diff --git a/Makefile b/Makefile deleted file mode 100644 index b076eb0da..000000000 --- a/Makefile +++ /dev/null @@ -1,33 +0,0 @@ -ROOT_DIR := $(shell dirname $(realpath $(firstword $(MAKEFILE_LIST)))) -OS := linux -ifeq ($(shell uname -s), Darwin) - OS = osx -endif - -PYTHON_VERSION = ${shell python --version | grep -Eo '[0-9]\.[0-9]+'} -PYTHON_VERSIONS := 3.10 3.11 - -build-dev: - uv sync --extra dev --extra test - uv pip install -e . - . .venv/bin/activate - uv pip install sqlite-vec chardet datasets sentence_transformers pypdf - -build-ollama: fix-line-endings - llama stack build --template ollama --image-type venv - -fix-line-endings: - sed -i '' 's/\r$$//' llama_stack/distribution/common.sh - sed -i '' 's/\r$$//' llama_stack/distribution/build_venv.sh - -test-sqlite-vec: - pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py \ - -v -s --tb=short --disable-warnings --asyncio-mode=auto - -test-ollama-vector-integration: - INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama \ - pytest -s -v tests/client-sdk/vector_io/test_vector_io.py - - -make serve-ollama: - ollama run llama3.2:3b-instruct-fp16 --keepalive 24h diff --git a/rfcs/RFC-0004-triage-role.md b/rfcs/RFC-0004-triage-role.md index 51263f0b0..d91a268e7 100644 --- a/rfcs/RFC-0004-triage-role.md +++ b/rfcs/RFC-0004-triage-role.md @@ -42,23 +42,6 @@ And other important items outlined more in depth in the [GitHub documentation](h ## Nomination Process for Triage-role The process for nomination for the triage role should be simple and at the discretion of the maintainers. -## Example - -We tested this functionality using the @feast-dev repository and have provided screenshots outlining how to make this change. - -Step 1: -![Figure 1: Select Repository Settings](./_static/triage-role-config-1.png) - -Step 2: -![Figure 2: Invite Outside Collaborator](./_static/triage-role-config-2.png) - -Step 3: -![Figure 3: Select Triage Role](./_static/triage-role-config-3.png) - -Step 4: -![Figure 4: User Receives Triage Role](./_static/triage-role-config-4.png) - - ## Thank you Thank you in advance for your feedback and support and we look forward to collaborating on this great project! diff --git a/sqlite_vec_test.py b/sqlite_vec_test.py deleted file mode 100644 index 7aeff3577..000000000 --- a/sqlite_vec_test.py +++ /dev/null @@ -1,112 +0,0 @@ -#!/usr/bin/env python3 -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -import os -import uuid - -from termcolor import cprint - -# Set environment variables -os.environ["INFERENCE_MODEL"] = "llama3.2:3b-instruct-fp16" -os.environ["LLAMA_STACK_CONFIG"] = "ollama" - -# Import libraries after setting environment variables -from llama_stack_client.lib.agents.agent import Agent -from llama_stack_client.lib.agents.event_logger import EventLogger -from llama_stack_client.types import Document -from llama_stack_client.types.agent_create_params import AgentConfig - -from llama_stack.distribution.library_client import LlamaStackAsLibraryClient - - -def main(): - # Initialize the client - client = LlamaStackAsLibraryClient("ollama") - vector_db_id = f"test-vector-db-{uuid.uuid4().hex}" - - _ = client.initialize() - - model_id = "llama3.2:3b-instruct-fp16" - - # Define the list of document URLs and create Document objects - urls = [ - "chat.rst", - "llama3.rst", - "memory_optimizations.rst", - "lora_finetune.rst", - ] - documents = [ - Document( - document_id=f"num-{i}", - content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", - mime_type="text/plain", - metadata={}, - ) - for i, url in enumerate(urls) - ] - # (Optional) Use the documents as needed with your client here - - client.vector_dbs.register( - provider_id="sqlite_vec", - vector_db_id=vector_db_id, - embedding_model="all-MiniLM-L6-v2", - embedding_dimension=384, - ) - - client.tool_runtime.rag_tool.insert( - documents=documents, - vector_db_id=vector_db_id, - chunk_size_in_tokens=512, - ) - # Create agent configuration - agent_config = AgentConfig( - model=model_id, - instructions="You are a helpful assistant", - enable_session_persistence=False, - toolgroups=[ - { - "name": "builtin::rag", - "args": { - "vector_db_ids": [vector_db_id], - }, - } - ], - ) - - # Instantiate the Agent - agent = Agent(client, agent_config) - - # List of user prompts - user_prompts = [ - "What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.", - "Was anything related to 'Llama3' discussed, if so what?", - "Tell me how to use LoRA", - "What about Quantization?", - ] - - # Create a session for the agent - session_id = agent.create_session("test-session") - - # Process each prompt and display the output - for prompt in user_prompts: - cprint(f"User> {prompt}", "green") - response = agent.create_turn( - messages=[ - { - "role": "user", - "content": prompt, - } - ], - session_id=session_id, - ) - # Log and print events from the response - for log in EventLogger().log(response): - log.print() - - -if __name__ == "__main__": - main()