mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-10 13:28:40 +00:00
Merge a93130e323
into sapling-pr-archive-ehhuang
This commit is contained in:
commit
9e70492078
2 changed files with 40 additions and 19 deletions
|
@ -47,6 +47,7 @@ from llama_stack.apis.inference import (
|
|||
OpenAIMessageParam,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
|
||||
from .types import ChatCompletionContext, ChatCompletionResult
|
||||
from .utils import convert_chat_choice_to_response_message, is_function_tool_call
|
||||
|
@ -597,14 +598,22 @@ class StreamingResponseOrchestrator:
|
|||
never_allowed = mcp_tool.allowed_tools.never
|
||||
|
||||
# Call list_mcp_tools
|
||||
tool_defs = await list_mcp_tools(
|
||||
endpoint=mcp_tool.server_url,
|
||||
headers=mcp_tool.headers or {},
|
||||
)
|
||||
tool_defs = None
|
||||
list_id = f"mcp_list_{uuid.uuid4()}"
|
||||
attributes = {
|
||||
"server_label": mcp_tool.server_label,
|
||||
"server_url": mcp_tool.server_url,
|
||||
"mcp_list_tools_id": list_id,
|
||||
}
|
||||
async with tracing.span("list_mcp_tools", attributes):
|
||||
tool_defs = await list_mcp_tools(
|
||||
endpoint=mcp_tool.server_url,
|
||||
headers=mcp_tool.headers or {},
|
||||
)
|
||||
|
||||
# Create the MCP list tools message
|
||||
mcp_list_message = OpenAIResponseOutputMessageMCPListTools(
|
||||
id=f"mcp_list_{uuid.uuid4()}",
|
||||
id=list_id,
|
||||
server_label=mcp_tool.server_label,
|
||||
tools=[],
|
||||
)
|
||||
|
|
|
@ -35,6 +35,7 @@ from llama_stack.apis.inference import (
|
|||
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
|
||||
from .types import ChatCompletionContext, ToolExecutionResult
|
||||
|
||||
|
@ -251,12 +252,18 @@ class ToolExecutor:
|
|||
from llama_stack.providers.utils.tools.mcp import invoke_mcp_tool
|
||||
|
||||
mcp_tool = mcp_tool_to_server[function_name]
|
||||
result = await invoke_mcp_tool(
|
||||
endpoint=mcp_tool.server_url,
|
||||
headers=mcp_tool.headers or {},
|
||||
tool_name=function_name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
attributes = {
|
||||
"server_label": mcp_tool.server_label,
|
||||
"server_url": mcp_tool.server_url,
|
||||
"tool_name": function_name,
|
||||
}
|
||||
async with tracing.span("invoke_mcp_tool", attributes):
|
||||
result = await invoke_mcp_tool(
|
||||
endpoint=mcp_tool.server_url,
|
||||
headers=mcp_tool.headers or {},
|
||||
tool_name=function_name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
elif function_name == "knowledge_search":
|
||||
response_file_search_tool = next(
|
||||
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)),
|
||||
|
@ -266,15 +273,20 @@ class ToolExecutor:
|
|||
# Use vector_stores.search API instead of knowledge_search tool
|
||||
# to support filters and ranking_options
|
||||
query = tool_kwargs.get("query", "")
|
||||
result = await self._execute_knowledge_search_via_vector_store(
|
||||
query=query,
|
||||
response_file_search_tool=response_file_search_tool,
|
||||
)
|
||||
async with tracing.span("knowledge_search", {}):
|
||||
result = await self._execute_knowledge_search_via_vector_store(
|
||||
query=query,
|
||||
response_file_search_tool=response_file_search_tool,
|
||||
)
|
||||
else:
|
||||
result = await self.tool_runtime_api.invoke_tool(
|
||||
tool_name=function_name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
attributes = {
|
||||
"tool_name": function_name,
|
||||
}
|
||||
async with tracing.span("invoke_tool", attributes):
|
||||
result = await self.tool_runtime_api.invoke_tool(
|
||||
tool_name=function_name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
except Exception as e:
|
||||
error_exc = e
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue