mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 05:38:38 +00:00
persist file batches and clean up after 7 days
This commit is contained in:
parent
943255697e
commit
9d2d8ab61c
3 changed files with 459 additions and 49 deletions
|
@ -315,8 +315,9 @@ async def test_create_vector_store_file_batch(vector_io_adapter):
|
|||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Mock attach method to avoid actual processing
|
||||
# Mock attach method and batch processing to avoid actual processing
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
vector_io_adapter._process_file_batch_async = AsyncMock()
|
||||
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
|
@ -375,7 +376,9 @@ async def test_cancel_vector_store_file_batch(vector_io_adapter):
|
|||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Mock both file attachment and batch processing to prevent automatic completion
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
vector_io_adapter._process_file_batch_async = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
|
@ -633,7 +636,7 @@ async def test_cancel_completed_batch_fails(vector_io_adapter):
|
|||
|
||||
# Manually update status to completed
|
||||
batch_info = vector_io_adapter.openai_file_batches[batch.id]
|
||||
batch_info["batch_object"].status = "completed"
|
||||
batch_info["status"] = "completed"
|
||||
|
||||
# Try to cancel - should fail
|
||||
with pytest.raises(ValueError, match="Cannot cancel batch .* with status completed"):
|
||||
|
@ -641,3 +644,324 @@ async def test_cancel_completed_batch_fails(vector_io_adapter):
|
|||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
)
|
||||
|
||||
|
||||
async def test_file_batch_persistence_across_restarts(vector_io_adapter):
|
||||
"""Test that in-progress file batches are persisted and resumed after restart."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1", "file_2"]
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Mock attach method and batch processing to avoid actual processing
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
vector_io_adapter._process_file_batch_async = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
batch_id = batch.id
|
||||
|
||||
# Verify batch is saved to persistent storage
|
||||
assert batch_id in vector_io_adapter.openai_file_batches
|
||||
saved_batch_key = f"openai_vector_stores_file_batches:v3::{batch_id}"
|
||||
saved_batch = await vector_io_adapter.kvstore.get(saved_batch_key)
|
||||
assert saved_batch is not None
|
||||
|
||||
# Verify the saved batch data contains all necessary information
|
||||
saved_data = json.loads(saved_batch)
|
||||
assert saved_data["id"] == batch_id
|
||||
assert saved_data["status"] == "in_progress"
|
||||
assert saved_data["file_ids"] == file_ids
|
||||
|
||||
# Simulate restart - clear in-memory cache and reload
|
||||
vector_io_adapter.openai_file_batches.clear()
|
||||
|
||||
# Temporarily restore the real initialize_openai_vector_stores method
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
|
||||
real_method = OpenAIVectorStoreMixin.initialize_openai_vector_stores
|
||||
await real_method(vector_io_adapter)
|
||||
|
||||
# Re-mock the processing method to prevent any resumed batches from processing
|
||||
vector_io_adapter._process_file_batch_async = AsyncMock()
|
||||
|
||||
# Verify batch was restored
|
||||
assert batch_id in vector_io_adapter.openai_file_batches
|
||||
restored_batch = vector_io_adapter.openai_file_batches[batch_id]
|
||||
assert restored_batch["status"] == "in_progress"
|
||||
assert restored_batch["id"] == batch_id
|
||||
assert vector_io_adapter.openai_file_batches[batch_id]["file_ids"] == file_ids
|
||||
|
||||
|
||||
async def test_completed_batch_cleanup_from_persistence(vector_io_adapter):
|
||||
"""Test that completed batches are removed from persistent storage."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1"]
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Mock successful file processing
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
batch_id = batch.id
|
||||
|
||||
# Verify batch is initially saved to persistent storage
|
||||
saved_batch_key = f"openai_vector_stores_file_batches:v3::{batch_id}"
|
||||
saved_batch = await vector_io_adapter.kvstore.get(saved_batch_key)
|
||||
assert saved_batch is not None
|
||||
|
||||
# Simulate batch completion by calling the processing method
|
||||
batch_info = vector_io_adapter.openai_file_batches[batch_id]
|
||||
|
||||
# Mark as completed and process
|
||||
batch_info["file_counts"]["completed"] = len(file_ids)
|
||||
batch_info["file_counts"]["in_progress"] = 0
|
||||
batch_info["status"] = "completed"
|
||||
|
||||
# Manually call the cleanup (this normally happens in _process_file_batch_async)
|
||||
await vector_io_adapter._delete_openai_vector_store_file_batch(batch_id)
|
||||
|
||||
# Verify batch was removed from persistent storage
|
||||
cleaned_batch = await vector_io_adapter.kvstore.get(saved_batch_key)
|
||||
assert cleaned_batch is None
|
||||
|
||||
# Batch should be removed from memory as well (matches vector store pattern)
|
||||
assert batch_id not in vector_io_adapter.openai_file_batches
|
||||
|
||||
|
||||
async def test_cancelled_batch_persists_in_storage(vector_io_adapter):
|
||||
"""Test that cancelled batches persist in storage with updated status."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1", "file_2"]
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Mock attach method and batch processing to avoid actual processing
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
vector_io_adapter._process_file_batch_async = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
batch_id = batch.id
|
||||
|
||||
# Verify batch is initially saved to persistent storage
|
||||
saved_batch_key = f"openai_vector_stores_file_batches:v3::{batch_id}"
|
||||
saved_batch = await vector_io_adapter.kvstore.get(saved_batch_key)
|
||||
assert saved_batch is not None
|
||||
|
||||
# Cancel the batch
|
||||
cancelled_batch = await vector_io_adapter.openai_cancel_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=store_id,
|
||||
)
|
||||
|
||||
# Verify batch status is cancelled
|
||||
assert cancelled_batch.status == "cancelled"
|
||||
|
||||
# Verify batch persists in storage with cancelled status
|
||||
updated_batch = await vector_io_adapter.kvstore.get(saved_batch_key)
|
||||
assert updated_batch is not None
|
||||
batch_data = json.loads(updated_batch)
|
||||
assert batch_data["status"] == "cancelled"
|
||||
|
||||
# Batch should remain in memory cache (matches vector store pattern)
|
||||
assert batch_id in vector_io_adapter.openai_file_batches
|
||||
assert vector_io_adapter.openai_file_batches[batch_id]["status"] == "cancelled"
|
||||
|
||||
|
||||
async def test_only_in_progress_batches_resumed(vector_io_adapter):
|
||||
"""Test that only in-progress batches are resumed for processing, but all batches are persisted."""
|
||||
store_id = "vs_1234"
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Mock attach method and batch processing to prevent automatic completion
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
vector_io_adapter._process_file_batch_async = AsyncMock()
|
||||
|
||||
# Create multiple batches
|
||||
batch1 = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id, file_ids=["file_1"]
|
||||
)
|
||||
batch2 = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id, file_ids=["file_2"]
|
||||
)
|
||||
|
||||
# Complete one batch (should persist with completed status)
|
||||
batch1_info = vector_io_adapter.openai_file_batches[batch1.id]
|
||||
batch1_info["status"] = "completed"
|
||||
await vector_io_adapter._save_openai_vector_store_file_batch(batch1.id, batch1_info)
|
||||
|
||||
# Cancel the other batch (should persist with cancelled status)
|
||||
await vector_io_adapter.openai_cancel_vector_store_file_batch(batch_id=batch2.id, vector_store_id=store_id)
|
||||
|
||||
# Create a third batch that stays in progress
|
||||
batch3 = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id, file_ids=["file_3"]
|
||||
)
|
||||
|
||||
# Simulate restart - first clear memory, then reload from persistence
|
||||
vector_io_adapter.openai_file_batches.clear()
|
||||
|
||||
# Mock the processing method BEFORE calling initialize to capture the resume calls
|
||||
mock_process = AsyncMock()
|
||||
vector_io_adapter._process_file_batch_async = mock_process
|
||||
|
||||
# Temporarily restore the real initialize_openai_vector_stores method
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
|
||||
real_method = OpenAIVectorStoreMixin.initialize_openai_vector_stores
|
||||
await real_method(vector_io_adapter)
|
||||
|
||||
# All batches should be restored from persistence
|
||||
assert batch1.id in vector_io_adapter.openai_file_batches # completed, persisted
|
||||
assert batch2.id in vector_io_adapter.openai_file_batches # cancelled, persisted
|
||||
assert batch3.id in vector_io_adapter.openai_file_batches # in-progress, restored
|
||||
|
||||
# Check their statuses
|
||||
assert vector_io_adapter.openai_file_batches[batch1.id]["status"] == "completed"
|
||||
assert vector_io_adapter.openai_file_batches[batch2.id]["status"] == "cancelled"
|
||||
assert vector_io_adapter.openai_file_batches[batch3.id]["status"] == "in_progress"
|
||||
|
||||
# But only in-progress batches should have processing resumed (check mock was called)
|
||||
mock_process.assert_called_once_with(batch3.id, vector_io_adapter.openai_file_batches[batch3.id])
|
||||
|
||||
|
||||
async def test_cleanup_expired_file_batches(vector_io_adapter):
|
||||
"""Test that expired file batches are cleaned up properly."""
|
||||
store_id = "vs_1234"
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Mock processing to prevent automatic completion
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
vector_io_adapter._process_file_batch_async = AsyncMock()
|
||||
|
||||
# Create batches with different ages
|
||||
import time
|
||||
|
||||
current_time = int(time.time())
|
||||
|
||||
# Create an old expired batch (10 days old)
|
||||
old_batch_info = {
|
||||
"id": "batch_old",
|
||||
"vector_store_id": store_id,
|
||||
"status": "completed",
|
||||
"created_at": current_time - (10 * 24 * 60 * 60), # 10 days ago
|
||||
"expires_at": current_time - (3 * 24 * 60 * 60), # Expired 3 days ago
|
||||
"file_ids": ["file_1"],
|
||||
}
|
||||
|
||||
# Create a recent valid batch
|
||||
new_batch_info = {
|
||||
"id": "batch_new",
|
||||
"vector_store_id": store_id,
|
||||
"status": "completed",
|
||||
"created_at": current_time - (1 * 24 * 60 * 60), # 1 day ago
|
||||
"expires_at": current_time + (6 * 24 * 60 * 60), # Expires in 6 days
|
||||
"file_ids": ["file_2"],
|
||||
}
|
||||
|
||||
# Store both batches in persistent storage
|
||||
await vector_io_adapter._save_openai_vector_store_file_batch("batch_old", old_batch_info)
|
||||
await vector_io_adapter._save_openai_vector_store_file_batch("batch_new", new_batch_info)
|
||||
|
||||
# Add to in-memory cache
|
||||
vector_io_adapter.openai_file_batches["batch_old"] = old_batch_info
|
||||
vector_io_adapter.openai_file_batches["batch_new"] = new_batch_info
|
||||
|
||||
# Verify both batches exist before cleanup
|
||||
assert "batch_old" in vector_io_adapter.openai_file_batches
|
||||
assert "batch_new" in vector_io_adapter.openai_file_batches
|
||||
|
||||
# Run cleanup
|
||||
await vector_io_adapter._cleanup_expired_file_batches()
|
||||
|
||||
# Verify expired batch was removed from memory
|
||||
assert "batch_old" not in vector_io_adapter.openai_file_batches
|
||||
assert "batch_new" in vector_io_adapter.openai_file_batches
|
||||
|
||||
# Verify expired batch was removed from storage
|
||||
old_batch_key = "openai_vector_stores_file_batches:v3::batch_old"
|
||||
new_batch_key = "openai_vector_stores_file_batches:v3::batch_new"
|
||||
|
||||
old_stored = await vector_io_adapter.kvstore.get(old_batch_key)
|
||||
new_stored = await vector_io_adapter.kvstore.get(new_batch_key)
|
||||
|
||||
assert old_stored is None # Expired batch should be deleted
|
||||
assert new_stored is not None # Valid batch should remain
|
||||
|
||||
|
||||
async def test_expired_batch_access_error(vector_io_adapter):
|
||||
"""Test that accessing expired batches returns clear error message."""
|
||||
store_id = "vs_1234"
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Create an expired batch
|
||||
import time
|
||||
|
||||
current_time = int(time.time())
|
||||
|
||||
expired_batch_info = {
|
||||
"id": "batch_expired",
|
||||
"vector_store_id": store_id,
|
||||
"status": "completed",
|
||||
"created_at": current_time - (10 * 24 * 60 * 60), # 10 days ago
|
||||
"expires_at": current_time - (3 * 24 * 60 * 60), # Expired 3 days ago
|
||||
"file_ids": ["file_1"],
|
||||
}
|
||||
|
||||
# Add to in-memory cache (simulating it was loaded before expiration)
|
||||
vector_io_adapter.openai_file_batches["batch_expired"] = expired_batch_info
|
||||
|
||||
# Try to access expired batch
|
||||
with pytest.raises(ValueError, match="File batch batch_expired has expired after 7 days from creation"):
|
||||
vector_io_adapter._get_and_validate_batch("batch_expired", store_id)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue