add dataset datatypes

This commit is contained in:
Xi Yan 2024-10-10 17:19:18 -07:00
parent c8de439d9f
commit 99ed1425fc
5 changed files with 155 additions and 67 deletions

View file

@ -4,46 +4,105 @@
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
from typing import Any, Dict, Optional, Protocol from abc import ABC, abstractmethod
from enum import Enum
from llama_models.llama3.api.datatypes import URL from typing import Any, Dict, Generic, Iterator, Literal, Protocol, TypeVar, Union
from llama_models.schema_utils import json_schema_type, webmethod from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel from pydantic import BaseModel, Field
from typing_extensions import Annotated
TDatasetRow = TypeVar("TDatasetRow")
@json_schema_type @json_schema_type
class TrainEvalDataset(BaseModel): class DatasetRow(BaseModel): ...
"""Dataset to be used for training or evaluating language models."""
# unique identifier associated with the dataset
dataset_id: str
content_url: URL
metadata: Optional[Dict[str, Any]] = None
@json_schema_type @json_schema_type
class CreateDatasetRequest(BaseModel): class DictSample(DatasetRow):
"""Request to create a dataset.""" data: Dict[str, Any]
uuid: str
dataset: TrainEvalDataset @json_schema_type
class Generation(BaseModel): ...
@json_schema_type
class DatasetType(Enum):
custom = "custom"
huggingface = "huggingface"
@json_schema_type
class HuggingfaceDatasetDef(BaseModel):
type: Literal[DatasetType.huggingface.value] = DatasetType.huggingface.value
identifier: str = Field(
description="A unique name for the dataset",
)
dataset_name: str = Field(
description="The name of the dataset into HF (e.g. hellawag)",
)
kwargs: Dict[str, Any] = Field(
description="Any additional arguments to get Huggingface (e.g. split, trust_remote_code)",
default_factory=dict,
)
@json_schema_type
class CustomDatasetDef(BaseModel):
type: Literal[DatasetType.custom.value] = DatasetType.custom.value
identifier: str = Field(
description="A unique name for the dataset",
)
url: str = Field(
description="The URL to the dataset",
)
DatasetDef = Annotated[
Union[
HuggingfaceDatasetDef,
CustomDatasetDef,
],
Field(discriminator="type"),
]
class BaseDataset(ABC, Generic[TDatasetRow]):
def __init__(self) -> None:
self.type: str = self.__class__.__name__
@abstractmethod
def __iter__(self) -> Iterator[TDatasetRow]:
raise NotImplementedError()
@abstractmethod
def load(self) -> None:
raise NotImplementedError()
@abstractmethod
def __str__(self) -> str:
raise NotImplementedError()
@abstractmethod
def __len__(self) -> int:
raise NotImplementedError()
class Datasets(Protocol): class Datasets(Protocol):
@webmethod(route="/datasets/create") @webmethod(route="/datasets/create")
def create_dataset( def create_dataset(
self, self,
uuid: str, dataset: DatasetDef,
dataset: TrainEvalDataset,
) -> None: ... ) -> None: ...
@webmethod(route="/datasets/get") @webmethod(route="/datasets/get")
def get_dataset( def get_dataset(
self, self,
dataset_uuid: str, dataset_identifier: str,
) -> TrainEvalDataset: ... ) -> DatasetDef: ...
@webmethod(route="/datasets/delete") @webmethod(route="/datasets/delete")
def delete_dataset( def delete_dataset(

View file

@ -33,6 +33,7 @@ class EvaluateTaskConfig(BaseModel):
class EvaluateResponse(BaseModel): class EvaluateResponse(BaseModel):
"""Scores for evaluation.""" """Scores for evaluation."""
preprocess_output: GenerationOutput
metrics: Dict[str, str] metrics: Dict[str, str]

View file

@ -5,19 +5,19 @@
# the root directory of this source tree. # the root directory of this source tree.
# TODO: make these import config based # TODO: make these import config based
from .dataset import CustomDataset, HFDataset # from .dataset import CustomDataset, HFDataset
from .dataset_registry import DatasetRegistry # from .dataset_registry import DatasetRegistry
DATASETS_REGISTRY = { # DATASETS_REGISTRY = {
"mmlu-simple-eval-en": CustomDataset( # "mmlu-simple-eval-en": CustomDataset(
name="mmlu_eval", # name="mmlu_eval",
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv", # url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
), # ),
"hellaswag": HFDataset( # "hellaswag": HFDataset(
name="hellaswag", # name="hellaswag",
url="hf://hellaswag?split=validation&trust_remote_code=True", # url="hf://hellaswag?split=validation&trust_remote_code=True",
), # ),
} # }
for k, v in DATASETS_REGISTRY.items(): # for k, v in DATASETS_REGISTRY.items():
DatasetRegistry.register(k, v) # DatasetRegistry.register(k, v)

View file

@ -3,60 +3,88 @@
# #
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
from abc import ABC, abstractmethod
from urllib.parse import parse_qs, urlparse
import pandas import pandas
from datasets import Dataset, load_dataset from datasets import Dataset, load_dataset
from llama_stack.apis.dataset import * # noqa: F403
class BaseDataset(ABC):
def __init__(self, name: str): class CustomDataset(BaseDataset[DictSample]):
def __init__(self, config: CustomDatasetDef) -> None:
super().__init__()
self.config = config
self.dataset = None self.dataset = None
self.dataset_id = name self.index = 0
self.type = self.__class__.__name__
def __iter__(self): def __iter__(self) -> Iterator[DictSample]:
return iter(self.dataset) return self
@abstractmethod def __next__(self) -> DictSample:
def load(self): if not self.dataset:
pass self.load()
if self.index >= len(self.dataset):
raise StopIteration
sample = DictSample(data=self.dataset[self.index])
self.index += 1
return sample
def __str__(self):
return f"CustomDataset({self.config})"
class CustomDataset(BaseDataset): def __len__(self):
def __init__(self, name, url): if not self.dataset:
super().__init__(name) self.load()
self.url = url return len(self.dataset)
def load(self): def load(self):
if self.dataset: if self.dataset:
return return
# TODO: better support w/ data url # TODO: better support w/ data url
if self.url.endswith(".csv"): if self.config.url.endswith(".csv"):
df = pandas.read_csv(self.url) df = pandas.read_csv(self.config.url)
elif self.url.endswith(".xlsx"): elif self.config.url.endswith(".xlsx"):
df = pandas.read_excel(self.url) df = pandas.read_excel(self.config.url)
self.dataset = Dataset.from_pandas(df) self.dataset = Dataset.from_pandas(df)
class HFDataset(BaseDataset): class HuggingfaceDataset(BaseDataset[DictSample]):
def __init__(self, name, url): def __init__(self, config: HuggingfaceDatasetDef):
super().__init__(name) super().__init__()
self.url = url self.config = config
self.dataset = None
self.index = 0
def __iter__(self) -> Iterator[DictSample]:
return self
def __next__(self) -> DictSample:
if not self.dataset:
self.load()
if self.index >= len(self.dataset):
raise StopIteration
sample = DictSample(data=self.dataset[self.index])
self.index += 1
return sample
def __str__(self):
return f"HuggingfaceDataset({self.config})"
def __len__(self):
if not self.dataset:
self.load()
return len(self.dataset)
def load(self): def load(self):
if self.dataset: if self.dataset:
return return
self.dataset = load_dataset(self.config.dataset_name, **self.config.kwargs)
# parsed = urlparse(self.url)
parsed = urlparse(self.url) # if parsed.scheme != "hf":
# raise ValueError(f"Unknown HF dataset: {self.url}")
if parsed.scheme != "hf": # query = parse_qs(parsed.query)
raise ValueError(f"Unknown HF dataset: {self.url}") # query = {k: v[0] for k, v in query.items()}
# path = parsed.netloc
query = parse_qs(parsed.query) # self.dataset = load_dataset(path, **query)
query = {k: v[0] for k, v in query.items()}
path = parsed.netloc
self.dataset = load_dataset(path, **query)

View file

@ -5,7 +5,7 @@
# the root directory of this source tree. # the root directory of this source tree.
from typing import AbstractSet, Dict from typing import AbstractSet, Dict
from .dataset import BaseDataset from llama_stack.apis.dataset import BaseDataset
class DatasetRegistry: class DatasetRegistry: