mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
chore: enable pyupgrade fixes (#1806)
# What does this PR do? The goal of this PR is code base modernization. Schema reflection code needed a minor adjustment to handle UnionTypes and collections.abc.AsyncIterator. (Both are preferred for latest Python releases.) Note to reviewers: almost all changes here are automatically generated by pyupgrade. Some additional unused imports were cleaned up. The only change worth of note can be found under `docs/openapi_generator` and `llama_stack/strong_typing/schema.py` where reflection code was updated to deal with "newer" types. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
parent
ffe3d0b2cd
commit
9e6561a1ec
319 changed files with 2843 additions and 3033 deletions
|
@ -5,18 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from collections.abc import Collection, Iterator, Sequence, Set
|
||||
from logging import getLogger
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
AbstractSet,
|
||||
Collection,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
|
@ -114,7 +107,7 @@ class Tokenizer:
|
|||
Tokenizing and encoding/decoding text using the Tiktoken tokenizer.
|
||||
"""
|
||||
|
||||
special_tokens: Dict[str, int]
|
||||
special_tokens: dict[str, int]
|
||||
|
||||
num_reserved_special_tokens = 2048
|
||||
|
||||
|
@ -182,9 +175,9 @@ class Tokenizer:
|
|||
*,
|
||||
bos: bool,
|
||||
eos: bool,
|
||||
allowed_special: Optional[Union[Literal["all"], AbstractSet[str]]] = None,
|
||||
disallowed_special: Union[Literal["all"], Collection[str]] = (),
|
||||
) -> List[int]:
|
||||
allowed_special: Literal["all"] | Set[str] | None = None,
|
||||
disallowed_special: Literal["all"] | Collection[str] = (),
|
||||
) -> list[int]:
|
||||
"""
|
||||
Encodes a string into a list of token IDs.
|
||||
|
||||
|
@ -217,7 +210,7 @@ class Tokenizer:
|
|||
s[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
|
||||
)
|
||||
)
|
||||
t: List[int] = []
|
||||
t: list[int] = []
|
||||
for substr in substrs:
|
||||
t.extend(
|
||||
self.model.encode(
|
||||
|
@ -243,7 +236,7 @@ class Tokenizer:
|
|||
str: The decoded string.
|
||||
"""
|
||||
# Typecast is safe here. Tiktoken doesn't do anything list-related with the sequence.
|
||||
return self.model.decode(cast(List[int], t))
|
||||
return self.model.decode(cast(list[int], t))
|
||||
|
||||
@staticmethod
|
||||
def _split_whitespaces_or_nonwhitespaces(s: str, max_consecutive_slice_len: int) -> Iterator[str]:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue