason(finish_reason: str) -> StopReason:
|
||||
return {
|
||||
"stop": StopReason.end_of_turn,
|
||||
"length": StopReason.out_of_tokens,
|
||||
"tool_calls": StopReason.end_of_message,
|
||||
}.get(finish_reason, StopReason.end_of_turn)
|
||||
|
||||
|
||||
def _process_vllm_chat_completion_end_of_stream(
|
||||
finish_reason: str | None,
|
||||
last_chunk_content: str | None,
|
||||
current_event_type: ChatCompletionResponseEventType,
|
||||
tool_call_bufs: dict[str, UnparseableToolCall] | None = None,
|
||||
) -> list[OpenAIChatCompletionChunk]:
|
||||
chunks = []
|
||||
|
||||
if finish_reason is not None:
|
||||
stop_reason = _convert_to_vllm_finish_reason(finish_reason)
|
||||
else:
|
||||
stop_reason = StopReason.end_of_message
|
||||
|
||||
tool_call_bufs = tool_call_bufs or {}
|
||||
for _index, tool_call_buf in sorted(tool_call_bufs.items()):
|
||||
args_str = tool_call_buf.arguments or "{}"
|
||||
try:
|
||||
chunks.append(
|
||||
ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=current_event_type,
|
||||
delta=ToolCallDelta(
|
||||
tool_call=ToolCall(
|
||||
call_id=tool_call_buf.call_id,
|
||||
tool_name=tool_call_buf.tool_name,
|
||||
arguments=args_str,
|
||||
),
|
||||
parse_status=ToolCallParseStatus.succeeded,
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
log.warning(f"Failed to parse tool call buffer arguments: {args_str} \nError: {e}")
|
||||
|
||||
chunks.append(
|
||||
ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
tool_call=str(tool_call_buf),
|
||||
parse_status=ToolCallParseStatus.failed,
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
chunks.append(
|
||||
ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta=TextDelta(text=last_chunk_content or ""),
|
||||
logprobs=None,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
async def _process_vllm_chat_completion_stream_response(
|
||||
stream: AsyncGenerator[OpenAIChatCompletionChunk, None],
|
||||
) -> AsyncGenerator:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta=TextDelta(text=""),
|
||||
)
|
||||
)
|
||||
event_type = ChatCompletionResponseEventType.progress
|
||||
tool_call_bufs: dict[str, UnparseableToolCall] = {}
|
||||
end_of_stream_processed = False
|
||||
|
||||
async for chunk in stream:
|
||||
if not chunk.choices:
|
||||
log.warning("vLLM failed to generation any completions - check the vLLM server logs for an error.")
|
||||
return
|
||||
choice = chunk.choices[0]
|
||||
if choice.delta.tool_calls:
|
||||
for delta_tool_call in choice.delta.tool_calls:
|
||||
tool_call = convert_tool_call(delta_tool_call)
|
||||
if delta_tool_call.index not in tool_call_bufs:
|
||||
tool_call_bufs[delta_tool_call.index] = UnparseableToolCall()
|
||||
tool_call_buf = tool_call_bufs[delta_tool_call.index]
|
||||
tool_call_buf.tool_name += str(tool_call.tool_name)
|
||||
tool_call_buf.call_id += tool_call.call_id
|
||||
tool_call_buf.arguments += (
|
||||
tool_call.arguments if isinstance(tool_call.arguments, str) else json.dumps(tool_call.arguments)
|
||||
)
|
||||
if choice.finish_reason:
|
||||
chunks = _process_vllm_chat_completion_end_of_stream(
|
||||
finish_reason=choice.finish_reason,
|
||||
last_chunk_content=choice.delta.content,
|
||||
current_event_type=event_type,
|
||||
tool_call_bufs=tool_call_bufs,
|
||||
)
|
||||
for c in chunks:
|
||||
yield c
|
||||
end_of_stream_processed = True
|
||||
elif not choice.delta.tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=event_type,
|
||||
delta=TextDelta(text=choice.delta.content or ""),
|
||||
logprobs=None,
|
||||
)
|
||||
)
|
||||
event_type = ChatCompletionResponseEventType.progress
|
||||
|
||||
if end_of_stream_processed:
|
||||
return
|
||||
|
||||
# the stream ended without a chunk containing finish_reason - we have to generate the
|
||||
# respective completion chunks manually
|
||||
chunks = _process_vllm_chat_completion_end_of_stream(
|
||||
finish_reason=None, last_chunk_content=None, current_event_type=event_type, tool_call_bufs=tool_call_bufs
|
||||
)
|
||||
for c in chunks:
|
||||
yield c
|
||||
|
||||
|
||||
class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsProtocolPrivate):
|
||||
# automatically set by the resolver when instantiating the provider
|
||||
__provider_id__: str
|
||||
model_store: ModelStore | None = None
|
||||
|
||||
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=build_hf_repo_model_entries(),
|
||||
litellm_provider_name="vllm",
|
||||
api_key_from_config=config.api_token,
|
||||
provider_data_api_key_field="vllm_api_token",
|
||||
openai_compat_api_base=config.url,
|
||||
)
|
||||
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
|
||||
self.config = config
|
||||
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
def get_api_key(self) -> str:
|
||||
return self.config.api_token or ""
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""Get the base URL from config."""
|
||||
|
|
@ -289,27 +57,6 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
|
|||
# Strictly respecting the refresh_models directive
|
||||
return self.config.refresh_models
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
models = []
|
||||
async for m in self.client.models.list():
|
||||
model_type = ModelType.llm # unclear how to determine embedding vs. llm models
|
||||
models.append(
|
||||
Model(
|
||||
identifier=m.id,
|
||||
provider_resource_id=m.id,
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={},
|
||||
model_type=model_type,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
async def health(self) -> HealthResponse:
|
||||
"""
|
||||
Performs a health check by verifying connectivity to the remote vLLM server.
|
||||
|
|
@ -331,143 +78,66 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
|
|||
except Exception as e:
|
||||
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
|
||||
|
||||
async def _get_model(self, model_id: str) -> Model:
|
||||
if not self.model_store:
|
||||
raise ValueError("Model store not set")
|
||||
return await self.model_store.get_model(model_id)
|
||||
|
||||
def get_extra_client_params(self):
|
||||
return {"http_client": httpx.AsyncClient(verify=self.config.tls_verify)}
|
||||
|
||||
async def chat_completion(
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self._get_model(model_id)
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError(f"Model {model_id} has no provider_resource_id set")
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
max_tokens = max_tokens or self.config.max_tokens
|
||||
|
||||
# This is to be consistent with OpenAI API and support vLLM <= v0.6.3
|
||||
# References:
|
||||
# * https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice
|
||||
# * https://github.com/vllm-project/vllm/pull/10000
|
||||
if not tools and tool_config is not None:
|
||||
tool_config.tool_choice = ToolChoice.none
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
if not tools and tool_choice is not None:
|
||||
tool_choice = ToolChoice.none.value
|
||||
|
||||
return await super().openai_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
stream=stream,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
tool_config=tool_config,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_chat_completion_with_client(request, self.client)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request, self.client)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: AsyncOpenAI
|
||||
) -> ChatCompletionResponse:
|
||||
assert self.client is not None
|
||||
params = await self._get_params(request)
|
||||
r = await client.chat.completions.create(**params)
|
||||
choice = r.choices[0]
|
||||
result = ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=choice.message.content or "",
|
||||
stop_reason=_convert_to_vllm_finish_reason(choice.finish_reason),
|
||||
tool_calls=_convert_to_vllm_tool_calls_in_response(choice.message.tool_calls),
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
return result
|
||||
|
||||
async def _stream_chat_completion(self, response: Any) -> AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
# This method is called from LiteLLMOpenAIMixin.chat_completion
|
||||
# The response parameter contains the litellm response
|
||||
# We need to convert it to our format
|
||||
async def _stream_generator():
|
||||
async for chunk in response:
|
||||
yield chunk
|
||||
|
||||
async for chunk in convert_openai_chat_completion_stream(
|
||||
_stream_generator(), enable_incremental_tool_calls=True
|
||||
):
|
||||
yield chunk
|
||||
|
||||
async def _stream_chat_completion_with_client(
|
||||
self, request: ChatCompletionRequest, client: AsyncOpenAI
|
||||
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
"""Helper method for streaming with explicit client parameter."""
|
||||
assert self.client is not None
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = await client.chat.completions.create(**params)
|
||||
if request.tools:
|
||||
res = _process_vllm_chat_completion_stream_response(stream)
|
||||
else:
|
||||
res = process_chat_completion_stream_response(stream, request)
|
||||
async for chunk in res:
|
||||
yield chunk
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
try:
|
||||
model = await self.register_helper.register_model(model)
|
||||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
try:
|
||||
res = self.client.models.list()
|
||||
except APIConnectionError as e:
|
||||
raise ValueError(
|
||||
f"Failed to connect to vLLM at {self.config.url}. Please check if vLLM is running and accessible at that URL."
|
||||
) from e
|
||||
available_models = [m.id async for m in res]
|
||||
if model.provider_resource_id not in available_models:
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} is not being served by vLLM. "
|
||||
f"Available models: {', '.join(available_models)}"
|
||||
)
|
||||
return model
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
options = get_sampling_options(request.sampling_params)
|
||||
if "max_tokens" not in options:
|
||||
options["max_tokens"] = self.config.max_tokens
|
||||
|
||||
input_dict: dict[str, Any] = {}
|
||||
# Only include the 'tools' param if there is any. It can break things if an empty list is sent to the vLLM.
|
||||
if isinstance(request, ChatCompletionRequest) and request.tools:
|
||||
input_dict = {"tools": _convert_to_vllm_tools_in_request(request.tools)}
|
||||
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
|
||||
|
||||
if fmt := request.response_format:
|
||||
if isinstance(fmt, JsonSchemaResponseFormat):
|
||||
input_dict["extra_body"] = {"guided_json": fmt.json_schema}
|
||||
elif isinstance(fmt, GrammarResponseFormat):
|
||||
raise NotImplementedError("Grammar response format not supported yet")
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if request.logprobs and request.logprobs.top_k:
|
||||
input_dict["logprobs"] = request.logprobs.top_k
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**options,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
|
@ -19,7 +20,7 @@ class WatsonXProviderDataValidator(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class WatsonXConfig(BaseModel):
|
||||
class WatsonXConfig(RemoteInferenceProviderConfig):
|
||||
url: str = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_BASE_URL", "https://us-south.ml.cloud.ibm.com"),
|
||||
description="A base url for accessing the watsonx.ai",
|
||||
|
|
|
|||
|
|
@ -12,34 +12,21 @@ from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
|
|||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
GreedySamplingStrategy,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
TopKSamplingStrategy,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
prepare_openai_completion_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
|
|
@ -77,12 +64,6 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
|
||||
self._project_id = self._config.project_id
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_client(self, model_id) -> Model:
|
||||
config_api_key = (
|
||||
self._config.api_key.get_secret_value() if self._config.api_key else None
|
||||
|
|
@ -101,81 +82,9 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
return self._openai_client
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client(request.model).generate(**params)
|
||||
choices = []
|
||||
if "results" in r:
|
||||
for result in r["results"]:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=(
|
||||
result["stop_reason"] if result["stop_reason"] else None
|
||||
),
|
||||
text=result["generated_text"],
|
||||
)
|
||||
choices.append(choice)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=choices,
|
||||
)
|
||||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
model_id = request.model
|
||||
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
s = self._get_client(model_id).generate_text_stream(**params)
|
||||
for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=None,
|
||||
text=chunk,
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
|
||||
input_dict = {"params": {}}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue