chore: enable pyupgrade fixes (#1806)

# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
Ihar Hrachyshka 2025-05-01 17:23:50 -04:00 committed by GitHub
parent ffe3d0b2cd
commit 9e6561a1ec
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
319 changed files with 2843 additions and 3033 deletions

View file

@ -4,7 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from collections.abc import Callable
from typing import Any
import fairscale.nn.model_parallel.initialize as fs_init
import torch
@ -42,9 +43,9 @@ class ColumnParallelConv2dPatch(torch.nn.Module):
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]],
bias: Optional[bool] = False,
kernel_size: int | tuple[int, int],
stride: int | tuple[int, int],
bias: bool | None = False,
) -> None:
super().__init__()
if isinstance(kernel_size, int):
@ -134,15 +135,15 @@ class _TransformerBlock(nn.Module):
def attention(
self,
x: torch.Tensor,
freq_cis: Optional[torch.Tensor] = None,
freq_cis: torch.Tensor | None = None,
):
return self.attn(x=x, start_pos=0, freqs_cis=freq_cis)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
freq_cis: Optional[torch.Tensor] = None,
mask: torch.Tensor | None = None,
freq_cis: torch.Tensor | None = None,
):
_gate_attn = 1 if not self.gated else self.gate_attn.tanh()
_gate_ffn = 1 if not self.gated else self.gate_ffn.tanh()
@ -210,8 +211,8 @@ class PackingIndex:
class VisionEncoder(nn.Module):
def __init__(
self,
image_size: Tuple[int, int],
patch_size: Tuple[int, int],
image_size: tuple[int, int],
patch_size: tuple[int, int],
dim: int,
layers: int,
heads: int,
@ -299,13 +300,13 @@ class VisionEncoder(nn.Module):
def load_hook(
self,
state_dict: Dict[str, Any],
state_dict: dict[str, Any],
prefix: str,
local_metadata: Dict[str, Any],
local_metadata: dict[str, Any],
strict: bool = True,
missing_keys: List[str] = None,
unexpected_keys: List[str] = None,
error_msgs: List[str] = None,
missing_keys: list[str] = None,
unexpected_keys: list[str] = None,
error_msgs: list[str] = None,
return_state_dict: bool = False,
) -> None:
orig_pos_embed = state_dict.get(prefix + "positional_embedding")