add dataset datatypes

This commit is contained in:
Xi Yan 2024-10-10 17:19:18 -07:00
parent c8de439d9f
commit 99ed1425fc
5 changed files with 155 additions and 67 deletions

View file

@ -4,46 +4,105 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional, Protocol
from llama_models.llama3.api.datatypes import URL
from abc import ABC, abstractmethod
from enum import Enum
from typing import Any, Dict, Generic, Iterator, Literal, Protocol, TypeVar, Union
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from pydantic import BaseModel, Field
from typing_extensions import Annotated
TDatasetRow = TypeVar("TDatasetRow")
@json_schema_type
class TrainEvalDataset(BaseModel):
"""Dataset to be used for training or evaluating language models."""
# unique identifier associated with the dataset
dataset_id: str
content_url: URL
metadata: Optional[Dict[str, Any]] = None
class DatasetRow(BaseModel): ...
@json_schema_type
class CreateDatasetRequest(BaseModel):
"""Request to create a dataset."""
class DictSample(DatasetRow):
data: Dict[str, Any]
uuid: str
dataset: TrainEvalDataset
@json_schema_type
class Generation(BaseModel): ...
@json_schema_type
class DatasetType(Enum):
custom = "custom"
huggingface = "huggingface"
@json_schema_type
class HuggingfaceDatasetDef(BaseModel):
type: Literal[DatasetType.huggingface.value] = DatasetType.huggingface.value
identifier: str = Field(
description="A unique name for the dataset",
)
dataset_name: str = Field(
description="The name of the dataset into HF (e.g. hellawag)",
)
kwargs: Dict[str, Any] = Field(
description="Any additional arguments to get Huggingface (e.g. split, trust_remote_code)",
default_factory=dict,
)
@json_schema_type
class CustomDatasetDef(BaseModel):
type: Literal[DatasetType.custom.value] = DatasetType.custom.value
identifier: str = Field(
description="A unique name for the dataset",
)
url: str = Field(
description="The URL to the dataset",
)
DatasetDef = Annotated[
Union[
HuggingfaceDatasetDef,
CustomDatasetDef,
],
Field(discriminator="type"),
]
class BaseDataset(ABC, Generic[TDatasetRow]):
def __init__(self) -> None:
self.type: str = self.__class__.__name__
@abstractmethod
def __iter__(self) -> Iterator[TDatasetRow]:
raise NotImplementedError()
@abstractmethod
def load(self) -> None:
raise NotImplementedError()
@abstractmethod
def __str__(self) -> str:
raise NotImplementedError()
@abstractmethod
def __len__(self) -> int:
raise NotImplementedError()
class Datasets(Protocol):
@webmethod(route="/datasets/create")
def create_dataset(
self,
uuid: str,
dataset: TrainEvalDataset,
dataset: DatasetDef,
) -> None: ...
@webmethod(route="/datasets/get")
def get_dataset(
self,
dataset_uuid: str,
) -> TrainEvalDataset: ...
dataset_identifier: str,
) -> DatasetDef: ...
@webmethod(route="/datasets/delete")
def delete_dataset(

View file

@ -33,6 +33,7 @@ class EvaluateTaskConfig(BaseModel):
class EvaluateResponse(BaseModel):
"""Scores for evaluation."""
preprocess_output: GenerationOutput
metrics: Dict[str, str]