mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-08 13:00:52 +00:00
Merge branch 'main' into use-openai-for-cerebras
This commit is contained in:
commit
9ceb45f611
53 changed files with 2612 additions and 1966 deletions
|
@ -4,15 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import AnthropicConfig
|
||||
|
||||
|
||||
class AnthropicProviderDataValidator(BaseModel):
|
||||
anthropic_api_key: str | None = None
|
||||
|
||||
|
||||
async def get_adapter_impl(config: AnthropicConfig, _deps):
|
||||
from .anthropic import AnthropicInferenceAdapter
|
||||
|
||||
|
|
|
@ -4,11 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from fireworks.client import Fireworks
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -24,12 +22,6 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
|
@ -45,15 +37,14 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
|
@ -68,7 +59,7 @@ from .models import MODEL_ENTRIES
|
|||
logger = get_logger(name=__name__, category="inference::fireworks")
|
||||
|
||||
|
||||
class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
def __init__(self, config: FireworksImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
|
||||
self.config = config
|
||||
|
@ -79,7 +70,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_api_key(self) -> str:
|
||||
def get_api_key(self) -> str:
|
||||
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
||||
if config_api_key:
|
||||
return config_api_key
|
||||
|
@ -91,15 +82,18 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
)
|
||||
return provider_data.fireworks_api_key
|
||||
|
||||
def _get_base_url(self) -> str:
|
||||
def get_base_url(self) -> str:
|
||||
return "https://api.fireworks.ai/inference/v1"
|
||||
|
||||
def _get_client(self) -> Fireworks:
|
||||
fireworks_api_key = self._get_api_key()
|
||||
fireworks_api_key = self.get_api_key()
|
||||
return Fireworks(api_key=fireworks_api_key)
|
||||
|
||||
def _get_openai_client(self) -> AsyncOpenAI:
|
||||
return AsyncOpenAI(base_url=self._get_base_url(), api_key=self._get_api_key())
|
||||
def _preprocess_prompt_for_fireworks(self, prompt: str) -> str:
|
||||
"""Remove BOS token as Fireworks automatically prepends it"""
|
||||
if prompt.startswith("<|begin_of_text|>"):
|
||||
return prompt[len("<|begin_of_text|>") :]
|
||||
return prompt
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
|
@ -285,153 +279,3 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
|
||||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Fireworks always prepends with BOS
|
||||
if isinstance(prompt, str) and prompt.startswith("<|begin_of_text|>"):
|
||||
prompt = prompt[len("<|begin_of_text|>") :]
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
return await self._get_openai_client().completions.create(**params)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Divert Llama Models through Llama Stack inference APIs because
|
||||
# Fireworks chat completions OpenAI-compatible API does not support
|
||||
# tool calls properly.
|
||||
llama_model = self.get_llama_model(model_obj.provider_resource_id)
|
||||
|
||||
if llama_model:
|
||||
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(
|
||||
self,
|
||||
model=model,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
logger.debug(f"fireworks params: {params}")
|
||||
return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params)
|
||||
|
|
|
@ -4,15 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import GeminiConfig
|
||||
|
||||
|
||||
class GeminiProviderDataValidator(BaseModel):
|
||||
gemini_api_key: str | None = None
|
||||
|
||||
|
||||
async def get_adapter_impl(config: GeminiConfig, _deps):
|
||||
from .gemini import GeminiInferenceAdapter
|
||||
|
||||
|
|
|
@ -7,12 +7,10 @@
|
|||
|
||||
import asyncio
|
||||
import base64
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from ollama import AsyncClient # type: ignore[attr-defined]
|
||||
from openai import AsyncOpenAI
|
||||
from ollama import AsyncClient as AsyncOllamaClient
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
|
@ -37,9 +35,6 @@ from llama_stack.apis.inference import (
|
|||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
|
@ -64,15 +59,14 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
b64_encode_openai_embeddings_response,
|
||||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
prepare_openai_embeddings_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
|
@ -89,6 +83,7 @@ logger = get_logger(name=__name__, category="inference::ollama")
|
|||
|
||||
|
||||
class OllamaInferenceAdapter(
|
||||
OpenAIMixin,
|
||||
InferenceProvider,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
|
@ -98,23 +93,21 @@ class OllamaInferenceAdapter(
|
|||
def __init__(self, config: OllamaImplConfig) -> None:
|
||||
self.register_helper = ModelRegistryHelper(MODEL_ENTRIES)
|
||||
self.config = config
|
||||
self._clients: dict[asyncio.AbstractEventLoop, AsyncClient] = {}
|
||||
self._openai_client = None
|
||||
self._clients: dict[asyncio.AbstractEventLoop, AsyncOllamaClient] = {}
|
||||
|
||||
@property
|
||||
def client(self) -> AsyncClient:
|
||||
def ollama_client(self) -> AsyncOllamaClient:
|
||||
# ollama client attaches itself to the current event loop (sadly?)
|
||||
loop = asyncio.get_running_loop()
|
||||
if loop not in self._clients:
|
||||
self._clients[loop] = AsyncClient(host=self.config.url)
|
||||
self._clients[loop] = AsyncOllamaClient(host=self.config.url)
|
||||
return self._clients[loop]
|
||||
|
||||
@property
|
||||
def openai_client(self) -> AsyncOpenAI:
|
||||
if self._openai_client is None:
|
||||
url = self.config.url.rstrip("/")
|
||||
self._openai_client = AsyncOpenAI(base_url=f"{url}/v1", api_key="ollama")
|
||||
return self._openai_client
|
||||
def get_api_key(self):
|
||||
return "NO_KEY"
|
||||
|
||||
def get_base_url(self):
|
||||
return self.config.url.rstrip("/") + "/v1"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.info(f"checking connectivity to Ollama at `{self.config.url}`...")
|
||||
|
@ -129,7 +122,7 @@ class OllamaInferenceAdapter(
|
|||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
provider_id = self.__provider_id__
|
||||
response = await self.client.list()
|
||||
response = await self.ollama_client.list()
|
||||
|
||||
# always add the two embedding models which can be pulled on demand
|
||||
models = [
|
||||
|
@ -189,7 +182,7 @@ class OllamaInferenceAdapter(
|
|||
HealthResponse: A dictionary containing the health status.
|
||||
"""
|
||||
try:
|
||||
await self.client.ps()
|
||||
await self.ollama_client.ps()
|
||||
return HealthResponse(status=HealthStatus.OK)
|
||||
except Exception as e:
|
||||
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
|
||||
|
@ -238,7 +231,7 @@ class OllamaInferenceAdapter(
|
|||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.generate(**params)
|
||||
s = await self.ollama_client.generate(**params)
|
||||
async for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
|
@ -254,7 +247,7 @@ class OllamaInferenceAdapter(
|
|||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.generate(**params)
|
||||
r = await self.ollama_client.generate(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
|
@ -346,9 +339,9 @@ class OllamaInferenceAdapter(
|
|||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = await self.client.chat(**params)
|
||||
r = await self.ollama_client.chat(**params)
|
||||
else:
|
||||
r = await self.client.generate(**params)
|
||||
r = await self.ollama_client.generate(**params)
|
||||
|
||||
if "message" in r:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
|
@ -372,9 +365,9 @@ class OllamaInferenceAdapter(
|
|||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
if "messages" in params:
|
||||
s = await self.client.chat(**params)
|
||||
s = await self.ollama_client.chat(**params)
|
||||
else:
|
||||
s = await self.client.generate(**params)
|
||||
s = await self.ollama_client.generate(**params)
|
||||
async for chunk in s:
|
||||
if "message" in chunk:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
|
@ -407,7 +400,7 @@ class OllamaInferenceAdapter(
|
|||
assert all(not content_has_media(content) for content in contents), (
|
||||
"Ollama does not support media for embeddings"
|
||||
)
|
||||
response = await self.client.embed(
|
||||
response = await self.ollama_client.embed(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_content_as_str(content) for content in contents],
|
||||
)
|
||||
|
@ -422,14 +415,14 @@ class OllamaInferenceAdapter(
|
|||
pass # Ignore statically unknown model, will check live listing
|
||||
|
||||
if model.model_type == ModelType.embedding:
|
||||
response = await self.client.list()
|
||||
response = await self.ollama_client.list()
|
||||
if model.provider_resource_id not in [m.model for m in response.models]:
|
||||
await self.client.pull(model.provider_resource_id)
|
||||
await self.ollama_client.pull(model.provider_resource_id)
|
||||
|
||||
# we use list() here instead of ps() -
|
||||
# - ps() only lists running models, not available models
|
||||
# - models not currently running are run by the ollama server as needed
|
||||
response = await self.client.list()
|
||||
response = await self.ollama_client.list()
|
||||
available_models = [m.model for m in response.models]
|
||||
|
||||
provider_resource_id = model.provider_resource_id
|
||||
|
@ -448,90 +441,6 @@ class OllamaInferenceAdapter(
|
|||
|
||||
return model
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
model_obj = await self._get_model(model)
|
||||
if model_obj.provider_resource_id is None:
|
||||
raise ValueError(f"Model {model} has no provider_resource_id set")
|
||||
|
||||
# Note, at the moment Ollama does not support encoding_format, dimensions, and user parameters
|
||||
params = prepare_openai_embeddings_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
input=input,
|
||||
encoding_format=encoding_format,
|
||||
dimensions=dimensions,
|
||||
user=user,
|
||||
)
|
||||
|
||||
response = await self.openai_client.embeddings.create(**params)
|
||||
data = b64_encode_openai_embeddings_response(response.data, encoding_format)
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
# TODO: Investigate why model_obj.identifier is used instead of response.model
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=model_obj.identifier,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
if not isinstance(prompt, str):
|
||||
raise ValueError("Ollama does not support non-string prompts for completion")
|
||||
|
||||
model_obj = await self._get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
suffix=suffix,
|
||||
)
|
||||
return await self.openai_client.completions.create(**params) # type: ignore
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -599,25 +508,7 @@ class OllamaInferenceAdapter(
|
|||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
response = await self.openai_client.chat.completions.create(**params)
|
||||
return await self._adjust_ollama_chat_completion_response_ids(response)
|
||||
|
||||
async def _adjust_ollama_chat_completion_response_ids(
|
||||
self,
|
||||
response: OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk],
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
id = f"chatcmpl-{uuid.uuid4()}"
|
||||
if isinstance(response, AsyncIterator):
|
||||
|
||||
async def stream_with_chunk_ids() -> AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
async for chunk in response:
|
||||
chunk.id = id
|
||||
yield chunk
|
||||
|
||||
return stream_with_chunk_ids()
|
||||
else:
|
||||
response.id = id
|
||||
return response
|
||||
return await OpenAIMixin.openai_chat_completion(self, **params)
|
||||
|
||||
|
||||
async def convert_message_to_openai_dict_for_ollama(message: Message) -> list[dict]:
|
||||
|
|
|
@ -4,15 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import OpenAIConfig
|
||||
|
||||
|
||||
class OpenAIProviderDataValidator(BaseModel):
|
||||
openai_api_key: str | None = None
|
||||
|
||||
|
||||
async def get_adapter_impl(config: OpenAIConfig, _deps):
|
||||
from .openai import OpenAIInferenceAdapter
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue