mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-12 04:00:42 +00:00
Merge origin/main into add-missing-provider-data-impls
Resolved conflicts in: - benchmarking/k8s-benchmark/stack_run_config.yaml (accepted new storage schema) - llama_stack/providers/remote/inference/cerebras/cerebras.py (kept provider data support) - llama_stack/providers/remote/inference/cerebras/config.py (kept provider data support) - llama_stack/providers/remote/inference/nvidia/config.py (kept provider data support) - llama_stack/providers/remote/inference/runpod/config.py (merged imports) - pyproject.toml (kept databricks-sdk dependency)
This commit is contained in:
commit
9eb9a37ee4
1880 changed files with 804868 additions and 70533 deletions
|
|
@ -43,17 +43,17 @@ from .openai_responses import (
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class ResponseShieldSpec(BaseModel):
|
||||
"""Specification for a shield to apply during response generation.
|
||||
class ResponseGuardrailSpec(BaseModel):
|
||||
"""Specification for a guardrail to apply during response generation.
|
||||
|
||||
:param type: The type/identifier of the shield.
|
||||
:param type: The type/identifier of the guardrail.
|
||||
"""
|
||||
|
||||
type: str
|
||||
# TODO: more fields to be added for shield configuration
|
||||
# TODO: more fields to be added for guardrail configuration
|
||||
|
||||
|
||||
ResponseShield = str | ResponseShieldSpec
|
||||
ResponseGuardrail = str | ResponseGuardrailSpec
|
||||
|
||||
|
||||
class Attachment(BaseModel):
|
||||
|
|
@ -812,6 +812,7 @@ class Agents(Protocol):
|
|||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
conversation: str | None = None,
|
||||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
|
|
@ -819,10 +820,10 @@ class Agents(Protocol):
|
|||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
include: list[str] | None = None,
|
||||
max_infer_iters: int | None = 10, # this is an extension to the OpenAI API
|
||||
shields: Annotated[
|
||||
list[ResponseShield] | None,
|
||||
guardrails: Annotated[
|
||||
list[ResponseGuardrail] | None,
|
||||
ExtraBodyField(
|
||||
"List of shields to apply during response generation. Shields provide safety and content moderation."
|
||||
"List of guardrails to apply during response generation. Guardrails provide safety and content moderation."
|
||||
),
|
||||
] = None,
|
||||
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
|
||||
|
|
@ -831,8 +832,9 @@ class Agents(Protocol):
|
|||
:param input: Input message(s) to create the response.
|
||||
:param model: The underlying LLM used for completions.
|
||||
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
|
||||
:param conversation: (Optional) The ID of a conversation to add the response to. Must begin with 'conv_'. Input and output messages will be automatically added to the conversation.
|
||||
:param include: (Optional) Additional fields to include in the response.
|
||||
:param shields: (Optional) List of shields to apply during response generation. Can be shield IDs (strings) or shield specifications.
|
||||
:param guardrails: (Optional) List of guardrails to apply during response generation. Can be guardrail IDs (strings) or guardrail specifications.
|
||||
:returns: An OpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -131,8 +131,20 @@ class OpenAIResponseOutputMessageContentOutputText(BaseModel):
|
|||
annotations: list[OpenAIResponseAnnotations] = Field(default_factory=list)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartRefusal(BaseModel):
|
||||
"""Refusal content within a streamed response part.
|
||||
|
||||
:param type: Content part type identifier, always "refusal"
|
||||
:param refusal: Refusal text supplied by the model
|
||||
"""
|
||||
|
||||
type: Literal["refusal"] = "refusal"
|
||||
refusal: str
|
||||
|
||||
|
||||
OpenAIResponseOutputMessageContent = Annotated[
|
||||
OpenAIResponseOutputMessageContentOutputText,
|
||||
OpenAIResponseOutputMessageContentOutputText | OpenAIResponseContentPartRefusal,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseOutputMessageContent, name="OpenAIResponseOutputMessageContent")
|
||||
|
|
@ -346,6 +358,174 @@ class OpenAIResponseText(BaseModel):
|
|||
format: OpenAIResponseTextFormat | None = None
|
||||
|
||||
|
||||
# Must match type Literals of OpenAIResponseInputToolWebSearch below
|
||||
WebSearchToolTypes = ["web_search", "web_search_preview", "web_search_preview_2025_03_11"]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolWebSearch(BaseModel):
|
||||
"""Web search tool configuration for OpenAI response inputs.
|
||||
|
||||
:param type: Web search tool type variant to use
|
||||
:param search_context_size: (Optional) Size of search context, must be "low", "medium", or "high"
|
||||
"""
|
||||
|
||||
# Must match values of WebSearchToolTypes above
|
||||
type: Literal["web_search"] | Literal["web_search_preview"] | Literal["web_search_preview_2025_03_11"] = (
|
||||
"web_search"
|
||||
)
|
||||
# TODO: actually use search_context_size somewhere...
|
||||
search_context_size: str | None = Field(default="medium", pattern="^low|medium|high$")
|
||||
# TODO: add user_location
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolFunction(BaseModel):
|
||||
"""Function tool configuration for OpenAI response inputs.
|
||||
|
||||
:param type: Tool type identifier, always "function"
|
||||
:param name: Name of the function that can be called
|
||||
:param description: (Optional) Description of what the function does
|
||||
:param parameters: (Optional) JSON schema defining the function's parameters
|
||||
:param strict: (Optional) Whether to enforce strict parameter validation
|
||||
"""
|
||||
|
||||
type: Literal["function"] = "function"
|
||||
name: str
|
||||
description: str | None = None
|
||||
parameters: dict[str, Any] | None
|
||||
strict: bool | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolFileSearch(BaseModel):
|
||||
"""File search tool configuration for OpenAI response inputs.
|
||||
|
||||
:param type: Tool type identifier, always "file_search"
|
||||
:param vector_store_ids: List of vector store identifiers to search within
|
||||
:param filters: (Optional) Additional filters to apply to the search
|
||||
:param max_num_results: (Optional) Maximum number of search results to return (1-50)
|
||||
:param ranking_options: (Optional) Options for ranking and scoring search results
|
||||
"""
|
||||
|
||||
type: Literal["file_search"] = "file_search"
|
||||
vector_store_ids: list[str]
|
||||
filters: dict[str, Any] | None = None
|
||||
max_num_results: int | None = Field(default=10, ge=1, le=50)
|
||||
ranking_options: FileSearchRankingOptions | None = None
|
||||
|
||||
|
||||
class ApprovalFilter(BaseModel):
|
||||
"""Filter configuration for MCP tool approval requirements.
|
||||
|
||||
:param always: (Optional) List of tool names that always require approval
|
||||
:param never: (Optional) List of tool names that never require approval
|
||||
"""
|
||||
|
||||
always: list[str] | None = None
|
||||
never: list[str] | None = None
|
||||
|
||||
|
||||
class AllowedToolsFilter(BaseModel):
|
||||
"""Filter configuration for restricting which MCP tools can be used.
|
||||
|
||||
:param tool_names: (Optional) List of specific tool names that are allowed
|
||||
"""
|
||||
|
||||
tool_names: list[str] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolMCP(BaseModel):
|
||||
"""Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
|
||||
|
||||
:param type: Tool type identifier, always "mcp"
|
||||
:param server_label: Label to identify this MCP server
|
||||
:param server_url: URL endpoint of the MCP server
|
||||
:param headers: (Optional) HTTP headers to include when connecting to the server
|
||||
:param require_approval: Approval requirement for tool calls ("always", "never", or filter)
|
||||
:param allowed_tools: (Optional) Restriction on which tools can be used from this server
|
||||
"""
|
||||
|
||||
type: Literal["mcp"] = "mcp"
|
||||
server_label: str
|
||||
server_url: str
|
||||
headers: dict[str, Any] | None = None
|
||||
|
||||
require_approval: Literal["always"] | Literal["never"] | ApprovalFilter = "never"
|
||||
allowed_tools: list[str] | AllowedToolsFilter | None = None
|
||||
|
||||
|
||||
OpenAIResponseInputTool = Annotated[
|
||||
OpenAIResponseInputToolWebSearch
|
||||
| OpenAIResponseInputToolFileSearch
|
||||
| OpenAIResponseInputToolFunction
|
||||
| OpenAIResponseInputToolMCP,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseInputTool, name="OpenAIResponseInputTool")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseToolMCP(BaseModel):
|
||||
"""Model Context Protocol (MCP) tool configuration for OpenAI response object.
|
||||
|
||||
:param type: Tool type identifier, always "mcp"
|
||||
:param server_label: Label to identify this MCP server
|
||||
:param allowed_tools: (Optional) Restriction on which tools can be used from this server
|
||||
"""
|
||||
|
||||
type: Literal["mcp"] = "mcp"
|
||||
server_label: str
|
||||
allowed_tools: list[str] | AllowedToolsFilter | None = None
|
||||
|
||||
|
||||
OpenAIResponseTool = Annotated[
|
||||
OpenAIResponseInputToolWebSearch
|
||||
| OpenAIResponseInputToolFileSearch
|
||||
| OpenAIResponseInputToolFunction
|
||||
| OpenAIResponseToolMCP, # The only type that differes from that in the inputs is the MCP tool
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseTool, name="OpenAIResponseTool")
|
||||
|
||||
|
||||
class OpenAIResponseUsageOutputTokensDetails(BaseModel):
|
||||
"""Token details for output tokens in OpenAI response usage.
|
||||
|
||||
:param reasoning_tokens: Number of tokens used for reasoning (o1/o3 models)
|
||||
"""
|
||||
|
||||
reasoning_tokens: int | None = None
|
||||
|
||||
|
||||
class OpenAIResponseUsageInputTokensDetails(BaseModel):
|
||||
"""Token details for input tokens in OpenAI response usage.
|
||||
|
||||
:param cached_tokens: Number of tokens retrieved from cache
|
||||
"""
|
||||
|
||||
cached_tokens: int | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseUsage(BaseModel):
|
||||
"""Usage information for OpenAI response.
|
||||
|
||||
:param input_tokens: Number of tokens in the input
|
||||
:param output_tokens: Number of tokens in the output
|
||||
:param total_tokens: Total tokens used (input + output)
|
||||
:param input_tokens_details: Detailed breakdown of input token usage
|
||||
:param output_tokens_details: Detailed breakdown of output token usage
|
||||
"""
|
||||
|
||||
input_tokens: int
|
||||
output_tokens: int
|
||||
total_tokens: int
|
||||
input_tokens_details: OpenAIResponseUsageInputTokensDetails | None = None
|
||||
output_tokens_details: OpenAIResponseUsageOutputTokensDetails | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObject(BaseModel):
|
||||
"""Complete OpenAI response object containing generation results and metadata.
|
||||
|
|
@ -362,7 +542,10 @@ class OpenAIResponseObject(BaseModel):
|
|||
:param temperature: (Optional) Sampling temperature used for generation
|
||||
:param text: Text formatting configuration for the response
|
||||
:param top_p: (Optional) Nucleus sampling parameter used for generation
|
||||
:param tools: (Optional) An array of tools the model may call while generating a response.
|
||||
:param truncation: (Optional) Truncation strategy applied to the response
|
||||
:param usage: (Optional) Token usage information for the response
|
||||
:param instructions: (Optional) System message inserted into the model's context
|
||||
"""
|
||||
|
||||
created_at: int
|
||||
|
|
@ -379,7 +562,10 @@ class OpenAIResponseObject(BaseModel):
|
|||
# before the field was added. New responses will have this set always.
|
||||
text: OpenAIResponseText = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text"))
|
||||
top_p: float | None = None
|
||||
tools: list[OpenAIResponseTool] | None = None
|
||||
truncation: str | None = None
|
||||
usage: OpenAIResponseUsage | None = None
|
||||
instructions: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -400,7 +586,7 @@ class OpenAIDeleteResponseObject(BaseModel):
|
|||
class OpenAIResponseObjectStreamResponseCreated(BaseModel):
|
||||
"""Streaming event indicating a new response has been created.
|
||||
|
||||
:param response: The newly created response object
|
||||
:param response: The response object that was created
|
||||
:param type: Event type identifier, always "response.created"
|
||||
"""
|
||||
|
||||
|
|
@ -408,11 +594,25 @@ class OpenAIResponseObjectStreamResponseCreated(BaseModel):
|
|||
type: Literal["response.created"] = "response.created"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseInProgress(BaseModel):
|
||||
"""Streaming event indicating the response remains in progress.
|
||||
|
||||
:param response: Current response state while in progress
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.in_progress"
|
||||
"""
|
||||
|
||||
response: OpenAIResponseObject
|
||||
sequence_number: int
|
||||
type: Literal["response.in_progress"] = "response.in_progress"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
|
||||
"""Streaming event indicating a response has been completed.
|
||||
|
||||
:param response: The completed response object
|
||||
:param response: Completed response object
|
||||
:param type: Event type identifier, always "response.completed"
|
||||
"""
|
||||
|
||||
|
|
@ -420,6 +620,34 @@ class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
|
|||
type: Literal["response.completed"] = "response.completed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseIncomplete(BaseModel):
|
||||
"""Streaming event emitted when a response ends in an incomplete state.
|
||||
|
||||
:param response: Response object describing the incomplete state
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.incomplete"
|
||||
"""
|
||||
|
||||
response: OpenAIResponseObject
|
||||
sequence_number: int
|
||||
type: Literal["response.incomplete"] = "response.incomplete"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseFailed(BaseModel):
|
||||
"""Streaming event emitted when a response fails.
|
||||
|
||||
:param response: Response object describing the failure
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.failed"
|
||||
"""
|
||||
|
||||
response: OpenAIResponseObject
|
||||
sequence_number: int
|
||||
type: Literal["response.failed"] = "response.failed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseOutputItemAdded(BaseModel):
|
||||
"""Streaming event for when a new output item is added to the response.
|
||||
|
|
@ -650,19 +878,34 @@ class OpenAIResponseObjectStreamResponseMcpCallCompleted(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartOutputText(BaseModel):
|
||||
"""Text content within a streamed response part.
|
||||
|
||||
:param type: Content part type identifier, always "output_text"
|
||||
:param text: Text emitted for this content part
|
||||
:param annotations: Structured annotations associated with the text
|
||||
:param logprobs: (Optional) Token log probability details
|
||||
"""
|
||||
|
||||
type: Literal["output_text"] = "output_text"
|
||||
text: str
|
||||
# TODO: add annotations, logprobs, etc.
|
||||
annotations: list[OpenAIResponseAnnotations] = Field(default_factory=list)
|
||||
logprobs: list[dict[str, Any]] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartRefusal(BaseModel):
|
||||
type: Literal["refusal"] = "refusal"
|
||||
refusal: str
|
||||
class OpenAIResponseContentPartReasoningText(BaseModel):
|
||||
"""Reasoning text emitted as part of a streamed response.
|
||||
|
||||
:param type: Content part type identifier, always "reasoning_text"
|
||||
:param text: Reasoning text supplied by the model
|
||||
"""
|
||||
|
||||
type: Literal["reasoning_text"] = "reasoning_text"
|
||||
text: str
|
||||
|
||||
|
||||
OpenAIResponseContentPart = Annotated[
|
||||
OpenAIResponseContentPartOutputText | OpenAIResponseContentPartRefusal,
|
||||
OpenAIResponseContentPartOutputText | OpenAIResponseContentPartRefusal | OpenAIResponseContentPartReasoningText,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseContentPart, name="OpenAIResponseContentPart")
|
||||
|
|
@ -672,15 +915,19 @@ register_schema(OpenAIResponseContentPart, name="OpenAIResponseContentPart")
|
|||
class OpenAIResponseObjectStreamResponseContentPartAdded(BaseModel):
|
||||
"""Streaming event for when a new content part is added to a response item.
|
||||
|
||||
:param content_index: Index position of the part within the content array
|
||||
:param response_id: Unique identifier of the response containing this content
|
||||
:param item_id: Unique identifier of the output item containing this content part
|
||||
:param output_index: Index position of the output item in the response
|
||||
:param part: The content part that was added
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.content_part.added"
|
||||
"""
|
||||
|
||||
content_index: int
|
||||
response_id: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
part: OpenAIResponseContentPart
|
||||
sequence_number: int
|
||||
type: Literal["response.content_part.added"] = "response.content_part.added"
|
||||
|
|
@ -690,22 +937,269 @@ class OpenAIResponseObjectStreamResponseContentPartAdded(BaseModel):
|
|||
class OpenAIResponseObjectStreamResponseContentPartDone(BaseModel):
|
||||
"""Streaming event for when a content part is completed.
|
||||
|
||||
:param content_index: Index position of the part within the content array
|
||||
:param response_id: Unique identifier of the response containing this content
|
||||
:param item_id: Unique identifier of the output item containing this content part
|
||||
:param output_index: Index position of the output item in the response
|
||||
:param part: The completed content part
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.content_part.done"
|
||||
"""
|
||||
|
||||
content_index: int
|
||||
response_id: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
part: OpenAIResponseContentPart
|
||||
sequence_number: int
|
||||
type: Literal["response.content_part.done"] = "response.content_part.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseReasoningTextDelta(BaseModel):
|
||||
"""Streaming event for incremental reasoning text updates.
|
||||
|
||||
:param content_index: Index position of the reasoning content part
|
||||
:param delta: Incremental reasoning text being added
|
||||
:param item_id: Unique identifier of the output item being updated
|
||||
:param output_index: Index position of the item in the output list
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.reasoning_text.delta"
|
||||
"""
|
||||
|
||||
content_index: int
|
||||
delta: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.reasoning_text.delta"] = "response.reasoning_text.delta"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseReasoningTextDone(BaseModel):
|
||||
"""Streaming event for when reasoning text is completed.
|
||||
|
||||
:param content_index: Index position of the reasoning content part
|
||||
:param text: Final complete reasoning text
|
||||
:param item_id: Unique identifier of the completed output item
|
||||
:param output_index: Index position of the item in the output list
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.reasoning_text.done"
|
||||
"""
|
||||
|
||||
content_index: int
|
||||
text: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.reasoning_text.done"] = "response.reasoning_text.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartReasoningSummary(BaseModel):
|
||||
"""Reasoning summary part in a streamed response.
|
||||
|
||||
:param type: Content part type identifier, always "summary_text"
|
||||
:param text: Summary text
|
||||
"""
|
||||
|
||||
type: Literal["summary_text"] = "summary_text"
|
||||
text: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseReasoningSummaryPartAdded(BaseModel):
|
||||
"""Streaming event for when a new reasoning summary part is added.
|
||||
|
||||
:param item_id: Unique identifier of the output item
|
||||
:param output_index: Index position of the output item
|
||||
:param part: The summary part that was added
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param summary_index: Index of the summary part within the reasoning summary
|
||||
:param type: Event type identifier, always "response.reasoning_summary_part.added"
|
||||
"""
|
||||
|
||||
item_id: str
|
||||
output_index: int
|
||||
part: OpenAIResponseContentPartReasoningSummary
|
||||
sequence_number: int
|
||||
summary_index: int
|
||||
type: Literal["response.reasoning_summary_part.added"] = "response.reasoning_summary_part.added"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseReasoningSummaryPartDone(BaseModel):
|
||||
"""Streaming event for when a reasoning summary part is completed.
|
||||
|
||||
:param item_id: Unique identifier of the output item
|
||||
:param output_index: Index position of the output item
|
||||
:param part: The completed summary part
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param summary_index: Index of the summary part within the reasoning summary
|
||||
:param type: Event type identifier, always "response.reasoning_summary_part.done"
|
||||
"""
|
||||
|
||||
item_id: str
|
||||
output_index: int
|
||||
part: OpenAIResponseContentPartReasoningSummary
|
||||
sequence_number: int
|
||||
summary_index: int
|
||||
type: Literal["response.reasoning_summary_part.done"] = "response.reasoning_summary_part.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseReasoningSummaryTextDelta(BaseModel):
|
||||
"""Streaming event for incremental reasoning summary text updates.
|
||||
|
||||
:param delta: Incremental summary text being added
|
||||
:param item_id: Unique identifier of the output item
|
||||
:param output_index: Index position of the output item
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param summary_index: Index of the summary part within the reasoning summary
|
||||
:param type: Event type identifier, always "response.reasoning_summary_text.delta"
|
||||
"""
|
||||
|
||||
delta: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
summary_index: int
|
||||
type: Literal["response.reasoning_summary_text.delta"] = "response.reasoning_summary_text.delta"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseReasoningSummaryTextDone(BaseModel):
|
||||
"""Streaming event for when reasoning summary text is completed.
|
||||
|
||||
:param text: Final complete summary text
|
||||
:param item_id: Unique identifier of the output item
|
||||
:param output_index: Index position of the output item
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param summary_index: Index of the summary part within the reasoning summary
|
||||
:param type: Event type identifier, always "response.reasoning_summary_text.done"
|
||||
"""
|
||||
|
||||
text: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
summary_index: int
|
||||
type: Literal["response.reasoning_summary_text.done"] = "response.reasoning_summary_text.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseRefusalDelta(BaseModel):
|
||||
"""Streaming event for incremental refusal text updates.
|
||||
|
||||
:param content_index: Index position of the content part
|
||||
:param delta: Incremental refusal text being added
|
||||
:param item_id: Unique identifier of the output item
|
||||
:param output_index: Index position of the item in the output list
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.refusal.delta"
|
||||
"""
|
||||
|
||||
content_index: int
|
||||
delta: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.refusal.delta"] = "response.refusal.delta"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseRefusalDone(BaseModel):
|
||||
"""Streaming event for when refusal text is completed.
|
||||
|
||||
:param content_index: Index position of the content part
|
||||
:param refusal: Final complete refusal text
|
||||
:param item_id: Unique identifier of the output item
|
||||
:param output_index: Index position of the item in the output list
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.refusal.done"
|
||||
"""
|
||||
|
||||
content_index: int
|
||||
refusal: str
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.refusal.done"] = "response.refusal.done"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseOutputTextAnnotationAdded(BaseModel):
|
||||
"""Streaming event for when an annotation is added to output text.
|
||||
|
||||
:param item_id: Unique identifier of the item to which the annotation is being added
|
||||
:param output_index: Index position of the output item in the response's output array
|
||||
:param content_index: Index position of the content part within the output item
|
||||
:param annotation_index: Index of the annotation within the content part
|
||||
:param annotation: The annotation object being added
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.output_text.annotation.added"
|
||||
"""
|
||||
|
||||
item_id: str
|
||||
output_index: int
|
||||
content_index: int
|
||||
annotation_index: int
|
||||
annotation: OpenAIResponseAnnotations
|
||||
sequence_number: int
|
||||
type: Literal["response.output_text.annotation.added"] = "response.output_text.annotation.added"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseFileSearchCallInProgress(BaseModel):
|
||||
"""Streaming event for file search calls in progress.
|
||||
|
||||
:param item_id: Unique identifier of the file search call
|
||||
:param output_index: Index position of the item in the output list
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.file_search_call.in_progress"
|
||||
"""
|
||||
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.file_search_call.in_progress"] = "response.file_search_call.in_progress"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseFileSearchCallSearching(BaseModel):
|
||||
"""Streaming event for file search currently searching.
|
||||
|
||||
:param item_id: Unique identifier of the file search call
|
||||
:param output_index: Index position of the item in the output list
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.file_search_call.searching"
|
||||
"""
|
||||
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.file_search_call.searching"] = "response.file_search_call.searching"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseFileSearchCallCompleted(BaseModel):
|
||||
"""Streaming event for completed file search calls.
|
||||
|
||||
:param item_id: Unique identifier of the completed file search call
|
||||
:param output_index: Index position of the item in the output list
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.file_search_call.completed"
|
||||
"""
|
||||
|
||||
item_id: str
|
||||
output_index: int
|
||||
sequence_number: int
|
||||
type: Literal["response.file_search_call.completed"] = "response.file_search_call.completed"
|
||||
|
||||
|
||||
OpenAIResponseObjectStream = Annotated[
|
||||
OpenAIResponseObjectStreamResponseCreated
|
||||
| OpenAIResponseObjectStreamResponseInProgress
|
||||
| OpenAIResponseObjectStreamResponseOutputItemAdded
|
||||
| OpenAIResponseObjectStreamResponseOutputItemDone
|
||||
| OpenAIResponseObjectStreamResponseOutputTextDelta
|
||||
|
|
@ -725,6 +1219,20 @@ OpenAIResponseObjectStream = Annotated[
|
|||
| OpenAIResponseObjectStreamResponseMcpCallCompleted
|
||||
| OpenAIResponseObjectStreamResponseContentPartAdded
|
||||
| OpenAIResponseObjectStreamResponseContentPartDone
|
||||
| OpenAIResponseObjectStreamResponseReasoningTextDelta
|
||||
| OpenAIResponseObjectStreamResponseReasoningTextDone
|
||||
| OpenAIResponseObjectStreamResponseReasoningSummaryPartAdded
|
||||
| OpenAIResponseObjectStreamResponseReasoningSummaryPartDone
|
||||
| OpenAIResponseObjectStreamResponseReasoningSummaryTextDelta
|
||||
| OpenAIResponseObjectStreamResponseReasoningSummaryTextDone
|
||||
| OpenAIResponseObjectStreamResponseRefusalDelta
|
||||
| OpenAIResponseObjectStreamResponseRefusalDone
|
||||
| OpenAIResponseObjectStreamResponseOutputTextAnnotationAdded
|
||||
| OpenAIResponseObjectStreamResponseFileSearchCallInProgress
|
||||
| OpenAIResponseObjectStreamResponseFileSearchCallSearching
|
||||
| OpenAIResponseObjectStreamResponseFileSearchCallCompleted
|
||||
| OpenAIResponseObjectStreamResponseIncomplete
|
||||
| OpenAIResponseObjectStreamResponseFailed
|
||||
| OpenAIResponseObjectStreamResponseCompleted,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
|
@ -746,128 +1254,15 @@ class OpenAIResponseInputFunctionToolCallOutput(BaseModel):
|
|||
|
||||
OpenAIResponseInput = Annotated[
|
||||
# Responses API allows output messages to be passed in as input
|
||||
OpenAIResponseOutputMessageWebSearchToolCall
|
||||
| OpenAIResponseOutputMessageFileSearchToolCall
|
||||
| OpenAIResponseOutputMessageFunctionToolCall
|
||||
OpenAIResponseOutput
|
||||
| OpenAIResponseInputFunctionToolCallOutput
|
||||
| OpenAIResponseMCPApprovalRequest
|
||||
| OpenAIResponseMCPApprovalResponse
|
||||
|
|
||||
# Fallback to the generic message type as a last resort
|
||||
OpenAIResponseMessage,
|
||||
| OpenAIResponseMessage,
|
||||
Field(union_mode="left_to_right"),
|
||||
]
|
||||
register_schema(OpenAIResponseInput, name="OpenAIResponseInput")
|
||||
|
||||
|
||||
# Must match type Literals of OpenAIResponseInputToolWebSearch below
|
||||
WebSearchToolTypes = ["web_search", "web_search_preview", "web_search_preview_2025_03_11"]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolWebSearch(BaseModel):
|
||||
"""Web search tool configuration for OpenAI response inputs.
|
||||
|
||||
:param type: Web search tool type variant to use
|
||||
:param search_context_size: (Optional) Size of search context, must be "low", "medium", or "high"
|
||||
"""
|
||||
|
||||
# Must match values of WebSearchToolTypes above
|
||||
type: Literal["web_search"] | Literal["web_search_preview"] | Literal["web_search_preview_2025_03_11"] = (
|
||||
"web_search"
|
||||
)
|
||||
# TODO: actually use search_context_size somewhere...
|
||||
search_context_size: str | None = Field(default="medium", pattern="^low|medium|high$")
|
||||
# TODO: add user_location
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolFunction(BaseModel):
|
||||
"""Function tool configuration for OpenAI response inputs.
|
||||
|
||||
:param type: Tool type identifier, always "function"
|
||||
:param name: Name of the function that can be called
|
||||
:param description: (Optional) Description of what the function does
|
||||
:param parameters: (Optional) JSON schema defining the function's parameters
|
||||
:param strict: (Optional) Whether to enforce strict parameter validation
|
||||
"""
|
||||
|
||||
type: Literal["function"] = "function"
|
||||
name: str
|
||||
description: str | None = None
|
||||
parameters: dict[str, Any] | None
|
||||
strict: bool | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolFileSearch(BaseModel):
|
||||
"""File search tool configuration for OpenAI response inputs.
|
||||
|
||||
:param type: Tool type identifier, always "file_search"
|
||||
:param vector_store_ids: List of vector store identifiers to search within
|
||||
:param filters: (Optional) Additional filters to apply to the search
|
||||
:param max_num_results: (Optional) Maximum number of search results to return (1-50)
|
||||
:param ranking_options: (Optional) Options for ranking and scoring search results
|
||||
"""
|
||||
|
||||
type: Literal["file_search"] = "file_search"
|
||||
vector_store_ids: list[str]
|
||||
filters: dict[str, Any] | None = None
|
||||
max_num_results: int | None = Field(default=10, ge=1, le=50)
|
||||
ranking_options: FileSearchRankingOptions | None = None
|
||||
|
||||
|
||||
class ApprovalFilter(BaseModel):
|
||||
"""Filter configuration for MCP tool approval requirements.
|
||||
|
||||
:param always: (Optional) List of tool names that always require approval
|
||||
:param never: (Optional) List of tool names that never require approval
|
||||
"""
|
||||
|
||||
always: list[str] | None = None
|
||||
never: list[str] | None = None
|
||||
|
||||
|
||||
class AllowedToolsFilter(BaseModel):
|
||||
"""Filter configuration for restricting which MCP tools can be used.
|
||||
|
||||
:param tool_names: (Optional) List of specific tool names that are allowed
|
||||
"""
|
||||
|
||||
tool_names: list[str] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolMCP(BaseModel):
|
||||
"""Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
|
||||
|
||||
:param type: Tool type identifier, always "mcp"
|
||||
:param server_label: Label to identify this MCP server
|
||||
:param server_url: URL endpoint of the MCP server
|
||||
:param headers: (Optional) HTTP headers to include when connecting to the server
|
||||
:param require_approval: Approval requirement for tool calls ("always", "never", or filter)
|
||||
:param allowed_tools: (Optional) Restriction on which tools can be used from this server
|
||||
"""
|
||||
|
||||
type: Literal["mcp"] = "mcp"
|
||||
server_label: str
|
||||
server_url: str
|
||||
headers: dict[str, Any] | None = None
|
||||
|
||||
require_approval: Literal["always"] | Literal["never"] | ApprovalFilter = "never"
|
||||
allowed_tools: list[str] | AllowedToolsFilter | None = None
|
||||
|
||||
|
||||
OpenAIResponseInputTool = Annotated[
|
||||
OpenAIResponseInputToolWebSearch
|
||||
| OpenAIResponseInputToolFileSearch
|
||||
| OpenAIResponseInputToolFunction
|
||||
| OpenAIResponseInputToolMCP,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseInputTool, name="OpenAIResponseInputTool")
|
||||
|
||||
|
||||
class ListOpenAIResponseInputItem(BaseModel):
|
||||
"""List container for OpenAI response input items.
|
||||
|
||||
|
|
|
|||
|
|
@ -86,3 +86,18 @@ class TokenValidationError(ValueError):
|
|||
|
||||
def __init__(self, message: str) -> None:
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class ConversationNotFoundError(ResourceNotFoundError):
|
||||
"""raised when Llama Stack cannot find a referenced conversation"""
|
||||
|
||||
def __init__(self, conversation_id: str) -> None:
|
||||
super().__init__(conversation_id, "Conversation", "client.conversations.list()")
|
||||
|
||||
|
||||
class InvalidConversationIdError(ValueError):
|
||||
"""raised when a conversation ID has an invalid format"""
|
||||
|
||||
def __init__(self, conversation_id: str) -> None:
|
||||
message = f"Invalid conversation ID '{conversation_id}'. Expected an ID that begins with 'conv_'."
|
||||
super().__init__(message)
|
||||
|
|
|
|||
|
|
@ -4,14 +4,15 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import StrEnum
|
||||
from typing import Annotated, Literal, Protocol, runtime_checkable
|
||||
|
||||
from openai import NOT_GIVEN
|
||||
from openai._types import NotGiven
|
||||
from openai.types.responses.response_includable import ResponseIncludable
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
OpenAIResponseInputFunctionToolCallOutput,
|
||||
OpenAIResponseMCPApprovalRequest,
|
||||
OpenAIResponseMCPApprovalResponse,
|
||||
OpenAIResponseMessage,
|
||||
OpenAIResponseOutputMessageFileSearchToolCall,
|
||||
OpenAIResponseOutputMessageFunctionToolCall,
|
||||
|
|
@ -20,7 +21,7 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseOutputMessageWebSearchToolCall,
|
||||
)
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
Metadata = dict[str, str]
|
||||
|
|
@ -61,9 +62,14 @@ class ConversationMessage(BaseModel):
|
|||
|
||||
ConversationItem = Annotated[
|
||||
OpenAIResponseMessage
|
||||
| OpenAIResponseOutputMessageFunctionToolCall
|
||||
| OpenAIResponseOutputMessageFileSearchToolCall
|
||||
| OpenAIResponseOutputMessageWebSearchToolCall
|
||||
| OpenAIResponseOutputMessageFileSearchToolCall
|
||||
| OpenAIResponseOutputMessageFunctionToolCall
|
||||
| OpenAIResponseInputFunctionToolCallOutput
|
||||
| OpenAIResponseMCPApprovalRequest
|
||||
| OpenAIResponseMCPApprovalResponse
|
||||
| OpenAIResponseOutputMessageMCPCall
|
||||
| OpenAIResponseOutputMessageMCPListTools
|
||||
| OpenAIResponseOutputMessageMCPCall
|
||||
| OpenAIResponseOutputMessageMCPListTools,
|
||||
Field(discriminator="type"),
|
||||
|
|
@ -142,6 +148,20 @@ class ConversationItemCreateRequest(BaseModel):
|
|||
)
|
||||
|
||||
|
||||
class ConversationItemInclude(StrEnum):
|
||||
"""
|
||||
Specify additional output data to include in the model response.
|
||||
"""
|
||||
|
||||
web_search_call_action_sources = "web_search_call.action.sources"
|
||||
code_interpreter_call_outputs = "code_interpreter_call.outputs"
|
||||
computer_call_output_output_image_url = "computer_call_output.output.image_url"
|
||||
file_search_call_results = "file_search_call.results"
|
||||
message_input_image_image_url = "message.input_image.image_url"
|
||||
message_output_text_logprobs = "message.output_text.logprobs"
|
||||
reasoning_encrypted_content = "reasoning.encrypted_content"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ConversationItemList(BaseModel):
|
||||
"""List of conversation items with pagination."""
|
||||
|
|
@ -165,7 +185,9 @@ class ConversationItemDeletedResource(BaseModel):
|
|||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class Conversations(Protocol):
|
||||
"""Protocol for conversation management operations."""
|
||||
"""Conversations
|
||||
|
||||
Protocol for conversation management operations."""
|
||||
|
||||
@webmethod(route="/conversations", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def create_conversation(
|
||||
|
|
@ -173,6 +195,8 @@ class Conversations(Protocol):
|
|||
) -> Conversation:
|
||||
"""Create a conversation.
|
||||
|
||||
Create a conversation.
|
||||
|
||||
:param items: Initial items to include in the conversation context.
|
||||
:param metadata: Set of key-value pairs that can be attached to an object.
|
||||
:returns: The created conversation object.
|
||||
|
|
@ -181,7 +205,9 @@ class Conversations(Protocol):
|
|||
|
||||
@webmethod(route="/conversations/{conversation_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_conversation(self, conversation_id: str) -> Conversation:
|
||||
"""Get a conversation with the given ID.
|
||||
"""Retrieve a conversation.
|
||||
|
||||
Get a conversation with the given ID.
|
||||
|
||||
:param conversation_id: The conversation identifier.
|
||||
:returns: The conversation object.
|
||||
|
|
@ -190,7 +216,9 @@ class Conversations(Protocol):
|
|||
|
||||
@webmethod(route="/conversations/{conversation_id}", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def update_conversation(self, conversation_id: str, metadata: Metadata) -> Conversation:
|
||||
"""Update a conversation's metadata with the given ID.
|
||||
"""Update a conversation.
|
||||
|
||||
Update a conversation's metadata with the given ID.
|
||||
|
||||
:param conversation_id: The conversation identifier.
|
||||
:param metadata: Set of key-value pairs that can be attached to an object.
|
||||
|
|
@ -200,7 +228,9 @@ class Conversations(Protocol):
|
|||
|
||||
@webmethod(route="/conversations/{conversation_id}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def openai_delete_conversation(self, conversation_id: str) -> ConversationDeletedResource:
|
||||
"""Delete a conversation with the given ID.
|
||||
"""Delete a conversation.
|
||||
|
||||
Delete a conversation with the given ID.
|
||||
|
||||
:param conversation_id: The conversation identifier.
|
||||
:returns: The deleted conversation resource.
|
||||
|
|
@ -209,7 +239,9 @@ class Conversations(Protocol):
|
|||
|
||||
@webmethod(route="/conversations/{conversation_id}/items", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def add_items(self, conversation_id: str, items: list[ConversationItem]) -> ConversationItemList:
|
||||
"""Create items in the conversation.
|
||||
"""Create items.
|
||||
|
||||
Create items in the conversation.
|
||||
|
||||
:param conversation_id: The conversation identifier.
|
||||
:param items: Items to include in the conversation context.
|
||||
|
|
@ -219,7 +251,9 @@ class Conversations(Protocol):
|
|||
|
||||
@webmethod(route="/conversations/{conversation_id}/items/{item_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def retrieve(self, conversation_id: str, item_id: str) -> ConversationItem:
|
||||
"""Retrieve a conversation item.
|
||||
"""Retrieve an item.
|
||||
|
||||
Retrieve a conversation item.
|
||||
|
||||
:param conversation_id: The conversation identifier.
|
||||
:param item_id: The item identifier.
|
||||
|
|
@ -228,15 +262,17 @@ class Conversations(Protocol):
|
|||
...
|
||||
|
||||
@webmethod(route="/conversations/{conversation_id}/items", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list(
|
||||
async def list_items(
|
||||
self,
|
||||
conversation_id: str,
|
||||
after: str | NotGiven = NOT_GIVEN,
|
||||
include: list[ResponseIncludable] | NotGiven = NOT_GIVEN,
|
||||
limit: int | NotGiven = NOT_GIVEN,
|
||||
order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
|
||||
after: str | None = None,
|
||||
include: list[ConversationItemInclude] | None = None,
|
||||
limit: int | None = None,
|
||||
order: Literal["asc", "desc"] | None = None,
|
||||
) -> ConversationItemList:
|
||||
"""List items in the conversation.
|
||||
"""List items.
|
||||
|
||||
List items in the conversation.
|
||||
|
||||
:param conversation_id: The conversation identifier.
|
||||
:param after: An item ID to list items after, used in pagination.
|
||||
|
|
@ -251,7 +287,9 @@ class Conversations(Protocol):
|
|||
async def openai_delete_conversation_item(
|
||||
self, conversation_id: str, item_id: str
|
||||
) -> ConversationItemDeletedResource:
|
||||
"""Delete a conversation item.
|
||||
"""Delete an item.
|
||||
|
||||
Delete a conversation item.
|
||||
|
||||
:param conversation_id: The conversation identifier.
|
||||
:param item_id: The item identifier.
|
||||
|
|
|
|||
|
|
@ -96,7 +96,6 @@ class Api(Enum, metaclass=DynamicApiMeta):
|
|||
:cvar telemetry: Observability and system monitoring
|
||||
:cvar models: Model metadata and management
|
||||
:cvar shields: Safety shield implementations
|
||||
:cvar vector_dbs: Vector database management
|
||||
:cvar datasets: Dataset creation and management
|
||||
:cvar scoring_functions: Scoring function definitions
|
||||
:cvar benchmarks: Benchmark suite management
|
||||
|
|
@ -118,11 +117,9 @@ class Api(Enum, metaclass=DynamicApiMeta):
|
|||
post_training = "post_training"
|
||||
tool_runtime = "tool_runtime"
|
||||
|
||||
telemetry = "telemetry"
|
||||
|
||||
models = "models"
|
||||
shields = "shields"
|
||||
vector_dbs = "vector_dbs"
|
||||
vector_stores = "vector_stores" # only used for routing table
|
||||
datasets = "datasets"
|
||||
scoring_functions = "scoring_functions"
|
||||
benchmarks = "benchmarks"
|
||||
|
|
|
|||
|
|
@ -82,7 +82,9 @@ class EvaluateResponse(BaseModel):
|
|||
|
||||
|
||||
class Eval(Protocol):
|
||||
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
|
||||
"""Evaluations
|
||||
|
||||
Llama Stack Evaluation API for running evaluations on model and agent candidates."""
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ from pydantic import BaseModel, Field
|
|||
|
||||
from llama_stack.apis.common.responses import Order
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -14,6 +14,7 @@ from typing import (
|
|||
runtime_checkable,
|
||||
)
|
||||
|
||||
from fastapi import Body
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
|
|
@ -22,6 +23,7 @@ from llama_stack.apis.common.responses import Order
|
|||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.telemetry import MetricResponseMixin
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
StopReason,
|
||||
|
|
@ -29,7 +31,6 @@ from llama_stack.models.llama.datatypes import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
register_schema(ToolCall)
|
||||
|
|
@ -96,7 +97,7 @@ class SamplingParams(BaseModel):
|
|||
|
||||
strategy: SamplingStrategy = Field(default_factory=GreedySamplingStrategy)
|
||||
|
||||
max_tokens: int | None = 0
|
||||
max_tokens: int | None = None
|
||||
repetition_penalty: float | None = 1.0
|
||||
stop: list[str] | None = None
|
||||
|
||||
|
|
@ -776,12 +777,14 @@ class OpenAIChoiceDelta(BaseModel):
|
|||
:param refusal: (Optional) The refusal of the delta
|
||||
:param role: (Optional) The role of the delta
|
||||
:param tool_calls: (Optional) The tool calls of the delta
|
||||
:param reasoning_content: (Optional) The reasoning content from the model (non-standard, for o1/o3 models)
|
||||
"""
|
||||
|
||||
content: str | None = None
|
||||
refusal: str | None = None
|
||||
role: str | None = None
|
||||
tool_calls: list[OpenAIChatCompletionToolCall] | None = None
|
||||
reasoning_content: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -816,6 +819,42 @@ class OpenAIChoice(BaseModel):
|
|||
logprobs: OpenAIChoiceLogprobs | None = None
|
||||
|
||||
|
||||
class OpenAIChatCompletionUsageCompletionTokensDetails(BaseModel):
|
||||
"""Token details for output tokens in OpenAI chat completion usage.
|
||||
|
||||
:param reasoning_tokens: Number of tokens used for reasoning (o1/o3 models)
|
||||
"""
|
||||
|
||||
reasoning_tokens: int | None = None
|
||||
|
||||
|
||||
class OpenAIChatCompletionUsagePromptTokensDetails(BaseModel):
|
||||
"""Token details for prompt tokens in OpenAI chat completion usage.
|
||||
|
||||
:param cached_tokens: Number of tokens retrieved from cache
|
||||
"""
|
||||
|
||||
cached_tokens: int | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletionUsage(BaseModel):
|
||||
"""Usage information for OpenAI chat completion.
|
||||
|
||||
:param prompt_tokens: Number of tokens in the prompt
|
||||
:param completion_tokens: Number of tokens in the completion
|
||||
:param total_tokens: Total tokens used (prompt + completion)
|
||||
:param input_tokens_details: Detailed breakdown of input token usage
|
||||
:param output_tokens_details: Detailed breakdown of output token usage
|
||||
"""
|
||||
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
prompt_tokens_details: OpenAIChatCompletionUsagePromptTokensDetails | None = None
|
||||
completion_tokens_details: OpenAIChatCompletionUsageCompletionTokensDetails | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletion(BaseModel):
|
||||
"""Response from an OpenAI-compatible chat completion request.
|
||||
|
|
@ -825,6 +864,7 @@ class OpenAIChatCompletion(BaseModel):
|
|||
:param object: The object type, which will be "chat.completion"
|
||||
:param created: The Unix timestamp in seconds when the chat completion was created
|
||||
:param model: The model that was used to generate the chat completion
|
||||
:param usage: Token usage information for the completion
|
||||
"""
|
||||
|
||||
id: str
|
||||
|
|
@ -832,6 +872,7 @@ class OpenAIChatCompletion(BaseModel):
|
|||
object: Literal["chat.completion"] = "chat.completion"
|
||||
created: int
|
||||
model: str
|
||||
usage: OpenAIChatCompletionUsage | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -843,6 +884,7 @@ class OpenAIChatCompletionChunk(BaseModel):
|
|||
:param object: The object type, which will be "chat.completion.chunk"
|
||||
:param created: The Unix timestamp in seconds when the chat completion was created
|
||||
:param model: The model that was used to generate the chat completion
|
||||
:param usage: Token usage information (typically included in final chunk with stream_options)
|
||||
"""
|
||||
|
||||
id: str
|
||||
|
|
@ -850,6 +892,7 @@ class OpenAIChatCompletionChunk(BaseModel):
|
|||
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
||||
created: int
|
||||
model: str
|
||||
usage: OpenAIChatCompletionUsage | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -995,6 +1038,127 @@ class ListOpenAIChatCompletionResponse(BaseModel):
|
|||
object: Literal["list"] = "list"
|
||||
|
||||
|
||||
# extra_body can be accessed via .model_extra
|
||||
@json_schema_type
|
||||
class OpenAICompletionRequestWithExtraBody(BaseModel, extra="allow"):
|
||||
"""Request parameters for OpenAI-compatible completion endpoint.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param prompt: The prompt to generate a completion for.
|
||||
:param best_of: (Optional) The number of completions to generate.
|
||||
:param echo: (Optional) Whether to echo the prompt.
|
||||
:param frequency_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param logit_bias: (Optional) The logit bias to use.
|
||||
:param logprobs: (Optional) The log probabilities to use.
|
||||
:param max_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param n: (Optional) The number of completions to generate.
|
||||
:param presence_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param seed: (Optional) The seed to use.
|
||||
:param stop: (Optional) The stop tokens to use.
|
||||
:param stream: (Optional) Whether to stream the response.
|
||||
:param stream_options: (Optional) The stream options to use.
|
||||
:param temperature: (Optional) The temperature to use.
|
||||
:param top_p: (Optional) The top p to use.
|
||||
:param user: (Optional) The user to use.
|
||||
:param suffix: (Optional) The suffix that should be appended to the completion.
|
||||
"""
|
||||
|
||||
# Standard OpenAI completion parameters
|
||||
model: str
|
||||
prompt: str | list[str] | list[int] | list[list[int]]
|
||||
best_of: int | None = None
|
||||
echo: bool | None = None
|
||||
frequency_penalty: float | None = None
|
||||
logit_bias: dict[str, float] | None = None
|
||||
logprobs: bool | None = None
|
||||
max_tokens: int | None = None
|
||||
n: int | None = None
|
||||
presence_penalty: float | None = None
|
||||
seed: int | None = None
|
||||
stop: str | list[str] | None = None
|
||||
stream: bool | None = None
|
||||
stream_options: dict[str, Any] | None = None
|
||||
temperature: float | None = None
|
||||
top_p: float | None = None
|
||||
user: str | None = None
|
||||
suffix: str | None = None
|
||||
|
||||
|
||||
# extra_body can be accessed via .model_extra
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletionRequestWithExtraBody(BaseModel, extra="allow"):
|
||||
"""Request parameters for OpenAI-compatible chat completion endpoint.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param messages: List of messages in the conversation.
|
||||
:param frequency_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param function_call: (Optional) The function call to use.
|
||||
:param functions: (Optional) List of functions to use.
|
||||
:param logit_bias: (Optional) The logit bias to use.
|
||||
:param logprobs: (Optional) The log probabilities to use.
|
||||
:param max_completion_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param max_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param n: (Optional) The number of completions to generate.
|
||||
:param parallel_tool_calls: (Optional) Whether to parallelize tool calls.
|
||||
:param presence_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param response_format: (Optional) The response format to use.
|
||||
:param seed: (Optional) The seed to use.
|
||||
:param stop: (Optional) The stop tokens to use.
|
||||
:param stream: (Optional) Whether to stream the response.
|
||||
:param stream_options: (Optional) The stream options to use.
|
||||
:param temperature: (Optional) The temperature to use.
|
||||
:param tool_choice: (Optional) The tool choice to use.
|
||||
:param tools: (Optional) The tools to use.
|
||||
:param top_logprobs: (Optional) The top log probabilities to use.
|
||||
:param top_p: (Optional) The top p to use.
|
||||
:param user: (Optional) The user to use.
|
||||
"""
|
||||
|
||||
# Standard OpenAI chat completion parameters
|
||||
model: str
|
||||
messages: Annotated[list[OpenAIMessageParam], Field(..., min_length=1)]
|
||||
frequency_penalty: float | None = None
|
||||
function_call: str | dict[str, Any] | None = None
|
||||
functions: list[dict[str, Any]] | None = None
|
||||
logit_bias: dict[str, float] | None = None
|
||||
logprobs: bool | None = None
|
||||
max_completion_tokens: int | None = None
|
||||
max_tokens: int | None = None
|
||||
n: int | None = None
|
||||
parallel_tool_calls: bool | None = None
|
||||
presence_penalty: float | None = None
|
||||
response_format: OpenAIResponseFormatParam | None = None
|
||||
seed: int | None = None
|
||||
stop: str | list[str] | None = None
|
||||
stream: bool | None = None
|
||||
stream_options: dict[str, Any] | None = None
|
||||
temperature: float | None = None
|
||||
tool_choice: str | dict[str, Any] | None = None
|
||||
tools: list[dict[str, Any]] | None = None
|
||||
top_logprobs: int | None = None
|
||||
top_p: float | None = None
|
||||
user: str | None = None
|
||||
|
||||
|
||||
# extra_body can be accessed via .model_extra
|
||||
@json_schema_type
|
||||
class OpenAIEmbeddingsRequestWithExtraBody(BaseModel, extra="allow"):
|
||||
"""Request parameters for OpenAI-compatible embeddings endpoint.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint.
|
||||
:param input: Input text to embed, encoded as a string or array of strings. To embed multiple inputs in a single request, pass an array of strings.
|
||||
:param encoding_format: (Optional) The format to return the embeddings in. Can be either "float" or "base64". Defaults to "float".
|
||||
:param dimensions: (Optional) The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
|
||||
:param user: (Optional) A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
|
||||
"""
|
||||
|
||||
model: str
|
||||
input: str | list[str]
|
||||
encoding_format: str | None = "float"
|
||||
dimensions: int | None = None
|
||||
user: str | None = None
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class InferenceProvider(Protocol):
|
||||
|
|
@ -1029,52 +1193,11 @@ class InferenceProvider(Protocol):
|
|||
@webmethod(route="/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_completion(
|
||||
self,
|
||||
# Standard OpenAI completion parameters
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
# vLLM-specific parameters
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
# for fill-in-the-middle type completion
|
||||
suffix: str | None = None,
|
||||
params: Annotated[OpenAICompletionRequestWithExtraBody, Body(...)],
|
||||
) -> OpenAICompletion:
|
||||
"""Create completion.
|
||||
|
||||
Generate an OpenAI-compatible completion for the given prompt using the specified model.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param prompt: The prompt to generate a completion for.
|
||||
:param best_of: (Optional) The number of completions to generate.
|
||||
:param echo: (Optional) Whether to echo the prompt.
|
||||
:param frequency_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param logit_bias: (Optional) The logit bias to use.
|
||||
:param logprobs: (Optional) The log probabilities to use.
|
||||
:param max_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param n: (Optional) The number of completions to generate.
|
||||
:param presence_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param seed: (Optional) The seed to use.
|
||||
:param stop: (Optional) The stop tokens to use.
|
||||
:param stream: (Optional) Whether to stream the response.
|
||||
:param stream_options: (Optional) The stream options to use.
|
||||
:param temperature: (Optional) The temperature to use.
|
||||
:param top_p: (Optional) The top p to use.
|
||||
:param user: (Optional) The user to use.
|
||||
:param suffix: (Optional) The suffix that should be appended to the completion.
|
||||
:returns: An OpenAICompletion.
|
||||
"""
|
||||
...
|
||||
|
|
@ -1083,57 +1206,11 @@ class InferenceProvider(Protocol):
|
|||
@webmethod(route="/chat/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: Annotated[OpenAIChatCompletionRequestWithExtraBody, Body(...)],
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""Create chat completions.
|
||||
|
||||
Generate an OpenAI-compatible chat completion for the given messages using the specified model.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param messages: List of messages in the conversation.
|
||||
:param frequency_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param function_call: (Optional) The function call to use.
|
||||
:param functions: (Optional) List of functions to use.
|
||||
:param logit_bias: (Optional) The logit bias to use.
|
||||
:param logprobs: (Optional) The log probabilities to use.
|
||||
:param max_completion_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param max_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param n: (Optional) The number of completions to generate.
|
||||
:param parallel_tool_calls: (Optional) Whether to parallelize tool calls.
|
||||
:param presence_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param response_format: (Optional) The response format to use.
|
||||
:param seed: (Optional) The seed to use.
|
||||
:param stop: (Optional) The stop tokens to use.
|
||||
:param stream: (Optional) Whether to stream the response.
|
||||
:param stream_options: (Optional) The stream options to use.
|
||||
:param temperature: (Optional) The temperature to use.
|
||||
:param tool_choice: (Optional) The tool choice to use.
|
||||
:param tools: (Optional) The tools to use.
|
||||
:param top_logprobs: (Optional) The top log probabilities to use.
|
||||
:param top_p: (Optional) The top p to use.
|
||||
:param user: (Optional) The user to use.
|
||||
:returns: An OpenAIChatCompletion.
|
||||
"""
|
||||
...
|
||||
|
|
@ -1142,21 +1219,11 @@ class InferenceProvider(Protocol):
|
|||
@webmethod(route="/embeddings", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: Annotated[OpenAIEmbeddingsRequestWithExtraBody, Body(...)],
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
"""Create embeddings.
|
||||
|
||||
Generate OpenAI-compatible embeddings for the given input using the specified model.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint.
|
||||
:param input: Input text to embed, encoded as a string or array of strings. To embed multiple inputs in a single request, pass an array of strings.
|
||||
:param encoding_format: (Optional) The format to return the embeddings in. Can be either "float" or "base64". Defaults to "float".
|
||||
:param dimensions: (Optional) The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
|
||||
:param user: (Optional) A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
|
||||
:returns: An OpenAIEmbeddingsResponse containing the embeddings.
|
||||
"""
|
||||
...
|
||||
|
|
@ -1167,9 +1234,10 @@ class Inference(InferenceProvider):
|
|||
|
||||
Llama Stack Inference API for generating completions, chat completions, and embeddings.
|
||||
|
||||
This API provides the raw interface to the underlying models. Two kinds of models are supported:
|
||||
This API provides the raw interface to the underlying models. Three kinds of models are supported:
|
||||
- LLM models: these models generate "raw" and "chat" (conversational) completions.
|
||||
- Embedding models: these models generate embeddings to be used for semantic search.
|
||||
- Rerank models: these models reorder the documents based on their relevance to a query.
|
||||
"""
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
|
|
|
|||
|
|
@ -73,7 +73,7 @@ class Inspect(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/health", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/health", method="GET", level=LLAMA_STACK_API_V1, require_authentication=False)
|
||||
async def health(self) -> HealthInfo:
|
||||
"""Get health status.
|
||||
|
||||
|
|
@ -83,7 +83,7 @@ class Inspect(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/version", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/version", method="GET", level=LLAMA_STACK_API_V1, require_authentication=False)
|
||||
async def version(self) -> VersionInfo:
|
||||
"""Get version.
|
||||
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ from pydantic import BaseModel, ConfigDict, Field, field_validator
|
|||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
|
|
@ -27,10 +27,12 @@ class ModelType(StrEnum):
|
|||
"""Enumeration of supported model types in Llama Stack.
|
||||
:cvar llm: Large language model for text generation and completion
|
||||
:cvar embedding: Embedding model for converting text to vector representations
|
||||
:cvar rerank: Reranking model for reordering documents based on their relevance to a query
|
||||
"""
|
||||
|
||||
llm = "llm"
|
||||
embedding = "embedding"
|
||||
rerank = "rerank"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ from typing import Protocol, runtime_checkable
|
|||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ from pydantic import BaseModel, Field
|
|||
class ResourceType(StrEnum):
|
||||
model = "model"
|
||||
shield = "shield"
|
||||
vector_db = "vector_db"
|
||||
vector_store = "vector_store"
|
||||
dataset = "dataset"
|
||||
scoring_function = "scoring_function"
|
||||
benchmark = "benchmark"
|
||||
|
|
@ -34,4 +34,4 @@ class Resource(BaseModel):
|
|||
|
||||
provider_id: str = Field(description="ID of the provider that owns this resource")
|
||||
|
||||
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_db', etc.)")
|
||||
type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_store', etc.)")
|
||||
|
|
|
|||
|
|
@ -9,10 +9,10 @@ from typing import Any, Protocol, runtime_checkable
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.inference import OpenAIMessageParam
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
|
|
@ -107,7 +107,7 @@ class Safety(Protocol):
|
|||
async def run_shield(
|
||||
self,
|
||||
shield_id: str,
|
||||
messages: list[Message],
|
||||
messages: list[OpenAIMessageParam],
|
||||
params: dict[str, Any],
|
||||
) -> RunShieldResponse:
|
||||
"""Run shield.
|
||||
|
|
@ -123,13 +123,13 @@ class Safety(Protocol):
|
|||
|
||||
@webmethod(route="/openai/v1/moderations", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
@webmethod(route="/moderations", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
|
||||
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
|
||||
"""Create moderation.
|
||||
|
||||
Classifies if text and/or image inputs are potentially harmful.
|
||||
:param input: Input (or inputs) to classify.
|
||||
Can be a single string, an array of strings, or an array of multi-modal input objects similar to other models.
|
||||
:param model: The content moderation model you would like to use.
|
||||
:param model: (Optional) The content moderation model you would like to use.
|
||||
:returns: A moderation object.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from pydantic import BaseModel
|
|||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -16,15 +16,12 @@ from typing import (
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.models.llama.datatypes import Primitive
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema
|
||||
|
||||
# Add this constant near the top of the file, after the imports
|
||||
DEFAULT_TTL_DAYS = 7
|
||||
|
||||
REQUIRED_SCOPE = "telemetry.read"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SpanStatus(Enum):
|
||||
|
|
@ -413,7 +410,6 @@ class QueryMetricsResponse(BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class Telemetry(Protocol):
|
||||
@webmethod(route="/telemetry/events", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def log_event(
|
||||
self,
|
||||
event: Event,
|
||||
|
|
@ -425,174 +421,3 @@ class Telemetry(Protocol):
|
|||
:param ttl_seconds: The time to live of the event.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/telemetry/traces",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/telemetry/traces", method="POST", required_scope=REQUIRED_SCOPE, level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def query_traces(
|
||||
self,
|
||||
attribute_filters: list[QueryCondition] | None = None,
|
||||
limit: int | None = 100,
|
||||
offset: int | None = 0,
|
||||
order_by: list[str] | None = None,
|
||||
) -> QueryTracesResponse:
|
||||
"""Query traces.
|
||||
|
||||
:param attribute_filters: The attribute filters to apply to the traces.
|
||||
:param limit: The limit of traces to return.
|
||||
:param offset: The offset of the traces to return.
|
||||
:param order_by: The order by of the traces to return.
|
||||
:returns: A QueryTracesResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/telemetry/traces/{trace_id:path}",
|
||||
method="GET",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/telemetry/traces/{trace_id:path}",
|
||||
method="GET",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def get_trace(self, trace_id: str) -> Trace:
|
||||
"""Get a trace by its ID.
|
||||
|
||||
:param trace_id: The ID of the trace to get.
|
||||
:returns: A Trace.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/telemetry/traces/{trace_id:path}/spans/{span_id:path}",
|
||||
method="GET",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/telemetry/traces/{trace_id:path}/spans/{span_id:path}",
|
||||
method="GET",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def get_span(self, trace_id: str, span_id: str) -> Span:
|
||||
"""Get a span by its ID.
|
||||
|
||||
:param trace_id: The ID of the trace to get the span from.
|
||||
:param span_id: The ID of the span to get.
|
||||
:returns: A Span.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/telemetry/spans/{span_id:path}/tree",
|
||||
method="POST",
|
||||
deprecated=True,
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/telemetry/spans/{span_id:path}/tree",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def get_span_tree(
|
||||
self,
|
||||
span_id: str,
|
||||
attributes_to_return: list[str] | None = None,
|
||||
max_depth: int | None = None,
|
||||
) -> QuerySpanTreeResponse:
|
||||
"""Get a span tree by its ID.
|
||||
|
||||
:param span_id: The ID of the span to get the tree from.
|
||||
:param attributes_to_return: The attributes to return in the tree.
|
||||
:param max_depth: The maximum depth of the tree.
|
||||
:returns: A QuerySpanTreeResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/telemetry/spans",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/telemetry/spans", method="POST", required_scope=REQUIRED_SCOPE, level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def query_spans(
|
||||
self,
|
||||
attribute_filters: list[QueryCondition],
|
||||
attributes_to_return: list[str],
|
||||
max_depth: int | None = None,
|
||||
) -> QuerySpansResponse:
|
||||
"""Query spans.
|
||||
|
||||
:param attribute_filters: The attribute filters to apply to the spans.
|
||||
:param attributes_to_return: The attributes to return in the spans.
|
||||
:param max_depth: The maximum depth of the tree.
|
||||
:returns: A QuerySpansResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/telemetry/spans/export", method="POST", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/telemetry/spans/export", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def save_spans_to_dataset(
|
||||
self,
|
||||
attribute_filters: list[QueryCondition],
|
||||
attributes_to_save: list[str],
|
||||
dataset_id: str,
|
||||
max_depth: int | None = None,
|
||||
) -> None:
|
||||
"""Save spans to a dataset.
|
||||
|
||||
:param attribute_filters: The attribute filters to apply to the spans.
|
||||
:param attributes_to_save: The attributes to save to the dataset.
|
||||
:param dataset_id: The ID of the dataset to save the spans to.
|
||||
:param max_depth: The maximum depth of the tree.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/telemetry/metrics/{metric_name}",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/telemetry/metrics/{metric_name}",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def query_metrics(
|
||||
self,
|
||||
metric_name: str,
|
||||
start_time: int,
|
||||
end_time: int | None = None,
|
||||
granularity: str | None = None,
|
||||
query_type: MetricQueryType = MetricQueryType.RANGE,
|
||||
label_matchers: list[MetricLabelMatcher] | None = None,
|
||||
) -> QueryMetricsResponse:
|
||||
"""Query metrics.
|
||||
|
||||
:param metric_name: The name of the metric to query.
|
||||
:param start_time: The start time of the metric to query.
|
||||
:param end_time: The end time of the metric to query.
|
||||
:param granularity: The granularity of the metric to query.
|
||||
:param query_type: The type of query to perform.
|
||||
:param label_matchers: The label matchers to apply to the metric.
|
||||
:returns: A QueryMetricsResponse.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ from typing_extensions import runtime_checkable
|
|||
|
||||
from llama_stack.apis.common.content_types import URL, InterleavedContent
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ from typing_extensions import runtime_checkable
|
|||
from llama_stack.apis.common.content_types import URL, InterleavedContent
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from .rag_tool import RAGToolRuntime
|
||||
|
|
|
|||
|
|
@ -1,117 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Literal, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorDB(Resource):
|
||||
"""Vector database resource for storing and querying vector embeddings.
|
||||
|
||||
:param type: Type of resource, always 'vector_db' for vector databases
|
||||
:param embedding_model: Name of the embedding model to use for vector generation
|
||||
:param embedding_dimension: Dimension of the embedding vectors
|
||||
"""
|
||||
|
||||
type: Literal[ResourceType.vector_db] = ResourceType.vector_db
|
||||
|
||||
embedding_model: str
|
||||
embedding_dimension: int
|
||||
vector_db_name: str | None = None
|
||||
|
||||
@property
|
||||
def vector_db_id(self) -> str:
|
||||
return self.identifier
|
||||
|
||||
@property
|
||||
def provider_vector_db_id(self) -> str | None:
|
||||
return self.provider_resource_id
|
||||
|
||||
|
||||
class VectorDBInput(BaseModel):
|
||||
"""Input parameters for creating or configuring a vector database.
|
||||
|
||||
:param vector_db_id: Unique identifier for the vector database
|
||||
:param embedding_model: Name of the embedding model to use for vector generation
|
||||
:param embedding_dimension: Dimension of the embedding vectors
|
||||
:param provider_vector_db_id: (Optional) Provider-specific identifier for the vector database
|
||||
"""
|
||||
|
||||
vector_db_id: str
|
||||
embedding_model: str
|
||||
embedding_dimension: int
|
||||
provider_id: str | None = None
|
||||
provider_vector_db_id: str | None = None
|
||||
|
||||
|
||||
class ListVectorDBsResponse(BaseModel):
|
||||
"""Response from listing vector databases.
|
||||
|
||||
:param data: List of vector databases
|
||||
"""
|
||||
|
||||
data: list[VectorDB]
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class VectorDBs(Protocol):
|
||||
@webmethod(route="/vector-dbs", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_vector_dbs(self) -> ListVectorDBsResponse:
|
||||
"""List all vector databases.
|
||||
|
||||
:returns: A ListVectorDBsResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
) -> VectorDB:
|
||||
"""Get a vector database by its identifier.
|
||||
|
||||
:param vector_db_id: The identifier of the vector database to get.
|
||||
:returns: A VectorDB.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/vector-dbs", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def register_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
vector_db_name: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorDB:
|
||||
"""Register a vector database.
|
||||
|
||||
:param vector_db_id: The identifier of the vector database to register.
|
||||
:param embedding_model: The embedding model to use.
|
||||
:param embedding_dimension: The dimension of the embedding model.
|
||||
:param provider_id: The identifier of the provider.
|
||||
:param vector_db_name: The name of the vector database.
|
||||
:param provider_vector_db_id: The identifier of the vector database in the provider.
|
||||
:returns: A VectorDB.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
"""Unregister a vector database.
|
||||
|
||||
:param vector_db_id: The identifier of the vector database to unregister.
|
||||
"""
|
||||
...
|
||||
|
|
@ -11,12 +11,13 @@
|
|||
import uuid
|
||||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from fastapi import Body
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
from llama_stack.strong_typing.schema import register_schema
|
||||
|
|
@ -92,6 +93,22 @@ class Chunk(BaseModel):
|
|||
|
||||
return generate_chunk_id(str(uuid.uuid4()), str(self.content))
|
||||
|
||||
@property
|
||||
def document_id(self) -> str | None:
|
||||
"""Returns the document_id from either metadata or chunk_metadata, with metadata taking precedence."""
|
||||
# Check metadata first (takes precedence)
|
||||
doc_id = self.metadata.get("document_id")
|
||||
if doc_id is not None:
|
||||
if not isinstance(doc_id, str):
|
||||
raise TypeError(f"metadata['document_id'] must be a string, got {type(doc_id).__name__}: {doc_id!r}")
|
||||
return doc_id
|
||||
|
||||
# Fall back to chunk_metadata if available (Pydantic ensures type safety)
|
||||
if self.chunk_metadata is not None:
|
||||
return self.chunk_metadata.document_id
|
||||
|
||||
return None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QueryChunksResponse(BaseModel):
|
||||
|
|
@ -123,6 +140,7 @@ class VectorStoreFileCounts(BaseModel):
|
|||
total: int
|
||||
|
||||
|
||||
# TODO: rename this as OpenAIVectorStore
|
||||
@json_schema_type
|
||||
class VectorStoreObject(BaseModel):
|
||||
"""OpenAI Vector Store object.
|
||||
|
|
@ -466,17 +484,52 @@ class VectorStoreFilesListInBatchResponse(BaseModel):
|
|||
has_more: bool = False
|
||||
|
||||
|
||||
class VectorDBStore(Protocol):
|
||||
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
|
||||
# extra_body can be accessed via .model_extra
|
||||
@json_schema_type
|
||||
class OpenAICreateVectorStoreRequestWithExtraBody(BaseModel, extra="allow"):
|
||||
"""Request to create a vector store with extra_body support.
|
||||
|
||||
:param name: (Optional) A name for the vector store
|
||||
:param file_ids: List of file IDs to include in the vector store
|
||||
:param expires_after: (Optional) Expiration policy for the vector store
|
||||
:param chunking_strategy: (Optional) Strategy for splitting files into chunks
|
||||
:param metadata: Set of key-value pairs that can be attached to the vector store
|
||||
"""
|
||||
|
||||
name: str | None = None
|
||||
file_ids: list[str] | None = None
|
||||
expires_after: dict[str, Any] | None = None
|
||||
chunking_strategy: dict[str, Any] | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
# extra_body can be accessed via .model_extra
|
||||
@json_schema_type
|
||||
class OpenAICreateVectorStoreFileBatchRequestWithExtraBody(BaseModel, extra="allow"):
|
||||
"""Request to create a vector store file batch with extra_body support.
|
||||
|
||||
:param file_ids: A list of File IDs that the vector store should use
|
||||
:param attributes: (Optional) Key-value attributes to store with the files
|
||||
:param chunking_strategy: (Optional) The chunking strategy used to chunk the file(s). Defaults to auto
|
||||
"""
|
||||
|
||||
file_ids: list[str]
|
||||
attributes: dict[str, Any] | None = None
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None
|
||||
|
||||
|
||||
class VectorStoreTable(Protocol):
|
||||
def get_vector_store(self, vector_store_id: str) -> VectorStore | None: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class VectorIO(Protocol):
|
||||
vector_db_store: VectorDBStore | None = None
|
||||
vector_store_table: VectorStoreTable | None = None
|
||||
|
||||
# this will just block now until chunks are inserted, but it should
|
||||
# probably return a Job instance which can be polled for completion
|
||||
# TODO: rename vector_db_id to vector_store_id once Stainless is working
|
||||
@webmethod(route="/vector-io/insert", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def insert_chunks(
|
||||
self,
|
||||
|
|
@ -495,6 +548,7 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
# TODO: rename vector_db_id to vector_store_id once Stainless is working
|
||||
@webmethod(route="/vector-io/query", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def query_chunks(
|
||||
self,
|
||||
|
|
@ -516,25 +570,11 @@ class VectorIO(Protocol):
|
|||
@webmethod(route="/vector_stores", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
params: Annotated[OpenAICreateVectorStoreRequestWithExtraBody, Body(...)],
|
||||
) -> VectorStoreObject:
|
||||
"""Creates a vector store.
|
||||
|
||||
:param name: A name for the vector store.
|
||||
:param file_ids: A list of File IDs that the vector store should use. Useful for tools like `file_search` that can access files.
|
||||
:param expires_after: The expiration policy for a vector store.
|
||||
:param chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` strategy.
|
||||
:param metadata: Set of 16 key-value pairs that can be attached to an object.
|
||||
:param embedding_model: The embedding model to use for this vector store.
|
||||
:param embedding_dimension: The dimension of the embedding vectors (default: 384).
|
||||
:param provider_id: The ID of the provider to use for this vector store.
|
||||
Generate an OpenAI-compatible vector store with the given parameters.
|
||||
:returns: A VectorStoreObject representing the created vector store.
|
||||
"""
|
||||
...
|
||||
|
|
@ -827,16 +867,12 @@ class VectorIO(Protocol):
|
|||
async def openai_create_vector_store_file_batch(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_ids: list[str],
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
params: Annotated[OpenAICreateVectorStoreFileBatchRequestWithExtraBody, Body(...)],
|
||||
) -> VectorStoreFileBatchObject:
|
||||
"""Create a vector store file batch.
|
||||
|
||||
Generate an OpenAI-compatible vector store file batch for the given vector store.
|
||||
:param vector_store_id: The ID of the vector store to create the file batch for.
|
||||
:param file_ids: A list of File IDs that the vector store should use.
|
||||
:param attributes: (Optional) Key-value attributes to store with the files.
|
||||
:param chunking_strategy: (Optional) The chunking strategy used to chunk the file(s). Defaults to auto.
|
||||
:returns: A VectorStoreFileBatchObject representing the created file batch.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -4,4 +4,4 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .vector_dbs import *
|
||||
from .vector_stores import *
|
||||
51
llama_stack/apis/vector_stores/vector_stores.py
Normal file
51
llama_stack/apis/vector_stores/vector_stores.py
Normal file
|
|
@ -0,0 +1,51 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
|
||||
|
||||
# Internal resource type for storing the vector store routing and other information
|
||||
class VectorStore(Resource):
|
||||
"""Vector database resource for storing and querying vector embeddings.
|
||||
|
||||
:param type: Type of resource, always 'vector_store' for vector stores
|
||||
:param embedding_model: Name of the embedding model to use for vector generation
|
||||
:param embedding_dimension: Dimension of the embedding vectors
|
||||
"""
|
||||
|
||||
type: Literal[ResourceType.vector_store] = ResourceType.vector_store
|
||||
|
||||
embedding_model: str
|
||||
embedding_dimension: int
|
||||
vector_store_name: str | None = None
|
||||
|
||||
@property
|
||||
def vector_store_id(self) -> str:
|
||||
return self.identifier
|
||||
|
||||
@property
|
||||
def provider_vector_store_id(self) -> str | None:
|
||||
return self.provider_resource_id
|
||||
|
||||
|
||||
class VectorStoreInput(BaseModel):
|
||||
"""Input parameters for creating or configuring a vector database.
|
||||
|
||||
:param vector_store_id: Unique identifier for the vector store
|
||||
:param embedding_model: Name of the embedding model to use for vector generation
|
||||
:param embedding_dimension: Dimension of the embedding vectors
|
||||
:param provider_vector_store_id: (Optional) Provider-specific identifier for the vector store
|
||||
"""
|
||||
|
||||
vector_store_id: str
|
||||
embedding_model: str
|
||||
embedding_dimension: int
|
||||
provider_id: str | None = None
|
||||
provider_vector_store_id: str | None = None
|
||||
|
|
@ -1,495 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from dataclasses import dataclass
|
||||
from datetime import UTC, datetime
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from rich.console import Console
|
||||
from rich.progress import (
|
||||
BarColumn,
|
||||
DownloadColumn,
|
||||
Progress,
|
||||
TextColumn,
|
||||
TimeRemainingColumn,
|
||||
TransferSpeedColumn,
|
||||
)
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.models.llama.sku_list import LlamaDownloadInfo
|
||||
from llama_stack.models.llama.sku_types import Model
|
||||
|
||||
|
||||
class Download(Subcommand):
|
||||
"""Llama cli for downloading llama toolchain assets"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"download",
|
||||
prog="llama download",
|
||||
description="Download a model from llama.meta.com or Hugging Face Hub",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
setup_download_parser(self.parser)
|
||||
|
||||
|
||||
def setup_download_parser(parser: argparse.ArgumentParser) -> None:
|
||||
parser.add_argument(
|
||||
"--source",
|
||||
choices=["meta", "huggingface"],
|
||||
default="meta",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-id",
|
||||
required=False,
|
||||
help="See `llama model list` or `llama model list --show-all` for the list of available models. Specify multiple model IDs with commas, e.g. --model-id Llama3.2-1B,Llama3.2-3B",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-token",
|
||||
type=str,
|
||||
required=False,
|
||||
default=None,
|
||||
help="Hugging Face API token. Needed for gated models like llama2/3. Will also try to read environment variable `HF_TOKEN` as default.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta-url",
|
||||
type=str,
|
||||
required=False,
|
||||
help="For source=meta, URL obtained from llama.meta.com after accepting license terms",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-parallel",
|
||||
type=int,
|
||||
required=False,
|
||||
default=3,
|
||||
help="Maximum number of concurrent downloads",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ignore-patterns",
|
||||
type=str,
|
||||
required=False,
|
||||
default="*.safetensors",
|
||||
help="""For source=huggingface, files matching any of the patterns are not downloaded. Defaults to ignoring
|
||||
safetensors files to avoid downloading duplicate weights.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--manifest-file",
|
||||
type=str,
|
||||
help="For source=meta, you can download models from a manifest file containing a file => URL mapping",
|
||||
required=False,
|
||||
)
|
||||
parser.set_defaults(func=partial(run_download_cmd, parser=parser))
|
||||
|
||||
|
||||
@dataclass
|
||||
class DownloadTask:
|
||||
url: str
|
||||
output_file: str
|
||||
total_size: int = 0
|
||||
downloaded_size: int = 0
|
||||
task_id: int | None = None
|
||||
retries: int = 0
|
||||
max_retries: int = 3
|
||||
|
||||
|
||||
class DownloadError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class CustomTransferSpeedColumn(TransferSpeedColumn):
|
||||
def render(self, task):
|
||||
if task.finished:
|
||||
return "-"
|
||||
return super().render(task)
|
||||
|
||||
|
||||
class ParallelDownloader:
|
||||
def __init__(
|
||||
self,
|
||||
max_concurrent_downloads: int = 3,
|
||||
buffer_size: int = 1024 * 1024,
|
||||
timeout: int = 30,
|
||||
):
|
||||
self.max_concurrent_downloads = max_concurrent_downloads
|
||||
self.buffer_size = buffer_size
|
||||
self.timeout = timeout
|
||||
self.console = Console()
|
||||
self.progress = Progress(
|
||||
TextColumn("[bold blue]{task.description}"),
|
||||
BarColumn(bar_width=40),
|
||||
"[progress.percentage]{task.percentage:>3.1f}%",
|
||||
DownloadColumn(),
|
||||
CustomTransferSpeedColumn(),
|
||||
TimeRemainingColumn(),
|
||||
console=self.console,
|
||||
expand=True,
|
||||
)
|
||||
self.client_options = {
|
||||
"timeout": httpx.Timeout(timeout),
|
||||
"follow_redirects": True,
|
||||
}
|
||||
|
||||
async def retry_with_exponential_backoff(self, task: DownloadTask, func, *args, **kwargs):
|
||||
last_exception = None
|
||||
for attempt in range(task.max_retries):
|
||||
try:
|
||||
return await func(*args, **kwargs)
|
||||
except Exception as e:
|
||||
last_exception = e
|
||||
if attempt < task.max_retries - 1:
|
||||
wait_time = min(30, 2**attempt) # Cap at 30 seconds
|
||||
self.console.print(
|
||||
f"[yellow]Attempt {attempt + 1}/{task.max_retries} failed, "
|
||||
f"retrying in {wait_time} seconds: {str(e)}[/yellow]"
|
||||
)
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
raise last_exception
|
||||
|
||||
async def get_file_info(self, client: httpx.AsyncClient, task: DownloadTask) -> None:
|
||||
if task.total_size > 0:
|
||||
self.progress.update(task.task_id, total=task.total_size)
|
||||
return
|
||||
|
||||
async def _get_info():
|
||||
response = await client.head(task.url, headers={"Accept-Encoding": "identity"}, **self.client_options)
|
||||
response.raise_for_status()
|
||||
return response
|
||||
|
||||
try:
|
||||
response = await self.retry_with_exponential_backoff(task, _get_info)
|
||||
|
||||
task.url = str(response.url)
|
||||
task.total_size = int(response.headers.get("Content-Length", 0))
|
||||
|
||||
if task.total_size == 0:
|
||||
raise DownloadError(
|
||||
f"Unable to determine file size for {task.output_file}. "
|
||||
"The server might not support range requests."
|
||||
)
|
||||
|
||||
# Update the progress bar's total size once we know it
|
||||
if task.task_id is not None:
|
||||
self.progress.update(task.task_id, total=task.total_size)
|
||||
|
||||
except httpx.HTTPError as e:
|
||||
self.console.print(f"[red]Error getting file info: {str(e)}[/red]")
|
||||
raise
|
||||
|
||||
def verify_file_integrity(self, task: DownloadTask) -> bool:
|
||||
if not os.path.exists(task.output_file):
|
||||
return False
|
||||
return os.path.getsize(task.output_file) == task.total_size
|
||||
|
||||
async def download_chunk(self, client: httpx.AsyncClient, task: DownloadTask, start: int, end: int) -> None:
|
||||
async def _download_chunk():
|
||||
headers = {"Range": f"bytes={start}-{end}"}
|
||||
async with client.stream("GET", task.url, headers=headers, **self.client_options) as response:
|
||||
response.raise_for_status()
|
||||
|
||||
with open(task.output_file, "ab") as file:
|
||||
file.seek(start)
|
||||
async for chunk in response.aiter_bytes(self.buffer_size):
|
||||
file.write(chunk)
|
||||
task.downloaded_size += len(chunk)
|
||||
self.progress.update(
|
||||
task.task_id,
|
||||
completed=task.downloaded_size,
|
||||
)
|
||||
|
||||
try:
|
||||
await self.retry_with_exponential_backoff(task, _download_chunk)
|
||||
except Exception as e:
|
||||
raise DownloadError(
|
||||
f"Failed to download chunk {start}-{end} after {task.max_retries} attempts: {str(e)}"
|
||||
) from e
|
||||
|
||||
async def prepare_download(self, task: DownloadTask) -> None:
|
||||
output_dir = os.path.dirname(task.output_file)
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
if os.path.exists(task.output_file):
|
||||
task.downloaded_size = os.path.getsize(task.output_file)
|
||||
|
||||
async def download_file(self, task: DownloadTask) -> None:
|
||||
try:
|
||||
async with httpx.AsyncClient(**self.client_options) as client:
|
||||
await self.get_file_info(client, task)
|
||||
|
||||
# Check if file is already downloaded
|
||||
if os.path.exists(task.output_file):
|
||||
if self.verify_file_integrity(task):
|
||||
self.console.print(f"[green]Already downloaded {task.output_file}[/green]")
|
||||
self.progress.update(task.task_id, completed=task.total_size)
|
||||
return
|
||||
|
||||
await self.prepare_download(task)
|
||||
|
||||
try:
|
||||
# Split the remaining download into chunks
|
||||
chunk_size = 27_000_000_000 # Cloudfront max chunk size
|
||||
chunks = []
|
||||
|
||||
current_pos = task.downloaded_size
|
||||
while current_pos < task.total_size:
|
||||
chunk_end = min(current_pos + chunk_size - 1, task.total_size - 1)
|
||||
chunks.append((current_pos, chunk_end))
|
||||
current_pos = chunk_end + 1
|
||||
|
||||
# Download chunks in sequence
|
||||
for chunk_start, chunk_end in chunks:
|
||||
await self.download_chunk(client, task, chunk_start, chunk_end)
|
||||
|
||||
except Exception as e:
|
||||
raise DownloadError(f"Download failed: {str(e)}") from e
|
||||
|
||||
except Exception as e:
|
||||
self.progress.update(task.task_id, description=f"[red]Failed: {task.output_file}[/red]")
|
||||
raise DownloadError(f"Download failed for {task.output_file}: {str(e)}") from e
|
||||
|
||||
def has_disk_space(self, tasks: list[DownloadTask]) -> bool:
|
||||
try:
|
||||
total_remaining_size = sum(task.total_size - task.downloaded_size for task in tasks)
|
||||
dir_path = os.path.dirname(os.path.abspath(tasks[0].output_file))
|
||||
free_space = shutil.disk_usage(dir_path).free
|
||||
|
||||
# Add 10% buffer for safety
|
||||
required_space = int(total_remaining_size * 1.1)
|
||||
|
||||
if free_space < required_space:
|
||||
self.console.print(
|
||||
f"[red]Not enough disk space. Required: {required_space // (1024 * 1024)} MB, "
|
||||
f"Available: {free_space // (1024 * 1024)} MB[/red]"
|
||||
)
|
||||
return False
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
raise DownloadError(f"Failed to check disk space: {str(e)}") from e
|
||||
|
||||
async def download_all(self, tasks: list[DownloadTask]) -> None:
|
||||
if not tasks:
|
||||
raise ValueError("No download tasks provided")
|
||||
|
||||
if not os.environ.get("LLAMA_DOWNLOAD_NO_SPACE_CHECK") and not self.has_disk_space(tasks):
|
||||
raise DownloadError("Insufficient disk space for downloads")
|
||||
|
||||
failed_tasks = []
|
||||
|
||||
with self.progress:
|
||||
for task in tasks:
|
||||
desc = f"Downloading {Path(task.output_file).name}"
|
||||
task.task_id = self.progress.add_task(desc, total=task.total_size, completed=task.downloaded_size)
|
||||
|
||||
semaphore = asyncio.Semaphore(self.max_concurrent_downloads)
|
||||
|
||||
async def download_with_semaphore(task: DownloadTask):
|
||||
async with semaphore:
|
||||
try:
|
||||
await self.download_file(task)
|
||||
except Exception as e:
|
||||
failed_tasks.append((task, str(e)))
|
||||
|
||||
await asyncio.gather(*(download_with_semaphore(task) for task in tasks))
|
||||
|
||||
if failed_tasks:
|
||||
self.console.print("\n[red]Some downloads failed:[/red]")
|
||||
for task, error in failed_tasks:
|
||||
self.console.print(f"[red]- {Path(task.output_file).name}: {error}[/red]")
|
||||
raise DownloadError(f"{len(failed_tasks)} downloads failed")
|
||||
|
||||
|
||||
def _hf_download(
|
||||
model: "Model",
|
||||
hf_token: str,
|
||||
ignore_patterns: str,
|
||||
parser: argparse.ArgumentParser,
|
||||
):
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
||||
|
||||
from llama_stack.core.utils.model_utils import model_local_dir
|
||||
|
||||
repo_id = model.huggingface_repo
|
||||
if repo_id is None:
|
||||
raise ValueError(f"No repo id found for model {model.descriptor()}")
|
||||
|
||||
output_dir = model_local_dir(model.descriptor())
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
try:
|
||||
true_output_dir = snapshot_download(
|
||||
repo_id,
|
||||
local_dir=output_dir,
|
||||
ignore_patterns=ignore_patterns,
|
||||
token=hf_token,
|
||||
library_name="llama-stack",
|
||||
)
|
||||
except GatedRepoError:
|
||||
parser.error(
|
||||
"It looks like you are trying to access a gated repository. Please ensure you "
|
||||
"have access to the repository and have provided the proper Hugging Face API token "
|
||||
"using the option `--hf-token` or by running `huggingface-cli login`."
|
||||
"You can find your token by visiting https://huggingface.co/settings/tokens"
|
||||
)
|
||||
except RepositoryNotFoundError:
|
||||
parser.error(f"Repository '{repo_id}' not found on the Hugging Face Hub or incorrect Hugging Face token.")
|
||||
except Exception as e:
|
||||
parser.error(e)
|
||||
|
||||
print(f"\nSuccessfully downloaded model to {true_output_dir}")
|
||||
|
||||
|
||||
def _meta_download(
|
||||
model: "Model",
|
||||
model_id: str,
|
||||
meta_url: str,
|
||||
info: "LlamaDownloadInfo",
|
||||
max_concurrent_downloads: int,
|
||||
):
|
||||
from llama_stack.core.utils.model_utils import model_local_dir
|
||||
|
||||
output_dir = Path(model_local_dir(model.descriptor()))
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# Create download tasks for each file
|
||||
tasks = []
|
||||
for f in info.files:
|
||||
output_file = str(output_dir / f)
|
||||
url = meta_url.replace("*", f"{info.folder}/{f}")
|
||||
total_size = info.pth_size if "consolidated" in f else 0
|
||||
tasks.append(DownloadTask(url=url, output_file=output_file, total_size=total_size, max_retries=3))
|
||||
|
||||
# Initialize and run parallel downloader
|
||||
downloader = ParallelDownloader(max_concurrent_downloads=max_concurrent_downloads)
|
||||
asyncio.run(downloader.download_all(tasks))
|
||||
|
||||
cprint(f"\nSuccessfully downloaded model to {output_dir}", color="green", file=sys.stderr)
|
||||
cprint(
|
||||
f"\nView MD5 checksum files at: {output_dir / 'checklist.chk'}",
|
||||
file=sys.stderr,
|
||||
)
|
||||
cprint(
|
||||
f"\n[Optionally] To run MD5 checksums, use the following command: llama model verify-download --model-id {model_id}",
|
||||
color="yellow",
|
||||
file=sys.stderr,
|
||||
)
|
||||
|
||||
|
||||
class ModelEntry(BaseModel):
|
||||
model_id: str
|
||||
files: dict[str, str]
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class Manifest(BaseModel):
|
||||
models: list[ModelEntry]
|
||||
expires_on: datetime
|
||||
|
||||
|
||||
def _download_from_manifest(manifest_file: str, max_concurrent_downloads: int):
|
||||
from llama_stack.core.utils.model_utils import model_local_dir
|
||||
|
||||
with open(manifest_file) as f:
|
||||
d = json.load(f)
|
||||
manifest = Manifest(**d)
|
||||
|
||||
if datetime.now(UTC) > manifest.expires_on.astimezone(UTC):
|
||||
raise ValueError(f"Manifest URLs have expired on {manifest.expires_on}")
|
||||
|
||||
console = Console()
|
||||
for entry in manifest.models:
|
||||
console.print(f"[blue]Downloading model {entry.model_id}...[/blue]")
|
||||
output_dir = Path(model_local_dir(entry.model_id))
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
if any(output_dir.iterdir()):
|
||||
console.print(f"[yellow]Output directory {output_dir} is not empty.[/yellow]")
|
||||
|
||||
while True:
|
||||
resp = input("Do you want to (C)ontinue download or (R)estart completely? (continue/restart): ")
|
||||
if resp.lower() in ["restart", "r"]:
|
||||
shutil.rmtree(output_dir)
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
break
|
||||
elif resp.lower() in ["continue", "c"]:
|
||||
console.print("[blue]Continuing download...[/blue]")
|
||||
break
|
||||
else:
|
||||
console.print("[red]Invalid response. Please try again.[/red]")
|
||||
|
||||
# Create download tasks for all files in the manifest
|
||||
tasks = [
|
||||
DownloadTask(url=url, output_file=str(output_dir / fname), max_retries=3)
|
||||
for fname, url in entry.files.items()
|
||||
]
|
||||
|
||||
# Initialize and run parallel downloader
|
||||
downloader = ParallelDownloader(max_concurrent_downloads=max_concurrent_downloads)
|
||||
asyncio.run(downloader.download_all(tasks))
|
||||
|
||||
|
||||
def run_download_cmd(args: argparse.Namespace, parser: argparse.ArgumentParser):
|
||||
"""Main download command handler"""
|
||||
try:
|
||||
if args.manifest_file:
|
||||
_download_from_manifest(args.manifest_file, args.max_parallel)
|
||||
return
|
||||
|
||||
if args.model_id is None:
|
||||
parser.error("Please provide a model id")
|
||||
return
|
||||
|
||||
# Handle comma-separated model IDs
|
||||
model_ids = [model_id.strip() for model_id in args.model_id.split(",")]
|
||||
|
||||
from llama_stack.models.llama.sku_list import llama_meta_net_info, resolve_model
|
||||
|
||||
from .model.safety_models import (
|
||||
prompt_guard_download_info_map,
|
||||
prompt_guard_model_sku_map,
|
||||
)
|
||||
|
||||
prompt_guard_model_sku_map = prompt_guard_model_sku_map()
|
||||
prompt_guard_download_info_map = prompt_guard_download_info_map()
|
||||
|
||||
for model_id in model_ids:
|
||||
if model_id in prompt_guard_model_sku_map.keys():
|
||||
model = prompt_guard_model_sku_map[model_id]
|
||||
info = prompt_guard_download_info_map[model_id]
|
||||
else:
|
||||
model = resolve_model(model_id)
|
||||
if model is None:
|
||||
parser.error(f"Model {model_id} not found")
|
||||
continue
|
||||
info = llama_meta_net_info(model)
|
||||
|
||||
if args.source == "huggingface":
|
||||
_hf_download(model, args.hf_token, args.ignore_patterns, parser)
|
||||
else:
|
||||
meta_url = args.meta_url or input(
|
||||
f"Please provide the signed URL for model {model_id} you received via email "
|
||||
f"after visiting https://www.llama.com/llama-downloads/ "
|
||||
f"(e.g., https://llama3-1.llamameta.net/*?Policy...): "
|
||||
)
|
||||
if "llamameta.net" not in meta_url:
|
||||
parser.error("Invalid Meta URL provided")
|
||||
_meta_download(model, model_id, meta_url, info, args.max_parallel)
|
||||
|
||||
except Exception as e:
|
||||
parser.error(f"Download failed: {str(e)}")
|
||||
|
|
@ -6,11 +6,10 @@
|
|||
|
||||
import argparse
|
||||
|
||||
from .download import Download
|
||||
from .model import ModelParser
|
||||
from llama_stack.log import setup_logging
|
||||
|
||||
from .stack import StackParser
|
||||
from .stack.utils import print_subcommand_description
|
||||
from .verify_download import VerifyDownload
|
||||
|
||||
|
||||
class LlamaCLIParser:
|
||||
|
|
@ -30,10 +29,7 @@ class LlamaCLIParser:
|
|||
subparsers = self.parser.add_subparsers(title="subcommands")
|
||||
|
||||
# Add sub-commands
|
||||
ModelParser.create(subparsers)
|
||||
StackParser.create(subparsers)
|
||||
Download.create(subparsers)
|
||||
VerifyDownload.create(subparsers)
|
||||
|
||||
print_subcommand_description(self.parser, subparsers)
|
||||
|
||||
|
|
@ -48,6 +44,9 @@ class LlamaCLIParser:
|
|||
|
||||
|
||||
def main():
|
||||
# Initialize logging from environment variables before any other operations
|
||||
setup_logging()
|
||||
|
||||
parser = LlamaCLIParser()
|
||||
args = parser.parse_args()
|
||||
parser.run(args)
|
||||
|
|
|
|||
|
|
@ -1,7 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .model import ModelParser # noqa
|
||||
|
|
@ -1,70 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.cli.table import print_table
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
|
||||
|
||||
class ModelDescribe(Subcommand):
|
||||
"""Show details about a model"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"describe",
|
||||
prog="llama model describe",
|
||||
description="Show details about a llama model",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_model_describe_cmd)
|
||||
|
||||
def _add_arguments(self):
|
||||
self.parser.add_argument(
|
||||
"-m",
|
||||
"--model-id",
|
||||
type=str,
|
||||
required=True,
|
||||
help="See `llama model list` or `llama model list --show-all` for the list of available models",
|
||||
)
|
||||
|
||||
def _run_model_describe_cmd(self, args: argparse.Namespace) -> None:
|
||||
from .safety_models import prompt_guard_model_sku_map
|
||||
|
||||
prompt_guard_model_map = prompt_guard_model_sku_map()
|
||||
if args.model_id in prompt_guard_model_map.keys():
|
||||
model = prompt_guard_model_map[args.model_id]
|
||||
else:
|
||||
model = resolve_model(args.model_id)
|
||||
|
||||
if model is None:
|
||||
self.parser.error(
|
||||
f"Model {args.model_id} not found; try 'llama model list' for a list of available models."
|
||||
)
|
||||
return
|
||||
|
||||
headers = [
|
||||
"Model",
|
||||
model.descriptor(),
|
||||
]
|
||||
|
||||
rows = [
|
||||
("Hugging Face ID", model.huggingface_repo or "<Not Available>"),
|
||||
("Description", model.description),
|
||||
("Context Length", f"{model.max_seq_length // 1024}K tokens"),
|
||||
("Weights format", model.quantization_format.value),
|
||||
("Model params.json", json.dumps(model.arch_args, indent=4)),
|
||||
]
|
||||
|
||||
print_table(
|
||||
rows,
|
||||
headers,
|
||||
separate_rows=True,
|
||||
)
|
||||
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
class ModelDownload(Subcommand):
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"download",
|
||||
prog="llama model download",
|
||||
description="Download a model from llama.meta.com or Hugging Face Hub",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
|
||||
from llama_stack.cli.download import setup_download_parser
|
||||
|
||||
setup_download_parser(self.parser)
|
||||
|
|
@ -1,119 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.cli.table import print_table
|
||||
from llama_stack.core.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
|
||||
|
||||
def _get_model_size(model_dir):
|
||||
return sum(f.stat().st_size for f in Path(model_dir).rglob("*") if f.is_file())
|
||||
|
||||
|
||||
def _convert_to_model_descriptor(model):
|
||||
for m in all_registered_models():
|
||||
if model == m.descriptor().replace(":", "-"):
|
||||
return str(m.descriptor())
|
||||
return str(model)
|
||||
|
||||
|
||||
def _run_model_list_downloaded_cmd() -> None:
|
||||
headers = ["Model", "Size", "Modified Time"]
|
||||
|
||||
rows = []
|
||||
for model in os.listdir(DEFAULT_CHECKPOINT_DIR):
|
||||
abs_path = os.path.join(DEFAULT_CHECKPOINT_DIR, model)
|
||||
space_usage = _get_model_size(abs_path)
|
||||
model_size = f"{space_usage / (1024**3):.2f} GB"
|
||||
modified_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(os.path.getmtime(abs_path)))
|
||||
rows.append(
|
||||
[
|
||||
_convert_to_model_descriptor(model),
|
||||
model_size,
|
||||
modified_time,
|
||||
]
|
||||
)
|
||||
|
||||
print_table(
|
||||
rows,
|
||||
headers,
|
||||
separate_rows=True,
|
||||
)
|
||||
|
||||
|
||||
class ModelList(Subcommand):
|
||||
"""List available llama models"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"list",
|
||||
prog="llama model list",
|
||||
description="Show available llama models",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_model_list_cmd)
|
||||
|
||||
def _add_arguments(self):
|
||||
self.parser.add_argument(
|
||||
"--show-all",
|
||||
action="store_true",
|
||||
help="Show all models (not just defaults)",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--downloaded",
|
||||
action="store_true",
|
||||
help="List the downloaded models",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"-s",
|
||||
"--search",
|
||||
type=str,
|
||||
required=False,
|
||||
help="Search for the input string as a substring in the model descriptor(ID)",
|
||||
)
|
||||
|
||||
def _run_model_list_cmd(self, args: argparse.Namespace) -> None:
|
||||
from .safety_models import prompt_guard_model_skus
|
||||
|
||||
if args.downloaded:
|
||||
return _run_model_list_downloaded_cmd()
|
||||
|
||||
headers = [
|
||||
"Model Descriptor(ID)",
|
||||
"Hugging Face Repo",
|
||||
"Context Length",
|
||||
]
|
||||
|
||||
rows = []
|
||||
for model in all_registered_models() + prompt_guard_model_skus():
|
||||
if not args.show_all and not model.is_featured:
|
||||
continue
|
||||
|
||||
descriptor = model.descriptor()
|
||||
if not args.search or args.search.lower() in descriptor.lower():
|
||||
rows.append(
|
||||
[
|
||||
descriptor,
|
||||
model.huggingface_repo,
|
||||
f"{model.max_seq_length // 1024}K",
|
||||
]
|
||||
)
|
||||
if len(rows) == 0:
|
||||
print(f"Did not find any model matching `{args.search}`.")
|
||||
else:
|
||||
print_table(
|
||||
rows,
|
||||
headers,
|
||||
separate_rows=True,
|
||||
)
|
||||
|
|
@ -1,43 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
|
||||
from llama_stack.cli.model.describe import ModelDescribe
|
||||
from llama_stack.cli.model.download import ModelDownload
|
||||
from llama_stack.cli.model.list import ModelList
|
||||
from llama_stack.cli.model.prompt_format import ModelPromptFormat
|
||||
from llama_stack.cli.model.remove import ModelRemove
|
||||
from llama_stack.cli.model.verify_download import ModelVerifyDownload
|
||||
from llama_stack.cli.stack.utils import print_subcommand_description
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
class ModelParser(Subcommand):
|
||||
"""Llama cli for model interface apis"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"model",
|
||||
prog="llama model",
|
||||
description="Work with llama models",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
|
||||
self.parser.set_defaults(func=lambda args: self.parser.print_help())
|
||||
|
||||
subparsers = self.parser.add_subparsers(title="model_subcommands")
|
||||
|
||||
# Add sub-commands
|
||||
ModelDownload.create(subparsers)
|
||||
ModelList.create(subparsers)
|
||||
ModelPromptFormat.create(subparsers)
|
||||
ModelDescribe.create(subparsers)
|
||||
ModelVerifyDownload.create(subparsers)
|
||||
ModelRemove.create(subparsers)
|
||||
|
||||
print_subcommand_description(self.parser, subparsers)
|
||||
|
|
@ -1,133 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import textwrap
|
||||
from io import StringIO
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.cli.table import print_table
|
||||
from llama_stack.models.llama.sku_types import CoreModelId, ModelFamily, is_multimodal, model_family
|
||||
|
||||
ROOT_DIR = Path(__file__).parent.parent.parent
|
||||
|
||||
|
||||
class ModelPromptFormat(Subcommand):
|
||||
"""Llama model cli for describe a model prompt format (message formats)"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"prompt-format",
|
||||
prog="llama model prompt-format",
|
||||
description="Show llama model message formats",
|
||||
epilog=textwrap.dedent(
|
||||
"""
|
||||
Example:
|
||||
llama model prompt-format <options>
|
||||
"""
|
||||
),
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_model_template_cmd)
|
||||
|
||||
def _add_arguments(self):
|
||||
self.parser.add_argument(
|
||||
"-m",
|
||||
"--model-name",
|
||||
type=str,
|
||||
help="Example: Llama3.1-8B or Llama3.2-11B-Vision, etc\n"
|
||||
"(Run `llama model list` to see a list of valid model names)",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"-l",
|
||||
"--list",
|
||||
action="store_true",
|
||||
help="List all available models",
|
||||
)
|
||||
|
||||
def _run_model_template_cmd(self, args: argparse.Namespace) -> None:
|
||||
import importlib.resources
|
||||
|
||||
# Only Llama 3.1 and 3.2 are supported
|
||||
supported_model_ids = [
|
||||
m for m in CoreModelId if model_family(m) in {ModelFamily.llama3_1, ModelFamily.llama3_2}
|
||||
]
|
||||
|
||||
model_list = [m.value for m in supported_model_ids]
|
||||
|
||||
if args.list:
|
||||
headers = ["Model(s)"]
|
||||
rows = []
|
||||
for m in model_list:
|
||||
rows.append(
|
||||
[
|
||||
m,
|
||||
]
|
||||
)
|
||||
print_table(
|
||||
rows,
|
||||
headers,
|
||||
separate_rows=True,
|
||||
)
|
||||
return
|
||||
|
||||
try:
|
||||
model_id = CoreModelId(args.model_name)
|
||||
except ValueError:
|
||||
self.parser.error(
|
||||
f"{args.model_name} is not a valid Model. Choose one from the list of valid models. "
|
||||
f"Run `llama model list` to see the valid model names."
|
||||
)
|
||||
|
||||
if model_id not in supported_model_ids:
|
||||
self.parser.error(
|
||||
f"{model_id} is not a valid Model. Choose one from the list of valid models. "
|
||||
f"Run `llama model list` to see the valid model names."
|
||||
)
|
||||
|
||||
llama_3_1_file = ROOT_DIR / "models" / "llama" / "llama3_1" / "prompt_format.md"
|
||||
llama_3_2_text_file = ROOT_DIR / "models" / "llama" / "llama3_2" / "text_prompt_format.md"
|
||||
llama_3_2_vision_file = ROOT_DIR / "models" / "llama" / "llama3_2" / "vision_prompt_format.md"
|
||||
if model_family(model_id) == ModelFamily.llama3_1:
|
||||
with importlib.resources.as_file(llama_3_1_file) as f:
|
||||
content = f.open("r").read()
|
||||
elif model_family(model_id) == ModelFamily.llama3_2:
|
||||
if is_multimodal(model_id):
|
||||
with importlib.resources.as_file(llama_3_2_vision_file) as f:
|
||||
content = f.open("r").read()
|
||||
else:
|
||||
with importlib.resources.as_file(llama_3_2_text_file) as f:
|
||||
content = f.open("r").read()
|
||||
|
||||
render_markdown_to_pager(content)
|
||||
|
||||
|
||||
def render_markdown_to_pager(markdown_content: str):
|
||||
from rich.console import Console
|
||||
from rich.markdown import Markdown
|
||||
from rich.style import Style
|
||||
from rich.text import Text
|
||||
|
||||
class LeftAlignedHeaderMarkdown(Markdown):
|
||||
def parse_header(self, token):
|
||||
level = token.type.count("h")
|
||||
content = Text(token.content)
|
||||
header_style = Style(color="bright_blue", bold=True)
|
||||
header = Text(f"{'#' * level} ", style=header_style) + content
|
||||
self.add_text(header)
|
||||
|
||||
# Render the Markdown
|
||||
md = LeftAlignedHeaderMarkdown(markdown_content)
|
||||
|
||||
# Capture the rendered output
|
||||
output = StringIO()
|
||||
console = Console(file=output, force_terminal=True, width=100) # Set a fixed width
|
||||
console.print(md)
|
||||
rendered_content = output.getvalue()
|
||||
print(rendered_content)
|
||||
|
|
@ -1,68 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.core.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
|
||||
|
||||
class ModelRemove(Subcommand):
|
||||
"""Remove the downloaded llama model"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"remove",
|
||||
prog="llama model remove",
|
||||
description="Remove the downloaded llama model",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_model_remove_cmd)
|
||||
|
||||
def _add_arguments(self):
|
||||
self.parser.add_argument(
|
||||
"-m",
|
||||
"--model",
|
||||
required=True,
|
||||
help="Specify the llama downloaded model name, see `llama model list --downloaded`",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"-f",
|
||||
"--force",
|
||||
action="store_true",
|
||||
help="Used to forcefully remove the llama model from the storage without further confirmation",
|
||||
)
|
||||
|
||||
def _run_model_remove_cmd(self, args: argparse.Namespace) -> None:
|
||||
from .safety_models import prompt_guard_model_sku_map
|
||||
|
||||
prompt_guard_model_map = prompt_guard_model_sku_map()
|
||||
|
||||
if args.model in prompt_guard_model_map.keys():
|
||||
model = prompt_guard_model_map[args.model]
|
||||
else:
|
||||
model = resolve_model(args.model)
|
||||
|
||||
model_path = os.path.join(DEFAULT_CHECKPOINT_DIR, args.model.replace(":", "-"))
|
||||
|
||||
if model is None or not os.path.isdir(model_path):
|
||||
print(f"'{args.model}' is not a valid llama model or does not exist.")
|
||||
return
|
||||
|
||||
if args.force:
|
||||
shutil.rmtree(model_path)
|
||||
print(f"{args.model} removed.")
|
||||
else:
|
||||
if input(f"Are you sure you want to remove {args.model}? (y/n): ").strip().lower() == "y":
|
||||
shutil.rmtree(model_path)
|
||||
print(f"{args.model} removed.")
|
||||
else:
|
||||
print("Removal aborted.")
|
||||
|
|
@ -1,64 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from llama_stack.models.llama.sku_list import LlamaDownloadInfo
|
||||
from llama_stack.models.llama.sku_types import CheckpointQuantizationFormat
|
||||
|
||||
|
||||
class PromptGuardModel(BaseModel):
|
||||
"""Make a 'fake' Model-like object for Prompt Guard. Eventually this will be removed."""
|
||||
|
||||
model_id: str
|
||||
huggingface_repo: str
|
||||
description: str = "Prompt Guard. NOTE: this model will not be provided via `llama` CLI soon."
|
||||
is_featured: bool = False
|
||||
max_seq_length: int = 512
|
||||
is_instruct_model: bool = False
|
||||
quantization_format: CheckpointQuantizationFormat = CheckpointQuantizationFormat.bf16
|
||||
arch_args: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
def descriptor(self) -> str:
|
||||
return self.model_id
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
def prompt_guard_model_skus():
|
||||
return [
|
||||
PromptGuardModel(model_id="Prompt-Guard-86M", huggingface_repo="meta-llama/Prompt-Guard-86M"),
|
||||
PromptGuardModel(
|
||||
model_id="Llama-Prompt-Guard-2-86M",
|
||||
huggingface_repo="meta-llama/Llama-Prompt-Guard-2-86M",
|
||||
),
|
||||
PromptGuardModel(
|
||||
model_id="Llama-Prompt-Guard-2-22M",
|
||||
huggingface_repo="meta-llama/Llama-Prompt-Guard-2-22M",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def prompt_guard_model_sku_map() -> dict[str, Any]:
|
||||
return {model.model_id: model for model in prompt_guard_model_skus()}
|
||||
|
||||
|
||||
def prompt_guard_download_info_map() -> dict[str, LlamaDownloadInfo]:
|
||||
return {
|
||||
model.model_id: LlamaDownloadInfo(
|
||||
folder="Prompt-Guard" if model.model_id == "Prompt-Guard-86M" else model.model_id,
|
||||
files=[
|
||||
"model.safetensors",
|
||||
"special_tokens_map.json",
|
||||
"tokenizer.json",
|
||||
"tokenizer_config.json",
|
||||
],
|
||||
pth_size=1,
|
||||
)
|
||||
for model in prompt_guard_model_skus()
|
||||
}
|
||||
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
class ModelVerifyDownload(Subcommand):
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"verify-download",
|
||||
prog="llama model verify-download",
|
||||
description="Verify the downloaded checkpoints' checksums for models downloaded from Meta",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
|
||||
from llama_stack.cli.verify_download import setup_verify_download_parser
|
||||
|
||||
setup_verify_download_parser(self.parser)
|
||||
|
|
@ -1,490 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import importlib.resources
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
import textwrap
|
||||
from functools import lru_cache
|
||||
from importlib.abc import Traversable
|
||||
from pathlib import Path
|
||||
|
||||
import yaml
|
||||
from prompt_toolkit import prompt
|
||||
from prompt_toolkit.completion import WordCompleter
|
||||
from prompt_toolkit.validation import Validator
|
||||
from termcolor import colored, cprint
|
||||
|
||||
from llama_stack.cli.stack.utils import ImageType
|
||||
from llama_stack.cli.table import print_table
|
||||
from llama_stack.core.build import (
|
||||
SERVER_DEPENDENCIES,
|
||||
build_image,
|
||||
get_provider_dependencies,
|
||||
)
|
||||
from llama_stack.core.configure import parse_and_maybe_upgrade_config
|
||||
from llama_stack.core.datatypes import (
|
||||
BuildConfig,
|
||||
BuildProvider,
|
||||
DistributionSpec,
|
||||
Provider,
|
||||
StackRunConfig,
|
||||
)
|
||||
from llama_stack.core.distribution import get_provider_registry
|
||||
from llama_stack.core.external import load_external_apis
|
||||
from llama_stack.core.resolver import InvalidProviderError
|
||||
from llama_stack.core.stack import replace_env_vars
|
||||
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR
|
||||
from llama_stack.core.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.core.utils.exec import formulate_run_args, run_command
|
||||
from llama_stack.core.utils.image_types import LlamaStackImageType
|
||||
from llama_stack.providers.datatypes import Api
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
|
||||
|
||||
DISTRIBS_PATH = Path(__file__).parent.parent.parent / "distributions"
|
||||
|
||||
|
||||
@lru_cache
|
||||
def available_distros_specs() -> dict[str, BuildConfig]:
|
||||
import yaml
|
||||
|
||||
distro_specs = {}
|
||||
for p in DISTRIBS_PATH.rglob("*build.yaml"):
|
||||
distro_name = p.parent.name
|
||||
with open(p) as f:
|
||||
build_config = BuildConfig(**yaml.safe_load(f))
|
||||
distro_specs[distro_name] = build_config
|
||||
return distro_specs
|
||||
|
||||
|
||||
def run_stack_build_command(args: argparse.Namespace) -> None:
|
||||
if args.list_distros:
|
||||
return _run_distro_list_cmd()
|
||||
|
||||
if args.image_type == ImageType.VENV.value:
|
||||
current_venv = os.environ.get("VIRTUAL_ENV")
|
||||
image_name = args.image_name or current_venv
|
||||
else:
|
||||
image_name = args.image_name
|
||||
|
||||
if args.template:
|
||||
cprint(
|
||||
"The --template argument is deprecated. Please use --distro instead.",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
distro_name = args.template
|
||||
else:
|
||||
distro_name = args.distribution
|
||||
|
||||
if distro_name:
|
||||
available_distros = available_distros_specs()
|
||||
if distro_name not in available_distros:
|
||||
cprint(
|
||||
f"Could not find distribution {distro_name}. Please run `llama stack build --list-distros` to check out the available distributions",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
build_config = available_distros[distro_name]
|
||||
if args.image_type:
|
||||
build_config.image_type = args.image_type
|
||||
else:
|
||||
cprint(
|
||||
f"Please specify a image-type ({' | '.join(e.value for e in ImageType)}) for {distro_name}",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
elif args.providers:
|
||||
provider_list: dict[str, list[BuildProvider]] = dict()
|
||||
for api_provider in args.providers.split(","):
|
||||
if "=" not in api_provider:
|
||||
cprint(
|
||||
"Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
api, provider_type = api_provider.split("=")
|
||||
providers_for_api = get_provider_registry().get(Api(api), None)
|
||||
if providers_for_api is None:
|
||||
cprint(
|
||||
f"{api} is not a valid API.",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
if provider_type in providers_for_api:
|
||||
provider = BuildProvider(
|
||||
provider_type=provider_type,
|
||||
module=None,
|
||||
)
|
||||
provider_list.setdefault(api, []).append(provider)
|
||||
else:
|
||||
cprint(
|
||||
f"{provider} is not a valid provider for the {api} API.",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
distribution_spec = DistributionSpec(
|
||||
providers=provider_list,
|
||||
description=",".join(args.providers),
|
||||
)
|
||||
if not args.image_type:
|
||||
cprint(
|
||||
f"Please specify a image-type (container | venv) for {args.template}",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
build_config = BuildConfig(image_type=args.image_type, distribution_spec=distribution_spec)
|
||||
elif not args.config and not distro_name:
|
||||
name = prompt(
|
||||
"> Enter a name for your Llama Stack (e.g. my-local-stack): ",
|
||||
validator=Validator.from_callable(
|
||||
lambda x: len(x) > 0,
|
||||
error_message="Name cannot be empty, please enter a name",
|
||||
),
|
||||
)
|
||||
|
||||
image_type = prompt(
|
||||
"> Enter the image type you want your Llama Stack to be built as (use <TAB> to see options): ",
|
||||
completer=WordCompleter([e.value for e in ImageType]),
|
||||
complete_while_typing=True,
|
||||
validator=Validator.from_callable(
|
||||
lambda x: x in [e.value for e in ImageType],
|
||||
error_message="Invalid image type. Use <TAB> to see options",
|
||||
),
|
||||
)
|
||||
|
||||
image_name = f"llamastack-{name}"
|
||||
|
||||
cprint(
|
||||
textwrap.dedent(
|
||||
"""
|
||||
Llama Stack is composed of several APIs working together. Let's select
|
||||
the provider types (implementations) you want to use for these APIs.
|
||||
""",
|
||||
),
|
||||
color="green",
|
||||
file=sys.stderr,
|
||||
)
|
||||
|
||||
cprint("Tip: use <TAB> to see options for the providers.\n", color="green", file=sys.stderr)
|
||||
|
||||
providers: dict[str, list[BuildProvider]] = dict()
|
||||
for api, providers_for_api in get_provider_registry().items():
|
||||
available_providers = [x for x in providers_for_api.keys() if x not in ("remote", "remote::sample")]
|
||||
if not available_providers:
|
||||
continue
|
||||
api_provider = prompt(
|
||||
f"> Enter provider for API {api.value}: ",
|
||||
completer=WordCompleter(available_providers),
|
||||
complete_while_typing=True,
|
||||
validator=Validator.from_callable(
|
||||
lambda x: x in available_providers, # noqa: B023 - see https://github.com/astral-sh/ruff/issues/7847
|
||||
error_message="Invalid provider, use <TAB> to see options",
|
||||
),
|
||||
)
|
||||
|
||||
string_providers = api_provider.split(" ")
|
||||
|
||||
for provider in string_providers:
|
||||
providers.setdefault(api.value, []).append(BuildProvider(provider_type=provider))
|
||||
|
||||
description = prompt(
|
||||
"\n > (Optional) Enter a short description for your Llama Stack: ",
|
||||
default="",
|
||||
)
|
||||
|
||||
distribution_spec = DistributionSpec(
|
||||
providers=providers,
|
||||
description=description,
|
||||
)
|
||||
|
||||
build_config = BuildConfig(image_type=image_type, distribution_spec=distribution_spec)
|
||||
else:
|
||||
with open(args.config) as f:
|
||||
try:
|
||||
contents = yaml.safe_load(f)
|
||||
contents = replace_env_vars(contents)
|
||||
build_config = BuildConfig(**contents)
|
||||
if args.image_type:
|
||||
build_config.image_type = args.image_type
|
||||
except Exception as e:
|
||||
cprint(
|
||||
f"Could not parse config file {args.config}: {e}",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
if args.print_deps_only:
|
||||
print(f"# Dependencies for {distro_name or args.config or image_name}")
|
||||
normal_deps, special_deps, external_provider_dependencies = get_provider_dependencies(build_config)
|
||||
normal_deps += SERVER_DEPENDENCIES
|
||||
print(f"uv pip install {' '.join(normal_deps)}")
|
||||
for special_dep in special_deps:
|
||||
print(f"uv pip install {special_dep}")
|
||||
for external_dep in external_provider_dependencies:
|
||||
print(f"uv pip install {external_dep}")
|
||||
return
|
||||
|
||||
try:
|
||||
run_config = _run_stack_build_command_from_build_config(
|
||||
build_config,
|
||||
image_name=image_name,
|
||||
config_path=args.config,
|
||||
distro_name=distro_name,
|
||||
)
|
||||
|
||||
except (Exception, RuntimeError) as exc:
|
||||
import traceback
|
||||
|
||||
cprint(
|
||||
f"Error building stack: {exc}",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
cprint("Stack trace:", color="red", file=sys.stderr)
|
||||
traceback.print_exc()
|
||||
sys.exit(1)
|
||||
|
||||
if run_config is None:
|
||||
cprint(
|
||||
"Run config path is empty",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
if args.run:
|
||||
config_dict = yaml.safe_load(run_config.read_text())
|
||||
config = parse_and_maybe_upgrade_config(config_dict)
|
||||
if config.external_providers_dir and not config.external_providers_dir.exists():
|
||||
config.external_providers_dir.mkdir(exist_ok=True)
|
||||
run_args = formulate_run_args(args.image_type, image_name or config.image_name)
|
||||
run_args.extend([str(os.getenv("LLAMA_STACK_PORT", 8321)), "--config", str(run_config)])
|
||||
run_command(run_args)
|
||||
|
||||
|
||||
def _generate_run_config(
|
||||
build_config: BuildConfig,
|
||||
build_dir: Path,
|
||||
image_name: str,
|
||||
) -> Path:
|
||||
"""
|
||||
Generate a run.yaml template file for user to edit from a build.yaml file
|
||||
"""
|
||||
apis = list(build_config.distribution_spec.providers.keys())
|
||||
run_config = StackRunConfig(
|
||||
container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None),
|
||||
image_name=image_name,
|
||||
apis=apis,
|
||||
providers={},
|
||||
external_providers_dir=build_config.external_providers_dir
|
||||
if build_config.external_providers_dir
|
||||
else EXTERNAL_PROVIDERS_DIR,
|
||||
)
|
||||
if not run_config.inference_store:
|
||||
run_config.inference_store = SqliteSqlStoreConfig(
|
||||
**SqliteSqlStoreConfig.sample_run_config(
|
||||
__distro_dir__=(DISTRIBS_BASE_DIR / image_name).as_posix(), db_name="inference_store.db"
|
||||
)
|
||||
)
|
||||
# build providers dict
|
||||
provider_registry = get_provider_registry(build_config)
|
||||
for api in apis:
|
||||
run_config.providers[api] = []
|
||||
providers = build_config.distribution_spec.providers[api]
|
||||
|
||||
for provider in providers:
|
||||
pid = provider.provider_type.split("::")[-1]
|
||||
|
||||
p = provider_registry[Api(api)][provider.provider_type]
|
||||
if p.deprecation_error:
|
||||
raise InvalidProviderError(p.deprecation_error)
|
||||
|
||||
try:
|
||||
config_type = instantiate_class_type(provider_registry[Api(api)][provider.provider_type].config_class)
|
||||
except (ModuleNotFoundError, ValueError) as exc:
|
||||
# HACK ALERT:
|
||||
# This code executes after building is done, the import cannot work since the
|
||||
# package is either available in the venv or container - not available on the host.
|
||||
# TODO: use a "is_external" flag in ProviderSpec to check if the provider is
|
||||
# external
|
||||
cprint(
|
||||
f"Failed to import provider {provider.provider_type} for API {api} - assuming it's external, skipping: {exc}",
|
||||
color="yellow",
|
||||
file=sys.stderr,
|
||||
)
|
||||
# Set config_type to None to avoid UnboundLocalError
|
||||
config_type = None
|
||||
|
||||
if config_type is not None and hasattr(config_type, "sample_run_config"):
|
||||
config = config_type.sample_run_config(__distro_dir__=f"~/.llama/distributions/{image_name}")
|
||||
else:
|
||||
config = {}
|
||||
|
||||
p_spec = Provider(
|
||||
provider_id=pid,
|
||||
provider_type=provider.provider_type,
|
||||
config=config,
|
||||
module=provider.module,
|
||||
)
|
||||
run_config.providers[api].append(p_spec)
|
||||
|
||||
run_config_file = build_dir / f"{image_name}-run.yaml"
|
||||
|
||||
with open(run_config_file, "w") as f:
|
||||
to_write = json.loads(run_config.model_dump_json())
|
||||
f.write(yaml.dump(to_write, sort_keys=False))
|
||||
|
||||
# Only print this message for non-container builds since it will be displayed before the
|
||||
# container is built
|
||||
# For non-container builds, the run.yaml is generated at the very end of the build process so it
|
||||
# makes sense to display this message
|
||||
if build_config.image_type != LlamaStackImageType.CONTAINER.value:
|
||||
cprint(f"You can now run your stack with `llama stack run {run_config_file}`", color="green", file=sys.stderr)
|
||||
return run_config_file
|
||||
|
||||
|
||||
def _run_stack_build_command_from_build_config(
|
||||
build_config: BuildConfig,
|
||||
image_name: str | None = None,
|
||||
distro_name: str | None = None,
|
||||
config_path: str | None = None,
|
||||
) -> Path | Traversable:
|
||||
image_name = image_name or build_config.image_name
|
||||
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
|
||||
if distro_name:
|
||||
image_name = f"distribution-{distro_name}"
|
||||
else:
|
||||
if not image_name:
|
||||
raise ValueError("Please specify an image name when building a container image without a template")
|
||||
else:
|
||||
if not image_name and os.environ.get("UV_SYSTEM_PYTHON"):
|
||||
image_name = "__system__"
|
||||
if not image_name:
|
||||
raise ValueError("Please specify an image name when building a venv image")
|
||||
|
||||
# At this point, image_name should be guaranteed to be a string
|
||||
if image_name is None:
|
||||
raise ValueError("image_name should not be None after validation")
|
||||
|
||||
if distro_name:
|
||||
build_dir = DISTRIBS_BASE_DIR / distro_name
|
||||
build_file_path = build_dir / f"{distro_name}-build.yaml"
|
||||
else:
|
||||
if image_name is None:
|
||||
raise ValueError("image_name cannot be None")
|
||||
build_dir = DISTRIBS_BASE_DIR / image_name
|
||||
build_file_path = build_dir / f"{image_name}-build.yaml"
|
||||
|
||||
os.makedirs(build_dir, exist_ok=True)
|
||||
run_config_file = None
|
||||
# Generate the run.yaml so it can be included in the container image with the proper entrypoint
|
||||
# Only do this if we're building a container image and we're not using a template
|
||||
if build_config.image_type == LlamaStackImageType.CONTAINER.value and not distro_name and config_path:
|
||||
cprint("Generating run.yaml file", color="yellow", file=sys.stderr)
|
||||
run_config_file = _generate_run_config(build_config, build_dir, image_name)
|
||||
|
||||
with open(build_file_path, "w") as f:
|
||||
to_write = json.loads(build_config.model_dump_json(exclude_none=True))
|
||||
f.write(yaml.dump(to_write, sort_keys=False))
|
||||
|
||||
# We first install the external APIs so that the build process can use them and discover the
|
||||
# providers dependencies
|
||||
if build_config.external_apis_dir:
|
||||
cprint("Installing external APIs", color="yellow", file=sys.stderr)
|
||||
external_apis = load_external_apis(build_config)
|
||||
if external_apis:
|
||||
# install the external APIs
|
||||
packages = []
|
||||
for _, api_spec in external_apis.items():
|
||||
if api_spec.pip_packages:
|
||||
packages.extend(api_spec.pip_packages)
|
||||
cprint(
|
||||
f"Installing {api_spec.name} with pip packages {api_spec.pip_packages}",
|
||||
color="yellow",
|
||||
file=sys.stderr,
|
||||
)
|
||||
return_code = run_command(["uv", "pip", "install", *packages])
|
||||
if return_code != 0:
|
||||
packages_str = ", ".join(packages)
|
||||
raise RuntimeError(
|
||||
f"Failed to install external APIs packages: {packages_str} (return code: {return_code})"
|
||||
)
|
||||
|
||||
return_code = build_image(
|
||||
build_config,
|
||||
image_name,
|
||||
distro_or_config=distro_name or config_path or str(build_file_path),
|
||||
run_config=run_config_file.as_posix() if run_config_file else None,
|
||||
)
|
||||
if return_code != 0:
|
||||
raise RuntimeError(f"Failed to build image {image_name}")
|
||||
|
||||
if distro_name:
|
||||
# copy run.yaml from distribution to build_dir instead of generating it again
|
||||
distro_path = importlib.resources.files("llama_stack") / f"distributions/{distro_name}/run.yaml"
|
||||
run_config_file = build_dir / f"{distro_name}-run.yaml"
|
||||
|
||||
with importlib.resources.as_file(distro_path) as path:
|
||||
shutil.copy(path, run_config_file)
|
||||
|
||||
cprint("Build Successful!", color="green", file=sys.stderr)
|
||||
cprint(f"You can find the newly-built distribution here: {run_config_file}", color="blue", file=sys.stderr)
|
||||
if build_config.image_type == LlamaStackImageType.VENV:
|
||||
cprint(
|
||||
"You can run the new Llama Stack distro (after activating "
|
||||
+ colored(image_name, "cyan")
|
||||
+ ") via: "
|
||||
+ colored(f"llama stack run {run_config_file}", "blue"),
|
||||
color="green",
|
||||
file=sys.stderr,
|
||||
)
|
||||
elif build_config.image_type == LlamaStackImageType.CONTAINER:
|
||||
cprint(
|
||||
"You can run the container with: "
|
||||
+ colored(
|
||||
f"docker run -p 8321:8321 -v ~/.llama:/root/.llama localhost/{image_name} --port 8321", "blue"
|
||||
),
|
||||
color="green",
|
||||
file=sys.stderr,
|
||||
)
|
||||
return distro_path
|
||||
else:
|
||||
return _generate_run_config(build_config, build_dir, image_name)
|
||||
|
||||
|
||||
def _run_distro_list_cmd() -> None:
|
||||
headers = [
|
||||
"Distribution Name",
|
||||
# "Providers",
|
||||
"Description",
|
||||
]
|
||||
|
||||
rows = []
|
||||
for distro_name, spec in available_distros_specs().items():
|
||||
rows.append(
|
||||
[
|
||||
distro_name,
|
||||
# json.dumps(spec.distribution_spec.providers, indent=2),
|
||||
spec.distribution_spec.description,
|
||||
]
|
||||
)
|
||||
print_table(
|
||||
rows,
|
||||
headers,
|
||||
separate_rows=True,
|
||||
)
|
||||
182
llama_stack/cli/stack/_list_deps.py
Normal file
182
llama_stack/cli/stack/_list_deps.py
Normal file
|
|
@ -0,0 +1,182 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.cli.stack.utils import ImageType
|
||||
from llama_stack.core.build import get_provider_dependencies
|
||||
from llama_stack.core.datatypes import (
|
||||
BuildConfig,
|
||||
BuildProvider,
|
||||
DistributionSpec,
|
||||
)
|
||||
from llama_stack.core.distribution import get_provider_registry
|
||||
from llama_stack.core.stack import replace_env_vars
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
TEMPLATES_PATH = Path(__file__).parent.parent.parent / "templates"
|
||||
|
||||
logger = get_logger(name=__name__, category="cli")
|
||||
|
||||
|
||||
# These are the dependencies needed by the distribution server.
|
||||
# `llama-stack` is automatically installed by the installation script.
|
||||
SERVER_DEPENDENCIES = [
|
||||
"aiosqlite",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"uvicorn",
|
||||
"opentelemetry-sdk",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
]
|
||||
|
||||
|
||||
def format_output_deps_only(
|
||||
normal_deps: list[str],
|
||||
special_deps: list[str],
|
||||
external_deps: list[str],
|
||||
uv: bool = False,
|
||||
) -> str:
|
||||
"""Format dependencies as a list."""
|
||||
lines = []
|
||||
|
||||
uv_str = ""
|
||||
if uv:
|
||||
uv_str = "uv pip install "
|
||||
|
||||
# Quote deps with commas
|
||||
quoted_normal_deps = [quote_if_needed(dep) for dep in normal_deps]
|
||||
lines.append(f"{uv_str}{' '.join(quoted_normal_deps)}")
|
||||
|
||||
for special_dep in special_deps:
|
||||
lines.append(f"{uv_str}{quote_special_dep(special_dep)}")
|
||||
|
||||
for external_dep in external_deps:
|
||||
lines.append(f"{uv_str}{quote_special_dep(external_dep)}")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def run_stack_list_deps_command(args: argparse.Namespace) -> None:
|
||||
if args.config:
|
||||
try:
|
||||
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
|
||||
|
||||
config_file = resolve_config_or_distro(args.config, Mode.BUILD)
|
||||
except ValueError as e:
|
||||
cprint(
|
||||
f"Could not parse config file {args.config}: {e}",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
if config_file:
|
||||
with open(config_file) as f:
|
||||
try:
|
||||
contents = yaml.safe_load(f)
|
||||
contents = replace_env_vars(contents)
|
||||
build_config = BuildConfig(**contents)
|
||||
build_config.image_type = "venv"
|
||||
except Exception as e:
|
||||
cprint(
|
||||
f"Could not parse config file {config_file}: {e}",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
elif args.providers:
|
||||
provider_list: dict[str, list[BuildProvider]] = dict()
|
||||
for api_provider in args.providers.split(","):
|
||||
if "=" not in api_provider:
|
||||
cprint(
|
||||
"Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
api, provider_type = api_provider.split("=")
|
||||
providers_for_api = get_provider_registry().get(Api(api), None)
|
||||
if providers_for_api is None:
|
||||
cprint(
|
||||
f"{api} is not a valid API.",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
if provider_type in providers_for_api:
|
||||
provider = BuildProvider(
|
||||
provider_type=provider_type,
|
||||
module=None,
|
||||
)
|
||||
provider_list.setdefault(api, []).append(provider)
|
||||
else:
|
||||
cprint(
|
||||
f"{provider_type} is not a valid provider for the {api} API.",
|
||||
color="red",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
distribution_spec = DistributionSpec(
|
||||
providers=provider_list,
|
||||
description=",".join(args.providers),
|
||||
)
|
||||
build_config = BuildConfig(image_type=ImageType.VENV.value, distribution_spec=distribution_spec)
|
||||
|
||||
normal_deps, special_deps, external_provider_dependencies = get_provider_dependencies(build_config)
|
||||
normal_deps += SERVER_DEPENDENCIES
|
||||
|
||||
# Add external API dependencies
|
||||
if build_config.external_apis_dir:
|
||||
from llama_stack.core.external import load_external_apis
|
||||
|
||||
external_apis = load_external_apis(build_config)
|
||||
if external_apis:
|
||||
for _, api_spec in external_apis.items():
|
||||
normal_deps.extend(api_spec.pip_packages)
|
||||
|
||||
# Format and output based on requested format
|
||||
output = format_output_deps_only(
|
||||
normal_deps=normal_deps,
|
||||
special_deps=special_deps,
|
||||
external_deps=external_provider_dependencies,
|
||||
uv=args.format == "uv",
|
||||
)
|
||||
|
||||
print(output)
|
||||
|
||||
|
||||
def quote_if_needed(dep):
|
||||
# Add quotes if the dependency contains special characters that need escaping in shell
|
||||
# This includes: commas, comparison operators (<, >, <=, >=, ==, !=)
|
||||
needs_quoting = any(char in dep for char in [",", "<", ">", "="])
|
||||
return f"'{dep}'" if needs_quoting else dep
|
||||
|
||||
|
||||
def quote_special_dep(dep_string):
|
||||
"""
|
||||
Quote individual packages in a special dependency string.
|
||||
Special deps may contain multiple packages and flags like --extra-index-url.
|
||||
We need to quote only the package specs that contain special characters.
|
||||
"""
|
||||
parts = dep_string.split()
|
||||
quoted_parts = []
|
||||
|
||||
for part in parts:
|
||||
# Don't quote flags (they start with -)
|
||||
if part.startswith("-"):
|
||||
quoted_parts.append(part)
|
||||
else:
|
||||
# Quote package specs that need it
|
||||
quoted_parts.append(quote_if_needed(part))
|
||||
|
||||
return " ".join(quoted_parts)
|
||||
|
|
@ -1,100 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import argparse
|
||||
import textwrap
|
||||
|
||||
from llama_stack.cli.stack.utils import ImageType
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
class StackBuild(Subcommand):
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"build",
|
||||
prog="llama stack build",
|
||||
description="Build a Llama stack container",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_stack_build_command)
|
||||
|
||||
def _add_arguments(self):
|
||||
self.parser.add_argument(
|
||||
"--config",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to a config file to use for the build. You can find example configs in llama_stack.cores/**/build.yaml. If this argument is not provided, you will be prompted to enter information interactively",
|
||||
)
|
||||
|
||||
self.parser.add_argument(
|
||||
"--template",
|
||||
type=str,
|
||||
default=None,
|
||||
help="""(deprecated) Name of the example template config to use for build. You may use `llama stack build --list-distros` to check out the available distributions""",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--distro",
|
||||
"--distribution",
|
||||
dest="distribution",
|
||||
type=str,
|
||||
default=None,
|
||||
help="""Name of the distribution to use for build. You may use `llama stack build --list-distros` to check out the available distributions""",
|
||||
)
|
||||
|
||||
self.parser.add_argument(
|
||||
"--list-distros",
|
||||
"--list-distributions",
|
||||
action="store_true",
|
||||
dest="list_distros",
|
||||
default=False,
|
||||
help="Show the available distributions for building a Llama Stack distribution",
|
||||
)
|
||||
|
||||
self.parser.add_argument(
|
||||
"--image-type",
|
||||
type=str,
|
||||
help="Image Type to use for the build. If not specified, will use the image type from the template config.",
|
||||
choices=[e.value for e in ImageType],
|
||||
default=None, # no default so we can detect if a user specified --image-type and override image_type in the config
|
||||
)
|
||||
|
||||
self.parser.add_argument(
|
||||
"--image-name",
|
||||
type=str,
|
||||
help=textwrap.dedent(
|
||||
f"""[for image-type={"|".join(e.value for e in ImageType)}] Name of the virtual environment to use for
|
||||
the build. If not specified, currently active environment will be used if found.
|
||||
"""
|
||||
),
|
||||
default=None,
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--print-deps-only",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="Print the dependencies for the stack only, without building the stack",
|
||||
)
|
||||
|
||||
self.parser.add_argument(
|
||||
"--run",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Run the stack after building using the same image type, name, and other applicable arguments",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--providers",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Build a config for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per API.",
|
||||
)
|
||||
|
||||
def _run_stack_build_command(self, args: argparse.Namespace) -> None:
|
||||
# always keep implementation completely silo-ed away from CLI so CLI
|
||||
# can be fast to load and reduces dependencies
|
||||
from ._build import run_stack_build_command
|
||||
|
||||
return run_stack_build_command(args)
|
||||
51
llama_stack/cli/stack/list_deps.py
Normal file
51
llama_stack/cli/stack/list_deps.py
Normal file
|
|
@ -0,0 +1,51 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import argparse
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
class StackListDeps(Subcommand):
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"list-deps",
|
||||
prog="llama stack list-deps",
|
||||
description="list the dependencies for a llama stack distribution",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_stack_list_deps_command)
|
||||
|
||||
def _add_arguments(self):
|
||||
self.parser.add_argument(
|
||||
"config",
|
||||
type=str,
|
||||
nargs="?", # Make it optional
|
||||
metavar="config | distro",
|
||||
help="Path to config file to use or name of known distro (llama stack list for a list).",
|
||||
)
|
||||
|
||||
self.parser.add_argument(
|
||||
"--providers",
|
||||
type=str,
|
||||
default=None,
|
||||
help="sync dependencies for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per API.",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--format",
|
||||
type=str,
|
||||
choices=["uv", "deps-only"],
|
||||
default="deps-only",
|
||||
help="Output format: 'uv' shows shell commands, 'deps-only' shows just the list of dependencies without `uv` (default)",
|
||||
)
|
||||
|
||||
def _run_stack_list_deps_command(self, args: argparse.Namespace) -> None:
|
||||
# always keep implementation completely silo-ed away from CLI so CLI
|
||||
# can be fast to load and reduces dependencies
|
||||
from ._list_deps import run_stack_list_deps_command
|
||||
|
||||
return run_stack_list_deps_command(args)
|
||||
|
|
@ -15,10 +15,10 @@ import yaml
|
|||
|
||||
from llama_stack.cli.stack.utils import ImageType
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.core.datatypes import LoggingConfig, StackRunConfig
|
||||
from llama_stack.core.datatypes import StackRunConfig
|
||||
from llama_stack.core.stack import cast_image_name_to_string, replace_env_vars
|
||||
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.log import LoggingConfig, get_logger
|
||||
|
||||
REPO_ROOT = Path(__file__).parent.parent.parent.parent
|
||||
|
||||
|
|
|
|||
|
|
@ -11,8 +11,8 @@ from llama_stack.cli.stack.list_stacks import StackListBuilds
|
|||
from llama_stack.cli.stack.utils import print_subcommand_description
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
|
||||
from .build import StackBuild
|
||||
from .list_apis import StackListApis
|
||||
from .list_deps import StackListDeps
|
||||
from .list_providers import StackListProviders
|
||||
from .remove import StackRemove
|
||||
from .run import StackRun
|
||||
|
|
@ -39,7 +39,7 @@ class StackParser(Subcommand):
|
|||
subparsers = self.parser.add_subparsers(title="stack_subcommands")
|
||||
|
||||
# Add sub-commands
|
||||
StackBuild.create(subparsers)
|
||||
StackListDeps.create(subparsers)
|
||||
StackListApis.create(subparsers)
|
||||
StackListProviders.create(subparsers)
|
||||
StackRun.create(subparsers)
|
||||
|
|
|
|||
|
|
@ -4,7 +4,37 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import sys
|
||||
from enum import Enum
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.core.datatypes import (
|
||||
BuildConfig,
|
||||
Provider,
|
||||
StackRunConfig,
|
||||
StorageConfig,
|
||||
)
|
||||
from llama_stack.core.distribution import get_provider_registry
|
||||
from llama_stack.core.resolver import InvalidProviderError
|
||||
from llama_stack.core.storage.datatypes import (
|
||||
InferenceStoreReference,
|
||||
KVStoreReference,
|
||||
ServerStoresConfig,
|
||||
SqliteKVStoreConfig,
|
||||
SqliteSqlStoreConfig,
|
||||
SqlStoreReference,
|
||||
)
|
||||
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR
|
||||
from llama_stack.core.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.core.utils.image_types import LlamaStackImageType
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
TEMPLATES_PATH = Path(__file__).parent.parent.parent / "distributions"
|
||||
|
||||
|
||||
class ImageType(Enum):
|
||||
|
|
@ -19,3 +49,103 @@ def print_subcommand_description(parser, subparsers):
|
|||
description = subcommand.description
|
||||
description_text += f" {name:<21} {description}\n"
|
||||
parser.epilog = description_text
|
||||
|
||||
|
||||
def generate_run_config(
|
||||
build_config: BuildConfig,
|
||||
build_dir: Path,
|
||||
image_name: str,
|
||||
) -> Path:
|
||||
"""
|
||||
Generate a run.yaml template file for user to edit from a build.yaml file
|
||||
"""
|
||||
apis = list(build_config.distribution_spec.providers.keys())
|
||||
distro_dir = DISTRIBS_BASE_DIR / image_name
|
||||
run_config = StackRunConfig(
|
||||
container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None),
|
||||
image_name=image_name,
|
||||
apis=apis,
|
||||
providers={},
|
||||
storage=StorageConfig(
|
||||
backends={
|
||||
"kv_default": SqliteKVStoreConfig(db_path=str(distro_dir / "kvstore.db")),
|
||||
"sql_default": SqliteSqlStoreConfig(db_path=str(distro_dir / "sql_store.db")),
|
||||
},
|
||||
stores=ServerStoresConfig(
|
||||
metadata=KVStoreReference(backend="kv_default", namespace="registry"),
|
||||
inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"),
|
||||
conversations=SqlStoreReference(backend="sql_default", table_name="openai_conversations"),
|
||||
),
|
||||
),
|
||||
external_providers_dir=build_config.external_providers_dir
|
||||
if build_config.external_providers_dir
|
||||
else EXTERNAL_PROVIDERS_DIR,
|
||||
)
|
||||
# build providers dict
|
||||
provider_registry = get_provider_registry(build_config)
|
||||
for api in apis:
|
||||
run_config.providers[api] = []
|
||||
providers = build_config.distribution_spec.providers[api]
|
||||
|
||||
for provider in providers:
|
||||
pid = provider.provider_type.split("::")[-1]
|
||||
|
||||
p = provider_registry[Api(api)][provider.provider_type]
|
||||
if p.deprecation_error:
|
||||
raise InvalidProviderError(p.deprecation_error)
|
||||
|
||||
try:
|
||||
config_type = instantiate_class_type(provider_registry[Api(api)][provider.provider_type].config_class)
|
||||
except (ModuleNotFoundError, ValueError) as exc:
|
||||
# HACK ALERT:
|
||||
# This code executes after building is done, the import cannot work since the
|
||||
# package is either available in the venv or container - not available on the host.
|
||||
# TODO: use a "is_external" flag in ProviderSpec to check if the provider is
|
||||
# external
|
||||
cprint(
|
||||
f"Failed to import provider {provider.provider_type} for API {api} - assuming it's external, skipping: {exc}",
|
||||
color="yellow",
|
||||
file=sys.stderr,
|
||||
)
|
||||
# Set config_type to None to avoid UnboundLocalError
|
||||
config_type = None
|
||||
|
||||
if config_type is not None and hasattr(config_type, "sample_run_config"):
|
||||
config = config_type.sample_run_config(__distro_dir__=f"~/.llama/distributions/{image_name}")
|
||||
else:
|
||||
config = {}
|
||||
|
||||
p_spec = Provider(
|
||||
provider_id=pid,
|
||||
provider_type=provider.provider_type,
|
||||
config=config,
|
||||
module=provider.module,
|
||||
)
|
||||
run_config.providers[api].append(p_spec)
|
||||
|
||||
run_config_file = build_dir / f"{image_name}-run.yaml"
|
||||
|
||||
with open(run_config_file, "w") as f:
|
||||
to_write = json.loads(run_config.model_dump_json())
|
||||
f.write(yaml.dump(to_write, sort_keys=False))
|
||||
|
||||
# Only print this message for non-container builds since it will be displayed before the
|
||||
# container is built
|
||||
# For non-container builds, the run.yaml is generated at the very end of the build process so it
|
||||
# makes sense to display this message
|
||||
if build_config.image_type != LlamaStackImageType.CONTAINER.value:
|
||||
cprint(f"You can now run your stack with `llama stack run {run_config_file}`", color="green", file=sys.stderr)
|
||||
return run_config_file
|
||||
|
||||
|
||||
@lru_cache
|
||||
def available_templates_specs() -> dict[str, BuildConfig]:
|
||||
import yaml
|
||||
|
||||
template_specs = {}
|
||||
for p in TEMPLATES_PATH.rglob("*build.yaml"):
|
||||
template_name = p.parent.name
|
||||
with open(p) as f:
|
||||
build_config = BuildConfig(**yaml.safe_load(f))
|
||||
template_specs[template_name] = build_config
|
||||
return template_specs
|
||||
|
|
|
|||
|
|
@ -1,141 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import hashlib
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
from rich.console import Console
|
||||
from rich.progress import Progress, SpinnerColumn, TextColumn
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
|
||||
|
||||
@dataclass
|
||||
class VerificationResult:
|
||||
filename: str
|
||||
expected_hash: str
|
||||
actual_hash: str | None
|
||||
exists: bool
|
||||
matches: bool
|
||||
|
||||
|
||||
class VerifyDownload(Subcommand):
|
||||
"""Llama cli for verifying downloaded model files"""
|
||||
|
||||
def __init__(self, subparsers: argparse._SubParsersAction):
|
||||
super().__init__()
|
||||
self.parser = subparsers.add_parser(
|
||||
"verify-download",
|
||||
prog="llama verify-download",
|
||||
description="Verify integrity of downloaded model files",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
setup_verify_download_parser(self.parser)
|
||||
|
||||
|
||||
def setup_verify_download_parser(parser: argparse.ArgumentParser) -> None:
|
||||
parser.add_argument(
|
||||
"--model-id",
|
||||
required=True,
|
||||
help="Model ID to verify (only for models downloaded from Meta)",
|
||||
)
|
||||
parser.set_defaults(func=partial(run_verify_cmd, parser=parser))
|
||||
|
||||
|
||||
def calculate_sha256(filepath: Path, chunk_size: int = 8192) -> str:
|
||||
sha256_hash = hashlib.sha256()
|
||||
with open(filepath, "rb") as f:
|
||||
for chunk in iter(lambda: f.read(chunk_size), b""):
|
||||
sha256_hash.update(chunk)
|
||||
return sha256_hash.hexdigest()
|
||||
|
||||
|
||||
def load_checksums(checklist_path: Path) -> dict[str, str]:
|
||||
checksums = {}
|
||||
with open(checklist_path) as f:
|
||||
for line in f:
|
||||
if line.strip():
|
||||
sha256sum, filepath = line.strip().split(" ", 1)
|
||||
# Remove leading './' if present
|
||||
filepath = filepath.lstrip("./")
|
||||
checksums[filepath] = sha256sum
|
||||
return checksums
|
||||
|
||||
|
||||
def verify_files(model_dir: Path, checksums: dict[str, str], console: Console) -> list[VerificationResult]:
|
||||
results = []
|
||||
|
||||
with Progress(
|
||||
SpinnerColumn(),
|
||||
TextColumn("[progress.description]{task.description}"),
|
||||
console=console,
|
||||
) as progress:
|
||||
for filepath, expected_hash in checksums.items():
|
||||
full_path = model_dir / filepath
|
||||
task_id = progress.add_task(f"Verifying {filepath}...", total=None)
|
||||
|
||||
exists = full_path.exists()
|
||||
actual_hash = None
|
||||
matches = False
|
||||
|
||||
if exists:
|
||||
actual_hash = calculate_sha256(full_path)
|
||||
matches = actual_hash == expected_hash
|
||||
|
||||
results.append(
|
||||
VerificationResult(
|
||||
filename=filepath,
|
||||
expected_hash=expected_hash,
|
||||
actual_hash=actual_hash,
|
||||
exists=exists,
|
||||
matches=matches,
|
||||
)
|
||||
)
|
||||
|
||||
progress.remove_task(task_id)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def run_verify_cmd(args: argparse.Namespace, parser: argparse.ArgumentParser):
|
||||
from llama_stack.core.utils.model_utils import model_local_dir
|
||||
|
||||
console = Console()
|
||||
model_dir = Path(model_local_dir(args.model_id))
|
||||
checklist_path = model_dir / "checklist.chk"
|
||||
|
||||
if not model_dir.exists():
|
||||
parser.error(f"Model directory not found: {model_dir}")
|
||||
|
||||
if not checklist_path.exists():
|
||||
parser.error(f"Checklist file not found: {checklist_path}")
|
||||
|
||||
checksums = load_checksums(checklist_path)
|
||||
results = verify_files(model_dir, checksums, console)
|
||||
|
||||
# Print results
|
||||
console.print("\nVerification Results:")
|
||||
|
||||
all_good = True
|
||||
for result in results:
|
||||
if not result.exists:
|
||||
console.print(f"[red]❌ {result.filename}: File not found[/red]")
|
||||
all_good = False
|
||||
elif not result.matches:
|
||||
console.print(
|
||||
f"[red]❌ {result.filename}: Hash mismatch[/red]\n"
|
||||
f" Expected: {result.expected_hash}\n"
|
||||
f" Got: {result.actual_hash}"
|
||||
)
|
||||
all_good = False
|
||||
else:
|
||||
console.print(f"[green]✓ {result.filename}: Verified[/green]")
|
||||
|
||||
if all_good:
|
||||
console.print("\n[green]All files verified successfully![/green]")
|
||||
|
|
@ -41,7 +41,7 @@ class AccessRule(BaseModel):
|
|||
A rule defines a list of action either to permit or to forbid. It may specify a
|
||||
principal or a resource that must match for the rule to take effect. The resource
|
||||
to match should be specified in the form of a type qualified identifier, e.g.
|
||||
model::my-model or vector_db::some-db, or a wildcard for all resources of a type,
|
||||
model::my-model or vector_store::some-db, or a wildcard for all resources of a type,
|
||||
e.g. model::*. If the principal or resource are not specified, they will match all
|
||||
requests.
|
||||
|
||||
|
|
@ -79,9 +79,9 @@ class AccessRule(BaseModel):
|
|||
description: any user has read access to any resource created by a member of their team
|
||||
- forbid:
|
||||
actions: [create, read, delete]
|
||||
resource: vector_db::*
|
||||
resource: vector_store::*
|
||||
unless: user with admin in roles
|
||||
description: only user with admin role can use vector_db resources
|
||||
description: only user with admin role can use vector_store resources
|
||||
|
||||
"""
|
||||
|
||||
|
|
|
|||
|
|
@ -1,410 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
LLAMA_STACK_DIR=${LLAMA_STACK_DIR:-}
|
||||
LLAMA_STACK_CLIENT_DIR=${LLAMA_STACK_CLIENT_DIR:-}
|
||||
|
||||
TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-}
|
||||
PYPI_VERSION=${PYPI_VERSION:-}
|
||||
BUILD_PLATFORM=${BUILD_PLATFORM:-}
|
||||
# This timeout (in seconds) is necessary when installing PyTorch via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT:-500}
|
||||
|
||||
# mounting is not supported by docker buildx, so we use COPY instead
|
||||
USE_COPY_NOT_MOUNT=${USE_COPY_NOT_MOUNT:-}
|
||||
# Path to the run.yaml file in the container
|
||||
RUN_CONFIG_PATH=/app/run.yaml
|
||||
|
||||
BUILD_CONTEXT_DIR=$(pwd)
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
# Define color codes
|
||||
RED='\033[0;31m'
|
||||
NC='\033[0m' # No Color
|
||||
|
||||
# Usage function
|
||||
usage() {
|
||||
echo "Usage: $0 --image-name <image_name> --container-base <container_base> --normal-deps <pip_dependencies> [--run-config <run_config>] [--external-provider-deps <external_provider_deps>] [--optional-deps <special_pip_deps>]"
|
||||
echo "Example: $0 --image-name llama-stack-img --container-base python:3.12-slim --normal-deps 'numpy pandas' --run-config ./run.yaml --external-provider-deps 'foo' --optional-deps 'bar'"
|
||||
exit 1
|
||||
}
|
||||
|
||||
# Parse arguments
|
||||
image_name=""
|
||||
container_base=""
|
||||
normal_deps=""
|
||||
external_provider_deps=""
|
||||
optional_deps=""
|
||||
run_config=""
|
||||
distro_or_config=""
|
||||
|
||||
while [[ $# -gt 0 ]]; do
|
||||
key="$1"
|
||||
case "$key" in
|
||||
--image-name)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --image-name requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
image_name="$2"
|
||||
shift 2
|
||||
;;
|
||||
--container-base)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --container-base requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
container_base="$2"
|
||||
shift 2
|
||||
;;
|
||||
--normal-deps)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --normal-deps requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
normal_deps="$2"
|
||||
shift 2
|
||||
;;
|
||||
--external-provider-deps)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --external-provider-deps requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
external_provider_deps="$2"
|
||||
shift 2
|
||||
;;
|
||||
--optional-deps)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --optional-deps requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
optional_deps="$2"
|
||||
shift 2
|
||||
;;
|
||||
--run-config)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --run-config requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
run_config="$2"
|
||||
shift 2
|
||||
;;
|
||||
--distro-or-config)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --distro-or-config requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
distro_or_config="$2"
|
||||
shift 2
|
||||
;;
|
||||
*)
|
||||
echo "Unknown option: $1" >&2
|
||||
usage
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
# Check required arguments
|
||||
if [[ -z "$image_name" || -z "$container_base" || -z "$normal_deps" ]]; then
|
||||
echo "Error: --image-name, --container-base, and --normal-deps are required." >&2
|
||||
usage
|
||||
fi
|
||||
|
||||
CONTAINER_BINARY=${CONTAINER_BINARY:-docker}
|
||||
CONTAINER_OPTS=${CONTAINER_OPTS:---progress=plain}
|
||||
TEMP_DIR=$(mktemp -d)
|
||||
SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
|
||||
source "$SCRIPT_DIR/common.sh"
|
||||
|
||||
add_to_container() {
|
||||
output_file="$TEMP_DIR/Containerfile"
|
||||
if [ -t 0 ]; then
|
||||
printf '%s\n' "$1" >>"$output_file"
|
||||
else
|
||||
cat >>"$output_file"
|
||||
fi
|
||||
}
|
||||
|
||||
if ! is_command_available "$CONTAINER_BINARY"; then
|
||||
printf "${RED}Error: ${CONTAINER_BINARY} command not found. Is ${CONTAINER_BINARY} installed and in your PATH?${NC}" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [[ $container_base == *"registry.access.redhat.com/ubi9"* ]]; then
|
||||
add_to_container << EOF
|
||||
FROM $container_base
|
||||
WORKDIR /app
|
||||
|
||||
# We install the Python 3.12 dev headers and build tools so that any
|
||||
# C-extension wheels (e.g. polyleven, faiss-cpu) can compile successfully.
|
||||
|
||||
RUN dnf -y update && dnf install -y iputils git net-tools wget \
|
||||
vim-minimal python3.12 python3.12-pip python3.12-wheel \
|
||||
python3.12-setuptools python3.12-devel gcc gcc-c++ make && \
|
||||
ln -s /bin/pip3.12 /bin/pip && ln -s /bin/python3.12 /bin/python && dnf clean all
|
||||
|
||||
ENV UV_SYSTEM_PYTHON=1
|
||||
RUN pip install uv
|
||||
EOF
|
||||
else
|
||||
add_to_container << EOF
|
||||
FROM $container_base
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update && apt-get install -y \
|
||||
iputils-ping net-tools iproute2 dnsutils telnet \
|
||||
curl wget telnet git\
|
||||
procps psmisc lsof \
|
||||
traceroute \
|
||||
bubblewrap \
|
||||
gcc g++ \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
ENV UV_SYSTEM_PYTHON=1
|
||||
RUN pip install uv
|
||||
EOF
|
||||
fi
|
||||
|
||||
# Add pip dependencies first since llama-stack is what will change most often
|
||||
# so we can reuse layers.
|
||||
if [ -n "$normal_deps" ]; then
|
||||
read -ra pip_args <<< "$normal_deps"
|
||||
quoted_deps=$(printf " %q" "${pip_args[@]}")
|
||||
add_to_container << EOF
|
||||
RUN uv pip install --no-cache $quoted_deps
|
||||
EOF
|
||||
fi
|
||||
|
||||
if [ -n "$optional_deps" ]; then
|
||||
IFS='#' read -ra parts <<<"$optional_deps"
|
||||
for part in "${parts[@]}"; do
|
||||
read -ra pip_args <<< "$part"
|
||||
quoted_deps=$(printf " %q" "${pip_args[@]}")
|
||||
add_to_container <<EOF
|
||||
RUN uv pip install --no-cache $quoted_deps
|
||||
EOF
|
||||
done
|
||||
fi
|
||||
|
||||
if [ -n "$external_provider_deps" ]; then
|
||||
IFS='#' read -ra parts <<<"$external_provider_deps"
|
||||
for part in "${parts[@]}"; do
|
||||
read -ra pip_args <<< "$part"
|
||||
quoted_deps=$(printf " %q" "${pip_args[@]}")
|
||||
add_to_container <<EOF
|
||||
RUN uv pip install --no-cache $quoted_deps
|
||||
EOF
|
||||
add_to_container <<EOF
|
||||
RUN python3 - <<PYTHON | uv pip install --no-cache -r -
|
||||
import importlib
|
||||
import sys
|
||||
|
||||
try:
|
||||
package_name = '$part'.split('==')[0].split('>=')[0].split('<=')[0].split('!=')[0].split('<')[0].split('>')[0]
|
||||
module = importlib.import_module(f'{package_name}.provider')
|
||||
spec = module.get_provider_spec()
|
||||
if hasattr(spec, 'pip_packages') and spec.pip_packages:
|
||||
if isinstance(spec.pip_packages, (list, tuple)):
|
||||
print('\n'.join(spec.pip_packages))
|
||||
except Exception as e:
|
||||
print(f'Error getting provider spec for {package_name}: {e}', file=sys.stderr)
|
||||
PYTHON
|
||||
EOF
|
||||
done
|
||||
fi
|
||||
|
||||
get_python_cmd() {
|
||||
if is_command_available python; then
|
||||
echo "python"
|
||||
elif is_command_available python3; then
|
||||
echo "python3"
|
||||
else
|
||||
echo "Error: Neither python nor python3 is installed. Please install Python to continue." >&2
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
if [ -n "$run_config" ]; then
|
||||
# Copy the run config to the build context since it's an absolute path
|
||||
cp "$run_config" "$BUILD_CONTEXT_DIR/run.yaml"
|
||||
|
||||
# Parse the run.yaml configuration to identify external provider directories
|
||||
# If external providers are specified, copy their directory to the container
|
||||
# and update the configuration to reference the new container path
|
||||
python_cmd=$(get_python_cmd)
|
||||
external_providers_dir=$($python_cmd -c "import yaml; config = yaml.safe_load(open('$run_config')); print(config.get('external_providers_dir') or '')")
|
||||
external_providers_dir=$(eval echo "$external_providers_dir")
|
||||
if [ -n "$external_providers_dir" ]; then
|
||||
if [ -d "$external_providers_dir" ]; then
|
||||
echo "Copying external providers directory: $external_providers_dir"
|
||||
cp -r "$external_providers_dir" "$BUILD_CONTEXT_DIR/providers.d"
|
||||
add_to_container << EOF
|
||||
COPY providers.d /.llama/providers.d
|
||||
EOF
|
||||
fi
|
||||
|
||||
# Edit the run.yaml file to change the external_providers_dir to /.llama/providers.d
|
||||
if [ "$(uname)" = "Darwin" ]; then
|
||||
sed -i.bak -e 's|external_providers_dir:.*|external_providers_dir: /.llama/providers.d|' "$BUILD_CONTEXT_DIR/run.yaml"
|
||||
rm -f "$BUILD_CONTEXT_DIR/run.yaml.bak"
|
||||
else
|
||||
sed -i 's|external_providers_dir:.*|external_providers_dir: /.llama/providers.d|' "$BUILD_CONTEXT_DIR/run.yaml"
|
||||
fi
|
||||
fi
|
||||
|
||||
# Copy run config into docker image
|
||||
add_to_container << EOF
|
||||
COPY run.yaml $RUN_CONFIG_PATH
|
||||
EOF
|
||||
fi
|
||||
|
||||
stack_mount="/app/llama-stack-source"
|
||||
client_mount="/app/llama-stack-client-source"
|
||||
|
||||
install_local_package() {
|
||||
local dir="$1"
|
||||
local mount_point="$2"
|
||||
local name="$3"
|
||||
|
||||
if [ ! -d "$dir" ]; then
|
||||
echo "${RED}Warning: $name is set but directory does not exist: $dir${NC}" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ "$USE_COPY_NOT_MOUNT" = "true" ]; then
|
||||
add_to_container << EOF
|
||||
COPY $dir $mount_point
|
||||
EOF
|
||||
fi
|
||||
add_to_container << EOF
|
||||
RUN uv pip install --no-cache -e $mount_point
|
||||
EOF
|
||||
}
|
||||
|
||||
|
||||
if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then
|
||||
install_local_package "$LLAMA_STACK_CLIENT_DIR" "$client_mount" "LLAMA_STACK_CLIENT_DIR"
|
||||
fi
|
||||
|
||||
if [ -n "$LLAMA_STACK_DIR" ]; then
|
||||
install_local_package "$LLAMA_STACK_DIR" "$stack_mount" "LLAMA_STACK_DIR"
|
||||
else
|
||||
if [ -n "$TEST_PYPI_VERSION" ]; then
|
||||
# these packages are damaged in test-pypi, so install them first
|
||||
add_to_container << EOF
|
||||
RUN uv pip install --no-cache fastapi libcst
|
||||
EOF
|
||||
add_to_container << EOF
|
||||
RUN uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ \
|
||||
--index-strategy unsafe-best-match \
|
||||
llama-stack==$TEST_PYPI_VERSION
|
||||
|
||||
EOF
|
||||
else
|
||||
if [ -n "$PYPI_VERSION" ]; then
|
||||
SPEC_VERSION="llama-stack==${PYPI_VERSION}"
|
||||
else
|
||||
SPEC_VERSION="llama-stack"
|
||||
fi
|
||||
add_to_container << EOF
|
||||
RUN uv pip install --no-cache $SPEC_VERSION
|
||||
EOF
|
||||
fi
|
||||
fi
|
||||
|
||||
# remove uv after installation
|
||||
add_to_container << EOF
|
||||
RUN pip uninstall -y uv
|
||||
EOF
|
||||
|
||||
# If a run config is provided, we use the llama stack CLI
|
||||
if [[ -n "$run_config" ]]; then
|
||||
add_to_container << EOF
|
||||
ENTRYPOINT ["llama", "stack", "run", "$RUN_CONFIG_PATH"]
|
||||
EOF
|
||||
elif [[ "$distro_or_config" != *.yaml ]]; then
|
||||
add_to_container << EOF
|
||||
ENTRYPOINT ["llama", "stack", "run", "$distro_or_config"]
|
||||
EOF
|
||||
fi
|
||||
|
||||
# Add other require item commands genearic to all containers
|
||||
add_to_container << EOF
|
||||
|
||||
RUN mkdir -p /.llama /.cache && chmod -R g+rw /app /.llama /.cache
|
||||
EOF
|
||||
|
||||
printf "Containerfile created successfully in %s/Containerfile\n\n" "$TEMP_DIR"
|
||||
cat "$TEMP_DIR"/Containerfile
|
||||
printf "\n"
|
||||
|
||||
# Start building the CLI arguments
|
||||
CLI_ARGS=()
|
||||
|
||||
# Read CONTAINER_OPTS and put it in an array
|
||||
read -ra CLI_ARGS <<< "$CONTAINER_OPTS"
|
||||
|
||||
if [ "$USE_COPY_NOT_MOUNT" != "true" ]; then
|
||||
if [ -n "$LLAMA_STACK_DIR" ]; then
|
||||
CLI_ARGS+=("-v" "$(readlink -f "$LLAMA_STACK_DIR"):$stack_mount")
|
||||
fi
|
||||
if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then
|
||||
CLI_ARGS+=("-v" "$(readlink -f "$LLAMA_STACK_CLIENT_DIR"):$client_mount")
|
||||
fi
|
||||
fi
|
||||
|
||||
if is_command_available selinuxenabled && selinuxenabled; then
|
||||
# Disable SELinux labels -- we don't want to relabel the llama-stack source dir
|
||||
CLI_ARGS+=("--security-opt" "label=disable")
|
||||
fi
|
||||
|
||||
# Set version tag based on PyPI version
|
||||
if [ -n "$PYPI_VERSION" ]; then
|
||||
version_tag="$PYPI_VERSION"
|
||||
elif [ -n "$TEST_PYPI_VERSION" ]; then
|
||||
version_tag="test-$TEST_PYPI_VERSION"
|
||||
elif [[ -n "$LLAMA_STACK_DIR" || -n "$LLAMA_STACK_CLIENT_DIR" ]]; then
|
||||
version_tag="dev"
|
||||
else
|
||||
URL="https://pypi.org/pypi/llama-stack/json"
|
||||
version_tag=$(curl -s $URL | jq -r '.info.version')
|
||||
fi
|
||||
|
||||
# Add version tag to image name
|
||||
image_tag="$image_name:$version_tag"
|
||||
|
||||
# Detect platform architecture
|
||||
ARCH=$(uname -m)
|
||||
if [ -n "$BUILD_PLATFORM" ]; then
|
||||
CLI_ARGS+=("--platform" "$BUILD_PLATFORM")
|
||||
elif [ "$ARCH" = "arm64" ] || [ "$ARCH" = "aarch64" ]; then
|
||||
CLI_ARGS+=("--platform" "linux/arm64")
|
||||
elif [ "$ARCH" = "x86_64" ]; then
|
||||
CLI_ARGS+=("--platform" "linux/amd64")
|
||||
else
|
||||
echo "Unsupported architecture: $ARCH"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "PWD: $(pwd)"
|
||||
echo "Containerfile: $TEMP_DIR/Containerfile"
|
||||
set -x
|
||||
|
||||
$CONTAINER_BINARY build \
|
||||
"${CLI_ARGS[@]}" \
|
||||
-t "$image_tag" \
|
||||
-f "$TEMP_DIR/Containerfile" \
|
||||
"$BUILD_CONTEXT_DIR"
|
||||
|
||||
# clean up tmp/configs
|
||||
rm -rf "$BUILD_CONTEXT_DIR/run.yaml" "$TEMP_DIR"
|
||||
set +x
|
||||
|
||||
echo "Success!"
|
||||
|
|
@ -1,220 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
LLAMA_STACK_DIR=${LLAMA_STACK_DIR:-}
|
||||
LLAMA_STACK_CLIENT_DIR=${LLAMA_STACK_CLIENT_DIR:-}
|
||||
TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-}
|
||||
# This timeout (in seconds) is necessary when installing PyTorch via uv since it's likely to time out
|
||||
# Reference: https://github.com/astral-sh/uv/pull/1694
|
||||
UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT:-500}
|
||||
UV_SYSTEM_PYTHON=${UV_SYSTEM_PYTHON:-}
|
||||
VIRTUAL_ENV=${VIRTUAL_ENV:-}
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
# Define color codes
|
||||
RED='\033[0;31m'
|
||||
NC='\033[0m' # No Color
|
||||
|
||||
SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
|
||||
source "$SCRIPT_DIR/common.sh"
|
||||
|
||||
# Usage function
|
||||
usage() {
|
||||
echo "Usage: $0 --env-name <env_name> --normal-deps <pip_dependencies> [--external-provider-deps <external_provider_deps>] [--optional-deps <special_pip_deps>]"
|
||||
echo "Example: $0 --env-name mybuild --normal-deps 'numpy pandas scipy' --external-provider-deps 'foo' --optional-deps 'bar'"
|
||||
exit 1
|
||||
}
|
||||
|
||||
# Parse arguments
|
||||
env_name=""
|
||||
normal_deps=""
|
||||
external_provider_deps=""
|
||||
optional_deps=""
|
||||
|
||||
while [[ $# -gt 0 ]]; do
|
||||
key="$1"
|
||||
case "$key" in
|
||||
--env-name)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --env-name requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
env_name="$2"
|
||||
shift 2
|
||||
;;
|
||||
--normal-deps)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --normal-deps requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
normal_deps="$2"
|
||||
shift 2
|
||||
;;
|
||||
--external-provider-deps)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --external-provider-deps requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
external_provider_deps="$2"
|
||||
shift 2
|
||||
;;
|
||||
--optional-deps)
|
||||
if [[ -z "$2" || "$2" == --* ]]; then
|
||||
echo "Error: --optional-deps requires a string value" >&2
|
||||
usage
|
||||
fi
|
||||
optional_deps="$2"
|
||||
shift 2
|
||||
;;
|
||||
*)
|
||||
echo "Unknown option: $1" >&2
|
||||
usage
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
# Check required arguments
|
||||
if [[ -z "$env_name" || -z "$normal_deps" ]]; then
|
||||
echo "Error: --env-name and --normal-deps are required." >&2
|
||||
usage
|
||||
fi
|
||||
|
||||
if [ -n "$LLAMA_STACK_DIR" ]; then
|
||||
echo "Using llama-stack-dir=$LLAMA_STACK_DIR"
|
||||
fi
|
||||
if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then
|
||||
echo "Using llama-stack-client-dir=$LLAMA_STACK_CLIENT_DIR"
|
||||
fi
|
||||
|
||||
ENVNAME=""
|
||||
|
||||
# pre-run checks to make sure we can proceed with the installation
|
||||
pre_run_checks() {
|
||||
local env_name="$1"
|
||||
|
||||
if ! is_command_available uv; then
|
||||
echo "uv is not installed, trying to install it."
|
||||
if ! is_command_available pip; then
|
||||
echo "pip is not installed, cannot automatically install 'uv'."
|
||||
echo "Follow this link to install it:"
|
||||
echo "https://docs.astral.sh/uv/getting-started/installation/"
|
||||
exit 1
|
||||
else
|
||||
pip install uv
|
||||
fi
|
||||
fi
|
||||
|
||||
# checking if an environment with the same name already exists
|
||||
if [ -d "$env_name" ]; then
|
||||
echo "Environment '$env_name' already exists, re-using it."
|
||||
fi
|
||||
}
|
||||
|
||||
run() {
|
||||
# Use only global variables set by flag parser
|
||||
if [ -n "$UV_SYSTEM_PYTHON" ] || [ "$env_name" == "__system__" ]; then
|
||||
echo "Installing dependencies in system Python environment"
|
||||
export UV_SYSTEM_PYTHON=1
|
||||
elif [ "$VIRTUAL_ENV" == "$env_name" ]; then
|
||||
echo "Virtual environment $env_name is already active"
|
||||
else
|
||||
echo "Using virtual environment $env_name"
|
||||
uv venv "$env_name"
|
||||
source "$env_name/bin/activate"
|
||||
fi
|
||||
|
||||
if [ -n "$TEST_PYPI_VERSION" ]; then
|
||||
uv pip install fastapi libcst
|
||||
uv pip install --extra-index-url https://test.pypi.org/simple/ \
|
||||
--index-strategy unsafe-best-match \
|
||||
llama-stack=="$TEST_PYPI_VERSION" \
|
||||
$normal_deps
|
||||
if [ -n "$optional_deps" ]; then
|
||||
IFS='#' read -ra parts <<<"$optional_deps"
|
||||
for part in "${parts[@]}"; do
|
||||
echo "$part"
|
||||
uv pip install $part
|
||||
done
|
||||
fi
|
||||
if [ -n "$external_provider_deps" ]; then
|
||||
IFS='#' read -ra parts <<<"$external_provider_deps"
|
||||
for part in "${parts[@]}"; do
|
||||
echo "$part"
|
||||
uv pip install "$part"
|
||||
done
|
||||
fi
|
||||
else
|
||||
if [ -n "$LLAMA_STACK_DIR" ]; then
|
||||
# only warn if DIR does not start with "git+"
|
||||
if [ ! -d "$LLAMA_STACK_DIR" ] && [[ "$LLAMA_STACK_DIR" != git+* ]]; then
|
||||
printf "${RED}Warning: LLAMA_STACK_DIR is set but directory does not exist: %s${NC}\n" "$LLAMA_STACK_DIR" >&2
|
||||
exit 1
|
||||
fi
|
||||
printf "Installing from LLAMA_STACK_DIR: %s\n" "$LLAMA_STACK_DIR"
|
||||
# editable only if LLAMA_STACK_DIR does not start with "git+"
|
||||
if [[ "$LLAMA_STACK_DIR" != git+* ]]; then
|
||||
EDITABLE="-e"
|
||||
else
|
||||
EDITABLE=""
|
||||
fi
|
||||
uv pip install --no-cache-dir $EDITABLE "$LLAMA_STACK_DIR"
|
||||
else
|
||||
uv pip install --no-cache-dir llama-stack
|
||||
fi
|
||||
|
||||
if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then
|
||||
# only warn if DIR does not start with "git+"
|
||||
if [ ! -d "$LLAMA_STACK_CLIENT_DIR" ] && [[ "$LLAMA_STACK_CLIENT_DIR" != git+* ]]; then
|
||||
printf "${RED}Warning: LLAMA_STACK_CLIENT_DIR is set but directory does not exist: %s${NC}\n" "$LLAMA_STACK_CLIENT_DIR" >&2
|
||||
exit 1
|
||||
fi
|
||||
printf "Installing from LLAMA_STACK_CLIENT_DIR: %s\n" "$LLAMA_STACK_CLIENT_DIR"
|
||||
# editable only if LLAMA_STACK_CLIENT_DIR does not start with "git+"
|
||||
if [[ "$LLAMA_STACK_CLIENT_DIR" != git+* ]]; then
|
||||
EDITABLE="-e"
|
||||
else
|
||||
EDITABLE=""
|
||||
fi
|
||||
uv pip install --no-cache-dir $EDITABLE "$LLAMA_STACK_CLIENT_DIR"
|
||||
fi
|
||||
|
||||
printf "Installing pip dependencies\n"
|
||||
uv pip install $normal_deps
|
||||
if [ -n "$optional_deps" ]; then
|
||||
IFS='#' read -ra parts <<<"$optional_deps"
|
||||
for part in "${parts[@]}"; do
|
||||
echo "Installing special provider module: $part"
|
||||
uv pip install $part
|
||||
done
|
||||
fi
|
||||
if [ -n "$external_provider_deps" ]; then
|
||||
IFS='#' read -ra parts <<<"$external_provider_deps"
|
||||
for part in "${parts[@]}"; do
|
||||
echo "Installing external provider module: $part"
|
||||
uv pip install "$part"
|
||||
echo "Getting provider spec for module: $part and installing dependencies"
|
||||
package_name=$(echo "$part" | sed 's/[<>=!].*//')
|
||||
python3 -c "
|
||||
import importlib
|
||||
import sys
|
||||
try:
|
||||
module = importlib.import_module(f'$package_name.provider')
|
||||
spec = module.get_provider_spec()
|
||||
if hasattr(spec, 'pip_packages') and spec.pip_packages:
|
||||
print('\\n'.join(spec.pip_packages))
|
||||
except Exception as e:
|
||||
print(f'Error getting provider spec for $package_name: {e}', file=sys.stderr)
|
||||
" | uv pip install -r -
|
||||
done
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
pre_run_checks "$env_name"
|
||||
run
|
||||
|
|
@ -64,7 +64,7 @@ def configure_api_providers(config: StackRunConfig, build_spec: DistributionSpec
|
|||
if config.apis:
|
||||
apis_to_serve = config.apis
|
||||
else:
|
||||
apis_to_serve = [a.value for a in Api if a not in (Api.telemetry, Api.inspect, Api.providers)]
|
||||
apis_to_serve = [a.value for a in Api if a not in (Api.inspect, Api.providers)]
|
||||
|
||||
for api_str in apis_to_serve:
|
||||
api = Api(api_str)
|
||||
|
|
@ -159,6 +159,37 @@ def upgrade_from_routing_table(
|
|||
config_dict["apis"] = config_dict["apis_to_serve"]
|
||||
config_dict.pop("apis_to_serve", None)
|
||||
|
||||
# Add default storage config if not present
|
||||
if "storage" not in config_dict:
|
||||
config_dict["storage"] = {
|
||||
"backends": {
|
||||
"kv_default": {
|
||||
"type": "kv_sqlite",
|
||||
"db_path": "~/.llama/kvstore.db",
|
||||
},
|
||||
"sql_default": {
|
||||
"type": "sql_sqlite",
|
||||
"db_path": "~/.llama/sql_store.db",
|
||||
},
|
||||
},
|
||||
"stores": {
|
||||
"metadata": {
|
||||
"namespace": "registry",
|
||||
"backend": "kv_default",
|
||||
},
|
||||
"inference": {
|
||||
"table_name": "inference_store",
|
||||
"backend": "sql_default",
|
||||
"max_write_queue_size": 10000,
|
||||
"num_writers": 4,
|
||||
},
|
||||
"conversations": {
|
||||
"table_name": "openai_conversations",
|
||||
"backend": "sql_default",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
return config_dict
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -4,12 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import secrets
|
||||
import time
|
||||
from typing import Any
|
||||
from typing import Any, Literal
|
||||
|
||||
from openai import NOT_GIVEN
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
|
||||
from llama_stack.apis.conversations.conversations import (
|
||||
|
|
@ -17,20 +15,16 @@ from llama_stack.apis.conversations.conversations import (
|
|||
ConversationDeletedResource,
|
||||
ConversationItem,
|
||||
ConversationItemDeletedResource,
|
||||
ConversationItemInclude,
|
||||
ConversationItemList,
|
||||
Conversations,
|
||||
Metadata,
|
||||
)
|
||||
from llama_stack.core.datatypes import AccessRule
|
||||
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
|
||||
from llama_stack.core.datatypes import AccessRule, StackRunConfig
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
|
||||
from llama_stack.providers.utils.sqlstore.authorized_sqlstore import AuthorizedSqlStore
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import (
|
||||
SqliteSqlStoreConfig,
|
||||
SqlStoreConfig,
|
||||
sqlstore_impl,
|
||||
)
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import sqlstore_impl
|
||||
|
||||
logger = get_logger(name=__name__, category="openai_conversations")
|
||||
|
||||
|
|
@ -38,13 +32,11 @@ logger = get_logger(name=__name__, category="openai_conversations")
|
|||
class ConversationServiceConfig(BaseModel):
|
||||
"""Configuration for the built-in conversation service.
|
||||
|
||||
:param conversations_store: SQL store configuration for conversations (defaults to SQLite)
|
||||
:param run_config: Stack run configuration for resolving persistence
|
||||
:param policy: Access control rules
|
||||
"""
|
||||
|
||||
conversations_store: SqlStoreConfig = SqliteSqlStoreConfig(
|
||||
db_path=(DISTRIBS_BASE_DIR / "conversations.db").as_posix()
|
||||
)
|
||||
run_config: StackRunConfig
|
||||
policy: list[AccessRule] = []
|
||||
|
||||
|
||||
|
|
@ -63,14 +55,16 @@ class ConversationServiceImpl(Conversations):
|
|||
self.deps = deps
|
||||
self.policy = config.policy
|
||||
|
||||
base_sql_store = sqlstore_impl(config.conversations_store)
|
||||
# Use conversations store reference from run config
|
||||
conversations_ref = config.run_config.storage.stores.conversations
|
||||
if not conversations_ref:
|
||||
raise ValueError("storage.stores.conversations must be configured in run config")
|
||||
|
||||
base_sql_store = sqlstore_impl(conversations_ref)
|
||||
self.sql_store = AuthorizedSqlStore(base_sql_store, self.policy)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
"""Initialize the store and create tables."""
|
||||
if isinstance(self.config.conversations_store, SqliteSqlStoreConfig):
|
||||
os.makedirs(os.path.dirname(self.config.conversations_store.db_path), exist_ok=True)
|
||||
|
||||
await self.sql_store.create_table(
|
||||
"openai_conversations",
|
||||
{
|
||||
|
|
@ -135,7 +129,7 @@ class ConversationServiceImpl(Conversations):
|
|||
object="conversation",
|
||||
)
|
||||
|
||||
logger.info(f"Created conversation {conversation_id}")
|
||||
logger.debug(f"Created conversation {conversation_id}")
|
||||
return conversation
|
||||
|
||||
async def get_conversation(self, conversation_id: str) -> Conversation:
|
||||
|
|
@ -161,7 +155,7 @@ class ConversationServiceImpl(Conversations):
|
|||
"""Delete a conversation with the given ID."""
|
||||
await self.sql_store.delete(table="openai_conversations", where={"id": conversation_id})
|
||||
|
||||
logger.info(f"Deleted conversation {conversation_id}")
|
||||
logger.debug(f"Deleted conversation {conversation_id}")
|
||||
return ConversationDeletedResource(id=conversation_id)
|
||||
|
||||
def _validate_conversation_id(self, conversation_id: str) -> None:
|
||||
|
|
@ -193,12 +187,15 @@ class ConversationServiceImpl(Conversations):
|
|||
await self._get_validated_conversation(conversation_id)
|
||||
|
||||
created_items = []
|
||||
created_at = int(time.time())
|
||||
base_time = int(time.time())
|
||||
|
||||
for item in items:
|
||||
for i, item in enumerate(items):
|
||||
item_dict = item.model_dump()
|
||||
item_id = self._get_or_generate_item_id(item, item_dict)
|
||||
|
||||
# make each timestamp unique to maintain order
|
||||
created_at = base_time + i
|
||||
|
||||
item_record = {
|
||||
"id": item_id,
|
||||
"conversation_id": conversation_id,
|
||||
|
|
@ -219,7 +216,7 @@ class ConversationServiceImpl(Conversations):
|
|||
|
||||
created_items.append(item_dict)
|
||||
|
||||
logger.info(f"Created {len(created_items)} items in conversation {conversation_id}")
|
||||
logger.debug(f"Created {len(created_items)} items in conversation {conversation_id}")
|
||||
|
||||
# Convert created items (dicts) to proper ConversationItem types
|
||||
adapter: TypeAdapter[ConversationItem] = TypeAdapter(ConversationItem)
|
||||
|
|
@ -250,19 +247,30 @@ class ConversationServiceImpl(Conversations):
|
|||
adapter: TypeAdapter[ConversationItem] = TypeAdapter(ConversationItem)
|
||||
return adapter.validate_python(record["item_data"])
|
||||
|
||||
async def list(self, conversation_id: str, after=NOT_GIVEN, include=NOT_GIVEN, limit=NOT_GIVEN, order=NOT_GIVEN):
|
||||
async def list_items(
|
||||
self,
|
||||
conversation_id: str,
|
||||
after: str | None = None,
|
||||
include: list[ConversationItemInclude] | None = None,
|
||||
limit: int | None = None,
|
||||
order: Literal["asc", "desc"] | None = None,
|
||||
) -> ConversationItemList:
|
||||
"""List items in the conversation."""
|
||||
if not conversation_id:
|
||||
raise ValueError(f"Expected a non-empty value for `conversation_id` but received {conversation_id!r}")
|
||||
|
||||
# check if conversation exists
|
||||
await self.get_conversation(conversation_id)
|
||||
|
||||
result = await self.sql_store.fetch_all(table="conversation_items", where={"conversation_id": conversation_id})
|
||||
records = result.data
|
||||
|
||||
if order != NOT_GIVEN and order == "asc":
|
||||
if order is not None and order == "asc":
|
||||
records.sort(key=lambda x: x["created_at"])
|
||||
else:
|
||||
records.sort(key=lambda x: x["created_at"], reverse=True)
|
||||
|
||||
actual_limit = 20
|
||||
if limit != NOT_GIVEN and isinstance(limit, int):
|
||||
actual_limit = limit
|
||||
actual_limit = limit or 20
|
||||
|
||||
records = records[:actual_limit]
|
||||
items = [record["item_data"] for record in records]
|
||||
|
|
@ -302,5 +310,5 @@ class ConversationServiceImpl(Conversations):
|
|||
table="conversation_items", where={"id": item_id, "conversation_id": conversation_id}
|
||||
)
|
||||
|
||||
logger.info(f"Deleted item {item_id} from conversation {conversation_id}")
|
||||
logger.debug(f"Deleted item {item_id} from conversation {conversation_id}")
|
||||
return ConversationItemDeletedResource(id=item_id)
|
||||
|
|
|
|||
|
|
@ -23,12 +23,16 @@ from llama_stack.apis.scoring import Scoring
|
|||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnInput
|
||||
from llama_stack.apis.shields import Shield, ShieldInput
|
||||
from llama_stack.apis.tools import ToolGroup, ToolGroupInput, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.apis.vector_stores import VectorStore, VectorStoreInput
|
||||
from llama_stack.core.access_control.datatypes import AccessRule
|
||||
from llama_stack.core.storage.datatypes import (
|
||||
KVStoreReference,
|
||||
StorageBackendType,
|
||||
StorageConfig,
|
||||
)
|
||||
from llama_stack.log import LoggingConfig
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStoreConfig
|
||||
|
||||
LLAMA_STACK_BUILD_CONFIG_VERSION = 2
|
||||
LLAMA_STACK_RUN_CONFIG_VERSION = 2
|
||||
|
|
@ -68,7 +72,7 @@ class ShieldWithOwner(Shield, ResourceWithOwner):
|
|||
pass
|
||||
|
||||
|
||||
class VectorDBWithOwner(VectorDB, ResourceWithOwner):
|
||||
class VectorStoreWithOwner(VectorStore, ResourceWithOwner):
|
||||
pass
|
||||
|
||||
|
||||
|
|
@ -88,12 +92,12 @@ class ToolGroupWithOwner(ToolGroup, ResourceWithOwner):
|
|||
pass
|
||||
|
||||
|
||||
RoutableObject = Model | Shield | VectorDB | Dataset | ScoringFn | Benchmark | ToolGroup
|
||||
RoutableObject = Model | Shield | VectorStore | Dataset | ScoringFn | Benchmark | ToolGroup
|
||||
|
||||
RoutableObjectWithProvider = Annotated[
|
||||
ModelWithOwner
|
||||
| ShieldWithOwner
|
||||
| VectorDBWithOwner
|
||||
| VectorStoreWithOwner
|
||||
| DatasetWithOwner
|
||||
| ScoringFnWithOwner
|
||||
| BenchmarkWithOwner
|
||||
|
|
@ -176,12 +180,20 @@ class DistributionSpec(BaseModel):
|
|||
)
|
||||
|
||||
|
||||
class LoggingConfig(BaseModel):
|
||||
category_levels: dict[str, str] = Field(
|
||||
default_factory=dict,
|
||||
description="""
|
||||
Dictionary of different logging configurations for different portions (ex: core, server) of llama stack""",
|
||||
)
|
||||
class TelemetryConfig(BaseModel):
|
||||
"""
|
||||
Configuration for telemetry.
|
||||
|
||||
Llama Stack uses OpenTelemetry for telemetry. Please refer to https://opentelemetry.io/docs/languages/sdk-configuration/
|
||||
for env variables to configure the OpenTelemetry SDK.
|
||||
|
||||
Example:
|
||||
```bash
|
||||
OTEL_SERVICE_NAME=llama-stack OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:4318 uv run llama stack run starter
|
||||
```
|
||||
"""
|
||||
|
||||
enabled: bool = Field(default=False, description="enable or disable telemetry")
|
||||
|
||||
|
||||
class OAuth2JWKSConfig(BaseModel):
|
||||
|
|
@ -335,12 +347,41 @@ class AuthenticationRequiredError(Exception):
|
|||
pass
|
||||
|
||||
|
||||
class QualifiedModel(BaseModel):
|
||||
"""A qualified model identifier, consisting of a provider ID and a model ID."""
|
||||
|
||||
provider_id: str
|
||||
model_id: str
|
||||
|
||||
|
||||
class VectorStoresConfig(BaseModel):
|
||||
"""Configuration for vector stores in the stack."""
|
||||
|
||||
default_provider_id: str | None = Field(
|
||||
default=None,
|
||||
description="ID of the vector_io provider to use as default when multiple providers are available and none is specified.",
|
||||
)
|
||||
default_embedding_model: QualifiedModel | None = Field(
|
||||
default=None,
|
||||
description="Default embedding model configuration for vector stores.",
|
||||
)
|
||||
|
||||
|
||||
class SafetyConfig(BaseModel):
|
||||
"""Configuration for default moderations model."""
|
||||
|
||||
default_shield_id: str | None = Field(
|
||||
default=None,
|
||||
description="ID of the shield to use for when `model` is not specified in the `moderations` API request.",
|
||||
)
|
||||
|
||||
|
||||
class QuotaPeriod(StrEnum):
|
||||
DAY = "day"
|
||||
|
||||
|
||||
class QuotaConfig(BaseModel):
|
||||
kvstore: SqliteKVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
|
||||
kvstore: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)")
|
||||
anonymous_max_requests: int = Field(default=100, description="Max requests for unauthenticated clients per period")
|
||||
authenticated_max_requests: int = Field(
|
||||
default=1000, description="Max requests for authenticated clients per period"
|
||||
|
|
@ -383,6 +424,18 @@ def process_cors_config(cors_config: bool | CORSConfig | None) -> CORSConfig | N
|
|||
raise ValueError(f"Expected bool or CORSConfig, got {type(cors_config).__name__}")
|
||||
|
||||
|
||||
class RegisteredResources(BaseModel):
|
||||
"""Registry of resources available in the distribution."""
|
||||
|
||||
models: list[ModelInput] = Field(default_factory=list)
|
||||
shields: list[ShieldInput] = Field(default_factory=list)
|
||||
vector_stores: list[VectorStoreInput] = Field(default_factory=list)
|
||||
datasets: list[DatasetInput] = Field(default_factory=list)
|
||||
scoring_fns: list[ScoringFnInput] = Field(default_factory=list)
|
||||
benchmarks: list[BenchmarkInput] = Field(default_factory=list)
|
||||
tool_groups: list[ToolGroupInput] = Field(default_factory=list)
|
||||
|
||||
|
||||
class ServerConfig(BaseModel):
|
||||
port: int = Field(
|
||||
default=8321,
|
||||
|
|
@ -422,18 +475,6 @@ class ServerConfig(BaseModel):
|
|||
)
|
||||
|
||||
|
||||
class InferenceStoreConfig(BaseModel):
|
||||
sql_store_config: SqlStoreConfig
|
||||
max_write_queue_size: int = Field(default=10000, description="Max queued writes for inference store")
|
||||
num_writers: int = Field(default=4, description="Number of concurrent background writers")
|
||||
|
||||
|
||||
class ResponsesStoreConfig(BaseModel):
|
||||
sql_store_config: SqlStoreConfig
|
||||
max_write_queue_size: int = Field(default=10000, description="Max queued writes for responses store")
|
||||
num_writers: int = Field(default=4, description="Number of concurrent background writers")
|
||||
|
||||
|
||||
class StackRunConfig(BaseModel):
|
||||
version: int = LLAMA_STACK_RUN_CONFIG_VERSION
|
||||
|
||||
|
|
@ -460,39 +501,19 @@ One or more providers to use for each API. The same provider_type (e.g., meta-re
|
|||
can be instantiated multiple times (with different configs) if necessary.
|
||||
""",
|
||||
)
|
||||
metadata_store: KVStoreConfig | None = Field(
|
||||
default=None,
|
||||
description="""
|
||||
Configuration for the persistence store used by the distribution registry. If not specified,
|
||||
a default SQLite store will be used.""",
|
||||
storage: StorageConfig = Field(
|
||||
description="Catalog of named storage backends and references available to the stack",
|
||||
)
|
||||
|
||||
inference_store: InferenceStoreConfig | SqlStoreConfig | None = Field(
|
||||
default=None,
|
||||
description="""
|
||||
Configuration for the persistence store used by the inference API. Can be either a
|
||||
InferenceStoreConfig (with queue tuning parameters) or a SqlStoreConfig (deprecated).
|
||||
If not specified, a default SQLite store will be used.""",
|
||||
registered_resources: RegisteredResources = Field(
|
||||
default_factory=RegisteredResources,
|
||||
description="Registry of resources available in the distribution",
|
||||
)
|
||||
|
||||
conversations_store: SqlStoreConfig | None = Field(
|
||||
default=None,
|
||||
description="""
|
||||
Configuration for the persistence store used by the conversations API.
|
||||
If not specified, a default SQLite store will be used.""",
|
||||
)
|
||||
|
||||
# registry of "resources" in the distribution
|
||||
models: list[ModelInput] = Field(default_factory=list)
|
||||
shields: list[ShieldInput] = Field(default_factory=list)
|
||||
vector_dbs: list[VectorDBInput] = Field(default_factory=list)
|
||||
datasets: list[DatasetInput] = Field(default_factory=list)
|
||||
scoring_fns: list[ScoringFnInput] = Field(default_factory=list)
|
||||
benchmarks: list[BenchmarkInput] = Field(default_factory=list)
|
||||
tool_groups: list[ToolGroupInput] = Field(default_factory=list)
|
||||
|
||||
logging: LoggingConfig | None = Field(default=None, description="Configuration for Llama Stack Logging")
|
||||
|
||||
telemetry: TelemetryConfig = Field(default_factory=TelemetryConfig, description="Configuration for telemetry")
|
||||
|
||||
server: ServerConfig = Field(
|
||||
default_factory=ServerConfig,
|
||||
description="Configuration for the HTTP(S) server",
|
||||
|
|
@ -508,6 +529,16 @@ If not specified, a default SQLite store will be used.""",
|
|||
description="Path to directory containing external API implementations. The APIs code and dependencies must be installed on the system.",
|
||||
)
|
||||
|
||||
vector_stores: VectorStoresConfig | None = Field(
|
||||
default=None,
|
||||
description="Configuration for vector stores, including default embedding model",
|
||||
)
|
||||
|
||||
safety: SafetyConfig | None = Field(
|
||||
default=None,
|
||||
description="Configuration for default moderations model",
|
||||
)
|
||||
|
||||
@field_validator("external_providers_dir")
|
||||
@classmethod
|
||||
def validate_external_providers_dir(cls, v):
|
||||
|
|
@ -517,6 +548,50 @@ If not specified, a default SQLite store will be used.""",
|
|||
return Path(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_server_stores(self) -> "StackRunConfig":
|
||||
backend_map = self.storage.backends
|
||||
stores = self.storage.stores
|
||||
kv_backends = {
|
||||
name
|
||||
for name, cfg in backend_map.items()
|
||||
if cfg.type
|
||||
in {
|
||||
StorageBackendType.KV_REDIS,
|
||||
StorageBackendType.KV_SQLITE,
|
||||
StorageBackendType.KV_POSTGRES,
|
||||
StorageBackendType.KV_MONGODB,
|
||||
}
|
||||
}
|
||||
sql_backends = {
|
||||
name
|
||||
for name, cfg in backend_map.items()
|
||||
if cfg.type in {StorageBackendType.SQL_SQLITE, StorageBackendType.SQL_POSTGRES}
|
||||
}
|
||||
|
||||
def _ensure_backend(reference, expected_set, store_name: str) -> None:
|
||||
if reference is None:
|
||||
return
|
||||
backend_name = reference.backend
|
||||
if backend_name not in backend_map:
|
||||
raise ValueError(
|
||||
f"{store_name} references unknown backend '{backend_name}'. "
|
||||
f"Available backends: {sorted(backend_map)}"
|
||||
)
|
||||
if backend_name not in expected_set:
|
||||
raise ValueError(
|
||||
f"{store_name} references backend '{backend_name}' of type "
|
||||
f"'{backend_map[backend_name].type.value}', but a backend of type "
|
||||
f"{'kv_*' if expected_set is kv_backends else 'sql_*'} is required."
|
||||
)
|
||||
|
||||
_ensure_backend(stores.metadata, kv_backends, "storage.stores.metadata")
|
||||
_ensure_backend(stores.inference, sql_backends, "storage.stores.inference")
|
||||
_ensure_backend(stores.conversations, sql_backends, "storage.stores.conversations")
|
||||
_ensure_backend(stores.responses, sql_backends, "storage.stores.responses")
|
||||
_ensure_backend(stores.prompts, kv_backends, "storage.stores.prompts")
|
||||
return self
|
||||
|
||||
|
||||
class BuildConfig(BaseModel):
|
||||
version: int = LLAMA_STACK_BUILD_CONFIG_VERSION
|
||||
|
|
|
|||
|
|
@ -47,10 +47,6 @@ def builtin_automatically_routed_apis() -> list[AutoRoutedApiInfo]:
|
|||
routing_table_api=Api.shields,
|
||||
router_api=Api.safety,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.vector_dbs,
|
||||
router_api=Api.vector_io,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.datasets,
|
||||
router_api=Api.datasetio,
|
||||
|
|
@ -67,6 +63,10 @@ def builtin_automatically_routed_apis() -> list[AutoRoutedApiInfo]:
|
|||
routing_table_api=Api.tool_groups,
|
||||
router_api=Api.tool_runtime,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.vector_stores,
|
||||
router_api=Api.vector_io,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
|
|
|
|||
42
llama_stack/core/id_generation.py
Normal file
42
llama_stack/core/id_generation.py
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import Callable
|
||||
|
||||
IdFactory = Callable[[], str]
|
||||
IdOverride = Callable[[str, IdFactory], str]
|
||||
|
||||
_id_override: IdOverride | None = None
|
||||
|
||||
|
||||
def generate_object_id(kind: str, factory: IdFactory) -> str:
|
||||
"""Generate an identifier for the given kind using the provided factory.
|
||||
|
||||
Allows tests to override ID generation deterministically by installing an
|
||||
override callback via :func:`set_id_override`.
|
||||
"""
|
||||
|
||||
override = _id_override
|
||||
if override is not None:
|
||||
return override(kind, factory)
|
||||
return factory()
|
||||
|
||||
|
||||
def set_id_override(override: IdOverride) -> IdOverride | None:
|
||||
"""Install an override used to generate deterministic identifiers."""
|
||||
|
||||
global _id_override
|
||||
|
||||
previous = _id_override
|
||||
_id_override = override
|
||||
return previous
|
||||
|
||||
|
||||
def reset_id_override(previous: IdOverride | None) -> None:
|
||||
"""Restore the previous override returned by :func:`set_id_override`."""
|
||||
|
||||
global _id_override
|
||||
_id_override = previous
|
||||
|
|
@ -32,7 +32,7 @@ from termcolor import cprint
|
|||
|
||||
from llama_stack.core.build import print_pip_install_help
|
||||
from llama_stack.core.configure import parse_and_maybe_upgrade_config
|
||||
from llama_stack.core.datatypes import Api, BuildConfig, BuildProvider, DistributionSpec
|
||||
from llama_stack.core.datatypes import BuildConfig, BuildProvider, DistributionSpec
|
||||
from llama_stack.core.request_headers import (
|
||||
PROVIDER_DATA_VAR,
|
||||
request_provider_data_context,
|
||||
|
|
@ -44,16 +44,13 @@ from llama_stack.core.stack import (
|
|||
get_stack_run_config_from_distro,
|
||||
replace_env_vars,
|
||||
)
|
||||
from llama_stack.core.telemetry import Telemetry
|
||||
from llama_stack.core.telemetry.tracing import CURRENT_TRACE_CONTEXT, end_trace, setup_logger, start_trace
|
||||
from llama_stack.core.utils.config import redact_sensitive_fields
|
||||
from llama_stack.core.utils.context import preserve_contexts_async_generator
|
||||
from llama_stack.core.utils.exec import in_notebook
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.telemetry.tracing import (
|
||||
CURRENT_TRACE_CONTEXT,
|
||||
end_trace,
|
||||
setup_logger,
|
||||
start_trace,
|
||||
)
|
||||
from llama_stack.log import get_logger, setup_logging
|
||||
from llama_stack.strong_typing.inspection import is_unwrapped_body_param
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
|
||||
|
|
@ -204,10 +201,14 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
skip_logger_removal: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
# Initialize logging from environment variables first
|
||||
setup_logging()
|
||||
|
||||
# when using the library client, we should not log to console since many
|
||||
# of our logs are intended for server-side usage
|
||||
current_sinks = os.environ.get("TELEMETRY_SINKS", "sqlite").split(",")
|
||||
os.environ["TELEMETRY_SINKS"] = ",".join(sink for sink in current_sinks if sink != "console")
|
||||
if sinks_from_env := os.environ.get("TELEMETRY_SINKS", None):
|
||||
current_sinks = sinks_from_env.strip().lower().split(",")
|
||||
os.environ["TELEMETRY_SINKS"] = ",".join(sink for sink in current_sinks if sink != "console")
|
||||
|
||||
if in_notebook():
|
||||
import nest_asyncio
|
||||
|
|
@ -281,7 +282,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
else:
|
||||
prefix = "!" if in_notebook() else ""
|
||||
cprint(
|
||||
f"Please run:\n\n{prefix}llama stack build --distro {self.config_path_or_distro_name} --image-type venv\n\n",
|
||||
f"Please run:\n\n{prefix}llama stack list-deps {self.config_path_or_distro_name} | xargs -L1 uv pip install\n\n",
|
||||
"yellow",
|
||||
file=sys.stderr,
|
||||
)
|
||||
|
|
@ -293,8 +294,8 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
raise _e
|
||||
|
||||
assert self.impls is not None
|
||||
if Api.telemetry in self.impls:
|
||||
setup_logger(self.impls[Api.telemetry])
|
||||
if self.config.telemetry.enabled:
|
||||
setup_logger(Telemetry())
|
||||
|
||||
if not os.environ.get("PYTEST_CURRENT_TEST"):
|
||||
console = Console()
|
||||
|
|
@ -383,7 +384,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
|
||||
body, field_names = self._handle_file_uploads(options, body)
|
||||
|
||||
body = self._convert_body(path, options.method, body, exclude_params=set(field_names))
|
||||
body = self._convert_body(matched_func, body, exclude_params=set(field_names))
|
||||
|
||||
trace_path = webmethod.descriptive_name or route_path
|
||||
await start_trace(trace_path, {"__location__": "library_client"})
|
||||
|
|
@ -446,7 +447,8 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
func, path_params, route_path, webmethod = find_matching_route(options.method, path, self.route_impls)
|
||||
body |= path_params
|
||||
|
||||
body = self._convert_body(path, options.method, body)
|
||||
# Prepare body for the function call (handles both Pydantic and traditional params)
|
||||
body = self._convert_body(func, body)
|
||||
|
||||
trace_path = webmethod.descriptive_name or route_path
|
||||
await start_trace(trace_path, {"__location__": "library_client"})
|
||||
|
|
@ -493,21 +495,31 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
)
|
||||
return await response.parse()
|
||||
|
||||
def _convert_body(
|
||||
self, path: str, method: str, body: dict | None = None, exclude_params: set[str] | None = None
|
||||
) -> dict:
|
||||
if not body:
|
||||
return {}
|
||||
|
||||
assert self.route_impls is not None # Should be guaranteed by request() method, assertion for mypy
|
||||
def _convert_body(self, func: Any, body: dict | None = None, exclude_params: set[str] | None = None) -> dict:
|
||||
body = body or {}
|
||||
exclude_params = exclude_params or set()
|
||||
|
||||
func, _, _, _ = find_matching_route(method, path, self.route_impls)
|
||||
sig = inspect.signature(func)
|
||||
params_list = [p for p in sig.parameters.values() if p.name != "self"]
|
||||
|
||||
# Flatten if there's a single unwrapped body parameter (BaseModel or Annotated[BaseModel, Body(embed=False)])
|
||||
if len(params_list) == 1:
|
||||
param = params_list[0]
|
||||
param_type = param.annotation
|
||||
if is_unwrapped_body_param(param_type):
|
||||
base_type = get_args(param_type)[0]
|
||||
return {param.name: base_type(**body)}
|
||||
|
||||
# Strip NOT_GIVENs to use the defaults in signature
|
||||
body = {k: v for k, v in body.items() if v is not NOT_GIVEN}
|
||||
|
||||
# Check if there's an unwrapped body parameter among multiple parameters
|
||||
# (e.g., path param + body param like: vector_store_id: str, params: Annotated[Model, Body(...)])
|
||||
unwrapped_body_param = None
|
||||
for param in params_list:
|
||||
if is_unwrapped_body_param(param.annotation):
|
||||
unwrapped_body_param = param
|
||||
break
|
||||
|
||||
# Convert parameters to Pydantic models where needed
|
||||
converted_body = {}
|
||||
for param_name, param in sig.parameters.items():
|
||||
|
|
@ -518,4 +530,11 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
else:
|
||||
converted_body[param_name] = convert_to_pydantic(param.annotation, value)
|
||||
|
||||
# handle unwrapped body parameter after processing all named parameters
|
||||
if unwrapped_body_param:
|
||||
base_type = get_args(unwrapped_body_param.annotation)[0]
|
||||
# extract only keys not already used by other params
|
||||
remaining_keys = {k: v for k, v in body.items() if k not in converted_body}
|
||||
converted_body[unwrapped_body_param.name] = base_type(**remaining_keys)
|
||||
|
||||
return converted_body
|
||||
|
|
|
|||
|
|
@ -11,9 +11,7 @@ from pydantic import BaseModel
|
|||
|
||||
from llama_stack.apis.prompts import ListPromptsResponse, Prompt, Prompts
|
||||
from llama_stack.core.datatypes import StackRunConfig
|
||||
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
|
||||
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
|
||||
class PromptServiceConfig(BaseModel):
|
||||
|
|
@ -41,10 +39,11 @@ class PromptServiceImpl(Prompts):
|
|||
self.kvstore: KVStore
|
||||
|
||||
async def initialize(self) -> None:
|
||||
kvstore_config = SqliteKVStoreConfig(
|
||||
db_path=(DISTRIBS_BASE_DIR / self.config.run_config.image_name / "prompts.db").as_posix()
|
||||
)
|
||||
self.kvstore = await kvstore_impl(kvstore_config)
|
||||
# Use prompts store reference from run config
|
||||
prompts_ref = self.config.run_config.storage.stores.prompts
|
||||
if not prompts_ref:
|
||||
raise ValueError("storage.stores.prompts must be configured in run config")
|
||||
self.kvstore = await kvstore_impl(prompts_ref)
|
||||
|
||||
def _get_default_key(self, prompt_id: str) -> str:
|
||||
"""Get the KVStore key that stores the default version number."""
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import importlib
|
||||
import importlib.metadata
|
||||
import inspect
|
||||
from typing import Any
|
||||
|
||||
|
|
@ -26,10 +27,9 @@ from llama_stack.apis.safety import Safety
|
|||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
from llama_stack.apis.shields import Shields
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDBs
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.core.client import get_client_impl
|
||||
from llama_stack.core.datatypes import (
|
||||
|
|
@ -55,7 +55,6 @@ from llama_stack.providers.datatypes import (
|
|||
ScoringFunctionsProtocolPrivate,
|
||||
ShieldsProtocolPrivate,
|
||||
ToolGroupsProtocolPrivate,
|
||||
VectorDBsProtocolPrivate,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
|
|
@ -81,11 +80,10 @@ def api_protocol_map(external_apis: dict[Api, ExternalApiSpec] | None = None) ->
|
|||
Api.inspect: Inspect,
|
||||
Api.batches: Batches,
|
||||
Api.vector_io: VectorIO,
|
||||
Api.vector_dbs: VectorDBs,
|
||||
Api.vector_stores: VectorStore,
|
||||
Api.models: Models,
|
||||
Api.safety: Safety,
|
||||
Api.shields: Shields,
|
||||
Api.telemetry: Telemetry,
|
||||
Api.datasetio: DatasetIO,
|
||||
Api.datasets: Datasets,
|
||||
Api.scoring: Scoring,
|
||||
|
|
@ -125,7 +123,6 @@ def additional_protocols_map() -> dict[Api, Any]:
|
|||
return {
|
||||
Api.inference: (ModelsProtocolPrivate, Models, Api.models),
|
||||
Api.tool_groups: (ToolGroupsProtocolPrivate, ToolGroups, Api.tool_groups),
|
||||
Api.vector_io: (VectorDBsProtocolPrivate, VectorDBs, Api.vector_dbs),
|
||||
Api.safety: (ShieldsProtocolPrivate, Shields, Api.shields),
|
||||
Api.datasetio: (DatasetsProtocolPrivate, Datasets, Api.datasets),
|
||||
Api.scoring: (
|
||||
|
|
@ -150,6 +147,7 @@ async def resolve_impls(
|
|||
provider_registry: ProviderRegistry,
|
||||
dist_registry: DistributionRegistry,
|
||||
policy: list[AccessRule],
|
||||
internal_impls: dict[Api, Any] | None = None,
|
||||
) -> dict[Api, Any]:
|
||||
"""
|
||||
Resolves provider implementations by:
|
||||
|
|
@ -172,7 +170,7 @@ async def resolve_impls(
|
|||
|
||||
sorted_providers = sort_providers_by_deps(providers_with_specs, run_config)
|
||||
|
||||
return await instantiate_providers(sorted_providers, router_apis, dist_registry, run_config, policy)
|
||||
return await instantiate_providers(sorted_providers, router_apis, dist_registry, run_config, policy, internal_impls)
|
||||
|
||||
|
||||
def specs_for_autorouted_apis(apis_to_serve: list[str] | set[str]) -> dict[str, dict[str, ProviderWithSpec]]:
|
||||
|
|
@ -207,9 +205,7 @@ def specs_for_autorouted_apis(apis_to_serve: list[str] | set[str]) -> dict[str,
|
|||
module="llama_stack.core.routers",
|
||||
routing_table_api=info.routing_table_api,
|
||||
api_dependencies=[info.routing_table_api],
|
||||
# Add telemetry as an optional dependency to all auto-routed providers
|
||||
optional_api_dependencies=[Api.telemetry],
|
||||
deps__=([info.routing_table_api.value, Api.telemetry.value]),
|
||||
deps__=([info.routing_table_api.value]),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
|
@ -280,9 +276,10 @@ async def instantiate_providers(
|
|||
dist_registry: DistributionRegistry,
|
||||
run_config: StackRunConfig,
|
||||
policy: list[AccessRule],
|
||||
internal_impls: dict[Api, Any] | None = None,
|
||||
) -> dict[Api, Any]:
|
||||
"""Instantiates providers asynchronously while managing dependencies."""
|
||||
impls: dict[Api, Any] = {}
|
||||
impls: dict[Api, Any] = internal_impls.copy() if internal_impls else {}
|
||||
inner_impls_by_provider_id: dict[str, dict[str, Any]] = {f"inner-{x.value}": {} for x in router_apis}
|
||||
for api_str, provider in sorted_providers:
|
||||
# Skip providers that are not enabled
|
||||
|
|
@ -391,6 +388,8 @@ async def instantiate_provider(
|
|||
args = [config, deps]
|
||||
if "policy" in inspect.signature(getattr(module, method)).parameters:
|
||||
args.append(policy)
|
||||
if "telemetry_enabled" in inspect.signature(getattr(module, method)).parameters and run_config.telemetry:
|
||||
args.append(run_config.telemetry.enabled)
|
||||
|
||||
fn = getattr(module, method)
|
||||
impl = await fn(*args)
|
||||
|
|
|
|||
|
|
@ -6,7 +6,10 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.core.datatypes import AccessRule, RoutedProtocol
|
||||
from llama_stack.core.datatypes import (
|
||||
AccessRule,
|
||||
RoutedProtocol,
|
||||
)
|
||||
from llama_stack.core.stack import StackRunConfig
|
||||
from llama_stack.core.store import DistributionRegistry
|
||||
from llama_stack.providers.datatypes import Api, RoutingTable
|
||||
|
|
@ -26,16 +29,16 @@ async def get_routing_table_impl(
|
|||
from ..routing_tables.scoring_functions import ScoringFunctionsRoutingTable
|
||||
from ..routing_tables.shields import ShieldsRoutingTable
|
||||
from ..routing_tables.toolgroups import ToolGroupsRoutingTable
|
||||
from ..routing_tables.vector_dbs import VectorDBsRoutingTable
|
||||
from ..routing_tables.vector_stores import VectorStoresRoutingTable
|
||||
|
||||
api_to_tables = {
|
||||
"vector_dbs": VectorDBsRoutingTable,
|
||||
"models": ModelsRoutingTable,
|
||||
"shields": ShieldsRoutingTable,
|
||||
"datasets": DatasetsRoutingTable,
|
||||
"scoring_functions": ScoringFunctionsRoutingTable,
|
||||
"benchmarks": BenchmarksRoutingTable,
|
||||
"tool_groups": ToolGroupsRoutingTable,
|
||||
"vector_stores": VectorStoresRoutingTable,
|
||||
}
|
||||
|
||||
if api.value not in api_to_tables:
|
||||
|
|
@ -65,25 +68,28 @@ async def get_auto_router_impl(
|
|||
"eval": EvalRouter,
|
||||
"tool_runtime": ToolRuntimeRouter,
|
||||
}
|
||||
api_to_deps = {
|
||||
"inference": {"telemetry": Api.telemetry},
|
||||
}
|
||||
if api.value not in api_to_routers:
|
||||
raise ValueError(f"API {api.value} not found in router map")
|
||||
|
||||
api_to_dep_impl = {}
|
||||
for dep_name, dep_api in api_to_deps.get(api.value, {}).items():
|
||||
if dep_api in deps:
|
||||
api_to_dep_impl[dep_name] = deps[dep_api]
|
||||
|
||||
# TODO: move pass configs to routers instead
|
||||
if api == Api.inference and run_config.inference_store:
|
||||
if api == Api.inference:
|
||||
inference_ref = run_config.storage.stores.inference
|
||||
if not inference_ref:
|
||||
raise ValueError("storage.stores.inference must be configured in run config")
|
||||
|
||||
inference_store = InferenceStore(
|
||||
config=run_config.inference_store,
|
||||
reference=inference_ref,
|
||||
policy=policy,
|
||||
)
|
||||
await inference_store.initialize()
|
||||
api_to_dep_impl["store"] = inference_store
|
||||
api_to_dep_impl["telemetry_enabled"] = run_config.telemetry.enabled
|
||||
|
||||
elif api == Api.vector_io:
|
||||
api_to_dep_impl["vector_stores_config"] = run_config.vector_stores
|
||||
elif api == Api.safety:
|
||||
api_to_dep_impl["safety_config"] = run_config.safety
|
||||
|
||||
impl = api_to_routers[api.value](routing_table, **api_to_dep_impl)
|
||||
await impl.initialize()
|
||||
|
|
|
|||
|
|
@ -10,9 +10,10 @@ from collections.abc import AsyncGenerator, AsyncIterator
|
|||
from datetime import UTC, datetime
|
||||
from typing import Annotated, Any
|
||||
|
||||
from fastapi import Body
|
||||
from openai.types.chat import ChatCompletionToolChoiceOptionParam as OpenAIChatCompletionToolChoiceOptionParam
|
||||
from openai.types.chat import ChatCompletionToolParam as OpenAIChatCompletionToolParam
|
||||
from pydantic import Field, TypeAdapter
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
|
@ -31,27 +32,34 @@ from llama_stack.apis.inference import (
|
|||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
OpenAIChoice,
|
||||
OpenAIChoiceLogprobs,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionRequestWithExtraBody,
|
||||
OpenAICompletionWithInputMessages,
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
Order,
|
||||
RerankResponse,
|
||||
StopReason,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
|
||||
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse
|
||||
from llama_stack.core.telemetry.tracing import enqueue_event, get_current_span
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
||||
from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable
|
||||
from llama_stack.providers.utils.inference.inference_store import InferenceStore
|
||||
from llama_stack.providers.utils.telemetry.tracing import enqueue_event, get_current_span
|
||||
|
||||
logger = get_logger(name=__name__, category="core::routers")
|
||||
|
||||
|
|
@ -62,14 +70,14 @@ class InferenceRouter(Inference):
|
|||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
telemetry: Telemetry | None = None,
|
||||
store: InferenceStore | None = None,
|
||||
telemetry_enabled: bool = False,
|
||||
) -> None:
|
||||
logger.debug("Initializing InferenceRouter")
|
||||
self.routing_table = routing_table
|
||||
self.telemetry = telemetry
|
||||
self.telemetry_enabled = telemetry_enabled
|
||||
self.store = store
|
||||
if self.telemetry:
|
||||
if self.telemetry_enabled:
|
||||
self.tokenizer = Tokenizer.get_instance()
|
||||
self.formatter = ChatFormat(self.tokenizer)
|
||||
|
||||
|
|
@ -151,7 +159,7 @@ class InferenceRouter(Inference):
|
|||
model: Model,
|
||||
) -> list[MetricInResponse]:
|
||||
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
|
||||
if self.telemetry:
|
||||
if self.telemetry_enabled:
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
|
||||
|
|
@ -179,64 +187,43 @@ class InferenceRouter(Inference):
|
|||
raise ModelTypeError(model_id, model.model_type, expected_model_type)
|
||||
return model
|
||||
|
||||
async def openai_completion(
|
||||
async def rerank(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
query: str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam,
|
||||
items: list[str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam],
|
||||
max_num_results: int | None = None,
|
||||
) -> RerankResponse:
|
||||
logger.debug(f"InferenceRouter.rerank: {model}")
|
||||
model_obj = await self._get_model(model, ModelType.rerank)
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
return await provider.rerank(
|
||||
model=model_obj.identifier,
|
||||
query=query,
|
||||
items=items,
|
||||
max_num_results=max_num_results,
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
params: Annotated[OpenAICompletionRequestWithExtraBody, Body(...)],
|
||||
) -> OpenAICompletion:
|
||||
logger.debug(
|
||||
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
|
||||
)
|
||||
model_obj = await self._get_model(model, ModelType.llm)
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
guided_choice=guided_choice,
|
||||
prompt_logprobs=prompt_logprobs,
|
||||
suffix=suffix,
|
||||
f"InferenceRouter.openai_completion: model={params.model}, stream={params.stream}, prompt={params.prompt}",
|
||||
)
|
||||
model_obj = await self._get_model(params.model, ModelType.llm)
|
||||
|
||||
# Update params with the resolved model identifier
|
||||
params.model = model_obj.identifier
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
if stream:
|
||||
return await provider.openai_completion(**params)
|
||||
if params.stream:
|
||||
return await provider.openai_completion(params)
|
||||
# TODO: Metrics do NOT work with openai_completion stream=True due to the fact
|
||||
# that we do not return an AsyncIterator, our tests expect a stream of chunks we cannot intercept currently.
|
||||
# response_stream = await provider.openai_completion(**params)
|
||||
|
||||
response = await provider.openai_completion(**params)
|
||||
if self.telemetry:
|
||||
response = await provider.openai_completion(params)
|
||||
if self.telemetry_enabled:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
completion_tokens=response.usage.completion_tokens,
|
||||
|
|
@ -254,95 +241,51 @@ class InferenceRouter(Inference):
|
|||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: Annotated[list[OpenAIMessageParam], Field(..., min_length=1)],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: Annotated[OpenAIChatCompletionRequestWithExtraBody, Body(...)],
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
logger.debug(
|
||||
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
|
||||
f"InferenceRouter.openai_chat_completion: model={params.model}, stream={params.stream}, messages={params.messages}",
|
||||
)
|
||||
model_obj = await self._get_model(model, ModelType.llm)
|
||||
model_obj = await self._get_model(params.model, ModelType.llm)
|
||||
|
||||
# Use the OpenAI client for a bit of extra input validation without
|
||||
# exposing the OpenAI client itself as part of our API surface
|
||||
if tool_choice:
|
||||
TypeAdapter(OpenAIChatCompletionToolChoiceOptionParam).validate_python(tool_choice)
|
||||
if tools is None:
|
||||
if params.tool_choice:
|
||||
TypeAdapter(OpenAIChatCompletionToolChoiceOptionParam).validate_python(params.tool_choice)
|
||||
if params.tools is None:
|
||||
raise ValueError("'tool_choice' is only allowed when 'tools' is also provided")
|
||||
if tools:
|
||||
for tool in tools:
|
||||
if params.tools:
|
||||
for tool in params.tools:
|
||||
TypeAdapter(OpenAIChatCompletionToolParam).validate_python(tool)
|
||||
|
||||
# Some providers make tool calls even when tool_choice is "none"
|
||||
# so just clear them both out to avoid unexpected tool calls
|
||||
if tool_choice == "none" and tools is not None:
|
||||
tool_choice = None
|
||||
tools = None
|
||||
if params.tool_choice == "none" and params.tools is not None:
|
||||
params.tool_choice = None
|
||||
params.tools = None
|
||||
|
||||
# Update params with the resolved model identifier
|
||||
params.model = model_obj.identifier
|
||||
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
if stream:
|
||||
response_stream = await provider.openai_chat_completion(**params)
|
||||
if params.stream:
|
||||
response_stream = await provider.openai_chat_completion(params)
|
||||
|
||||
# For streaming, the provider returns AsyncIterator[OpenAIChatCompletionChunk]
|
||||
# We need to add metrics to each chunk and store the final completion
|
||||
return self.stream_tokens_and_compute_metrics_openai_chat(
|
||||
response=response_stream,
|
||||
model=model_obj,
|
||||
messages=messages,
|
||||
messages=params.messages,
|
||||
)
|
||||
|
||||
response = await self._nonstream_openai_chat_completion(provider, params)
|
||||
|
||||
# Store the response with the ID that will be returned to the client
|
||||
if self.store:
|
||||
asyncio.create_task(self.store.store_chat_completion(response, messages))
|
||||
asyncio.create_task(self.store.store_chat_completion(response, params.messages))
|
||||
|
||||
if self.telemetry:
|
||||
if self.telemetry_enabled:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
completion_tokens=response.usage.completion_tokens,
|
||||
|
|
@ -359,26 +302,18 @@ class InferenceRouter(Inference):
|
|||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
params: Annotated[OpenAIEmbeddingsRequestWithExtraBody, Body(...)],
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
logger.debug(
|
||||
f"InferenceRouter.openai_embeddings: {model=}, input_type={type(input)}, {encoding_format=}, {dimensions=}",
|
||||
)
|
||||
model_obj = await self._get_model(model, ModelType.embedding)
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
input=input,
|
||||
encoding_format=encoding_format,
|
||||
dimensions=dimensions,
|
||||
user=user,
|
||||
f"InferenceRouter.openai_embeddings: model={params.model}, input_type={type(params.input)}, encoding_format={params.encoding_format}, dimensions={params.dimensions}",
|
||||
)
|
||||
model_obj = await self._get_model(params.model, ModelType.embedding)
|
||||
|
||||
# Update model to use resolved identifier
|
||||
params.model = model_obj.identifier
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
return await provider.openai_embeddings(**params)
|
||||
return await provider.openai_embeddings(params)
|
||||
|
||||
async def list_chat_completions(
|
||||
self,
|
||||
|
|
@ -396,8 +331,10 @@ class InferenceRouter(Inference):
|
|||
return await self.store.get_chat_completion(completion_id)
|
||||
raise NotImplementedError("Get chat completion is not supported: inference store is not configured.")
|
||||
|
||||
async def _nonstream_openai_chat_completion(self, provider: Inference, params: dict) -> OpenAIChatCompletion:
|
||||
response = await provider.openai_chat_completion(**params)
|
||||
async def _nonstream_openai_chat_completion(
|
||||
self, provider: Inference, params: OpenAIChatCompletionRequestWithExtraBody
|
||||
) -> OpenAIChatCompletion:
|
||||
response = await provider.openai_chat_completion(params)
|
||||
for choice in response.choices:
|
||||
# some providers return an empty list for no tool calls in non-streaming responses
|
||||
# but the OpenAI API returns None. So, set tool_calls to None if it's empty
|
||||
|
|
@ -456,7 +393,7 @@ class InferenceRouter(Inference):
|
|||
else:
|
||||
if hasattr(chunk, "delta"):
|
||||
completion_text += chunk.delta
|
||||
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry:
|
||||
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry_enabled:
|
||||
complete = True
|
||||
completion_tokens = await self._count_tokens(completion_text)
|
||||
# if we are done receiving tokens
|
||||
|
|
@ -464,7 +401,7 @@ class InferenceRouter(Inference):
|
|||
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
|
||||
|
||||
# Create a separate span for streaming completion metrics
|
||||
if self.telemetry:
|
||||
if self.telemetry_enabled:
|
||||
# Log metrics in the new span context
|
||||
completion_metrics = self._construct_metrics(
|
||||
prompt_tokens=prompt_tokens,
|
||||
|
|
@ -513,7 +450,7 @@ class InferenceRouter(Inference):
|
|||
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
|
||||
|
||||
# Create a separate span for completion metrics
|
||||
if self.telemetry:
|
||||
if self.telemetry_enabled:
|
||||
# Log metrics in the new span context
|
||||
completion_metrics = self._construct_metrics(
|
||||
prompt_tokens=prompt_tokens,
|
||||
|
|
@ -611,7 +548,7 @@ class InferenceRouter(Inference):
|
|||
completion_text += "".join(choice_data["content_parts"])
|
||||
|
||||
# Add metrics to the chunk
|
||||
if self.telemetry and hasattr(chunk, "usage") and chunk.usage:
|
||||
if self.telemetry_enabled and hasattr(chunk, "usage") and chunk.usage:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=chunk.usage.prompt_tokens,
|
||||
completion_tokens=chunk.usage.completion_tokens,
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@ from llama_stack.apis.inference import Message
|
|||
from llama_stack.apis.safety import RunShieldResponse, Safety
|
||||
from llama_stack.apis.safety.safety import ModerationObject
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.core.datatypes import SafetyConfig
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import RoutingTable
|
||||
|
||||
|
|
@ -20,9 +21,11 @@ class SafetyRouter(Safety):
|
|||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
safety_config: SafetyConfig | None = None,
|
||||
) -> None:
|
||||
logger.debug("Initializing SafetyRouter")
|
||||
self.routing_table = routing_table
|
||||
self.safety_config = safety_config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("SafetyRouter.initialize")
|
||||
|
|
@ -60,26 +63,47 @@ class SafetyRouter(Safety):
|
|||
params=params,
|
||||
)
|
||||
|
||||
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
|
||||
async def get_shield_id(self, model: str) -> str:
|
||||
"""Get Shield id from model (provider_resource_id) of shield."""
|
||||
list_shields_response = await self.routing_table.list_shields()
|
||||
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
|
||||
list_shields_response = await self.routing_table.list_shields()
|
||||
shields = list_shields_response.data
|
||||
|
||||
matches = [s.identifier for s in list_shields_response.data if model == s.provider_resource_id]
|
||||
selected_shield: Shield | None = None
|
||||
provider_model: str | None = model
|
||||
|
||||
if model:
|
||||
matches: list[Shield] = [s for s in shields if model == s.provider_resource_id]
|
||||
if not matches:
|
||||
raise ValueError(f"No shield associated with provider_resource id {model}")
|
||||
raise ValueError(
|
||||
f"No shield associated with provider_resource id {model}: choose from {[s.provider_resource_id for s in shields]}"
|
||||
)
|
||||
if len(matches) > 1:
|
||||
raise ValueError(f"Multiple shields associated with provider_resource id {model}")
|
||||
return matches[0]
|
||||
raise ValueError(
|
||||
f"Multiple shields associated with provider_resource id {model}: matched shields {[s.identifier for s in matches]}"
|
||||
)
|
||||
selected_shield = matches[0]
|
||||
else:
|
||||
default_shield_id = self.safety_config.default_shield_id if self.safety_config else None
|
||||
if not default_shield_id:
|
||||
raise ValueError(
|
||||
"No moderation model specified and no default_shield_id configured in safety config: select model "
|
||||
f"from {[s.provider_resource_id or s.identifier for s in shields]}"
|
||||
)
|
||||
|
||||
shield_id = await get_shield_id(self, model)
|
||||
selected_shield = next((s for s in shields if s.identifier == default_shield_id), None)
|
||||
if selected_shield is None:
|
||||
raise ValueError(
|
||||
f"Default moderation model not found. Choose from {[s.provider_resource_id or s.identifier for s in shields]}."
|
||||
)
|
||||
|
||||
provider_model = selected_shield.provider_resource_id
|
||||
|
||||
shield_id = selected_shield.identifier
|
||||
logger.debug(f"SafetyRouter.run_moderation: {shield_id}")
|
||||
provider = await self.routing_table.get_provider_impl(shield_id)
|
||||
|
||||
response = await provider.run_moderation(
|
||||
input=input,
|
||||
model=model,
|
||||
model=provider_model,
|
||||
)
|
||||
|
||||
return response
|
||||
|
|
|
|||
|
|
@ -37,24 +37,24 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
async def query(
|
||||
self,
|
||||
content: InterleavedContent,
|
||||
vector_db_ids: list[str],
|
||||
vector_store_ids: list[str],
|
||||
query_config: RAGQueryConfig | None = None,
|
||||
) -> RAGQueryResult:
|
||||
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_db_ids}")
|
||||
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_store_ids}")
|
||||
provider = await self.routing_table.get_provider_impl("knowledge_search")
|
||||
return await provider.query(content, vector_db_ids, query_config)
|
||||
return await provider.query(content, vector_store_ids, query_config)
|
||||
|
||||
async def insert(
|
||||
self,
|
||||
documents: list[RAGDocument],
|
||||
vector_db_id: str,
|
||||
vector_store_id: str,
|
||||
chunk_size_in_tokens: int = 512,
|
||||
) -> None:
|
||||
logger.debug(
|
||||
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_db_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
|
||||
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_store_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl("insert_into_memory")
|
||||
return await provider.insert(documents, vector_db_id, chunk_size_in_tokens)
|
||||
return await provider.insert(documents, vector_store_id, chunk_size_in_tokens)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -6,12 +6,16 @@
|
|||
|
||||
import asyncio
|
||||
import uuid
|
||||
from typing import Any
|
||||
from typing import Annotated, Any
|
||||
|
||||
from fastapi import Body
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
|
||||
OpenAICreateVectorStoreRequestWithExtraBody,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
|
|
@ -27,6 +31,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.core.datatypes import VectorStoresConfig
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable
|
||||
|
||||
|
|
@ -39,9 +44,11 @@ class VectorIORouter(VectorIO):
|
|||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
vector_stores_config: VectorStoresConfig | None = None,
|
||||
) -> None:
|
||||
logger.debug("Initializing VectorIORouter")
|
||||
self.routing_table = routing_table
|
||||
self.vector_stores_config = vector_stores_config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("VectorIORouter.initialize")
|
||||
|
|
@ -51,49 +58,18 @@ class VectorIORouter(VectorIO):
|
|||
logger.debug("VectorIORouter.shutdown")
|
||||
pass
|
||||
|
||||
async def _get_first_embedding_model(self) -> tuple[str, int] | None:
|
||||
"""Get the first available embedding model identifier."""
|
||||
try:
|
||||
# Get all models from the routing table
|
||||
all_models = await self.routing_table.get_all_with_type("model")
|
||||
async def _get_embedding_model_dimension(self, embedding_model_id: str) -> int:
|
||||
"""Get the embedding dimension for a specific embedding model."""
|
||||
all_models = await self.routing_table.get_all_with_type("model")
|
||||
|
||||
# Filter for embedding models
|
||||
embedding_models = [
|
||||
model
|
||||
for model in all_models
|
||||
if hasattr(model, "model_type") and model.model_type == ModelType.embedding
|
||||
]
|
||||
|
||||
if embedding_models:
|
||||
dimension = embedding_models[0].metadata.get("embedding_dimension", None)
|
||||
for model in all_models:
|
||||
if model.identifier == embedding_model_id and model.model_type == ModelType.embedding:
|
||||
dimension = model.metadata.get("embedding_dimension")
|
||||
if dimension is None:
|
||||
raise ValueError(f"Embedding model {embedding_models[0].identifier} has no embedding dimension")
|
||||
return embedding_models[0].identifier, dimension
|
||||
else:
|
||||
logger.warning("No embedding models found in the routing table")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting embedding models: {e}")
|
||||
return None
|
||||
raise ValueError(f"Embedding model '{embedding_model_id}' has no embedding_dimension in metadata")
|
||||
return int(dimension)
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
vector_db_name: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> None:
|
||||
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
|
||||
await self.routing_table.register_vector_db(
|
||||
vector_db_id,
|
||||
embedding_model,
|
||||
embedding_dimension,
|
||||
provider_id,
|
||||
vector_db_name,
|
||||
provider_vector_db_id,
|
||||
)
|
||||
raise ValueError(f"Embedding model '{embedding_model_id}' not found or not an embedding model")
|
||||
|
||||
async def insert_chunks(
|
||||
self,
|
||||
|
|
@ -101,8 +77,10 @@ class VectorIORouter(VectorIO):
|
|||
chunks: list[Chunk],
|
||||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
doc_ids = [chunk.document_id for chunk in chunks[:3]]
|
||||
logger.debug(
|
||||
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
|
||||
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, "
|
||||
f"ttl_seconds={ttl_seconds}, chunk_ids={doc_ids}{' and more...' if len(chunks) > 3 else ''}"
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl(vector_db_id)
|
||||
return await provider.insert_chunks(vector_db_id, chunks, ttl_seconds)
|
||||
|
|
@ -120,46 +98,76 @@ class VectorIORouter(VectorIO):
|
|||
# OpenAI Vector Stores API endpoints
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = None,
|
||||
provider_id: str | None = None,
|
||||
params: Annotated[OpenAICreateVectorStoreRequestWithExtraBody, Body(...)],
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_create_vector_store: name={name}, provider_id={provider_id}")
|
||||
# Extract llama-stack-specific parameters from extra_body
|
||||
extra = params.model_extra or {}
|
||||
embedding_model = extra.get("embedding_model")
|
||||
embedding_dimension = extra.get("embedding_dimension")
|
||||
provider_id = extra.get("provider_id")
|
||||
|
||||
# If no embedding model is provided, use the first available one
|
||||
if embedding_model is None:
|
||||
embedding_model_info = await self._get_first_embedding_model()
|
||||
if embedding_model_info is None:
|
||||
raise ValueError("No embedding model provided and no embedding models available in the system")
|
||||
embedding_model, embedding_dimension = embedding_model_info
|
||||
logger.info(f"No embedding model specified, using first available: {embedding_model}")
|
||||
# Use default embedding model if not specified
|
||||
if (
|
||||
embedding_model is None
|
||||
and self.vector_stores_config
|
||||
and self.vector_stores_config.default_embedding_model is not None
|
||||
):
|
||||
# Construct the full model ID with provider prefix
|
||||
embedding_provider_id = self.vector_stores_config.default_embedding_model.provider_id
|
||||
model_id = self.vector_stores_config.default_embedding_model.model_id
|
||||
embedding_model = f"{embedding_provider_id}/{model_id}"
|
||||
|
||||
vector_db_id = f"vs_{uuid.uuid4()}"
|
||||
registered_vector_db = await self.routing_table.register_vector_db(
|
||||
vector_db_id=vector_db_id,
|
||||
if embedding_model is not None and embedding_dimension is None:
|
||||
embedding_dimension = await self._get_embedding_model_dimension(embedding_model)
|
||||
|
||||
# Auto-select provider if not specified
|
||||
if provider_id is None:
|
||||
num_providers = len(self.routing_table.impls_by_provider_id)
|
||||
if num_providers == 0:
|
||||
raise ValueError("No vector_io providers available")
|
||||
if num_providers > 1:
|
||||
available_providers = list(self.routing_table.impls_by_provider_id.keys())
|
||||
# Use default configured provider
|
||||
if self.vector_stores_config and self.vector_stores_config.default_provider_id:
|
||||
default_provider = self.vector_stores_config.default_provider_id
|
||||
if default_provider in available_providers:
|
||||
provider_id = default_provider
|
||||
logger.debug(f"Using configured default vector store provider: {provider_id}")
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Configured default vector store provider '{default_provider}' not found. "
|
||||
f"Available providers: {available_providers}"
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Multiple vector_io providers available. Please specify provider_id in extra_body. "
|
||||
f"Available providers: {available_providers}"
|
||||
)
|
||||
else:
|
||||
provider_id = list(self.routing_table.impls_by_provider_id.keys())[0]
|
||||
|
||||
vector_store_id = f"vs_{uuid.uuid4()}"
|
||||
registered_vector_store = await self.routing_table.register_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
embedding_model=embedding_model,
|
||||
embedding_dimension=embedding_dimension,
|
||||
provider_id=provider_id,
|
||||
provider_vector_db_id=vector_db_id,
|
||||
vector_db_name=name,
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl(registered_vector_db.identifier)
|
||||
return await provider.openai_create_vector_store(
|
||||
name=name,
|
||||
file_ids=file_ids,
|
||||
expires_after=expires_after,
|
||||
chunking_strategy=chunking_strategy,
|
||||
metadata=metadata,
|
||||
embedding_model=embedding_model,
|
||||
embedding_dimension=embedding_dimension,
|
||||
provider_id=registered_vector_db.provider_id,
|
||||
provider_vector_db_id=registered_vector_db.provider_resource_id,
|
||||
provider_vector_store_id=vector_store_id,
|
||||
vector_store_name=params.name,
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl(registered_vector_store.identifier)
|
||||
|
||||
# Update model_extra with registered values so provider uses the already-registered vector_store
|
||||
if params.model_extra is None:
|
||||
params.model_extra = {}
|
||||
params.model_extra["provider_vector_store_id"] = registered_vector_store.provider_resource_id
|
||||
params.model_extra["provider_id"] = registered_vector_store.provider_id
|
||||
if embedding_model is not None:
|
||||
params.model_extra["embedding_model"] = embedding_model
|
||||
if embedding_dimension is not None:
|
||||
params.model_extra["embedding_dimension"] = embedding_dimension
|
||||
|
||||
return await provider.openai_create_vector_store(params)
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
|
|
@ -171,15 +179,15 @@ class VectorIORouter(VectorIO):
|
|||
logger.debug(f"VectorIORouter.openai_list_vector_stores: limit={limit}")
|
||||
# Route to default provider for now - could aggregate from all providers in the future
|
||||
# call retrieve on each vector dbs to get list of vector stores
|
||||
vector_dbs = await self.routing_table.get_all_with_type("vector_db")
|
||||
vector_stores = await self.routing_table.get_all_with_type("vector_store")
|
||||
all_stores = []
|
||||
for vector_db in vector_dbs:
|
||||
for vector_store in vector_stores:
|
||||
try:
|
||||
provider = await self.routing_table.get_provider_impl(vector_db.identifier)
|
||||
vector_store = await provider.openai_retrieve_vector_store(vector_db.identifier)
|
||||
provider = await self.routing_table.get_provider_impl(vector_store.identifier)
|
||||
vector_store = await provider.openai_retrieve_vector_store(vector_store.identifier)
|
||||
all_stores.append(vector_store)
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector store {vector_db.identifier}: {e}")
|
||||
logger.error(f"Error retrieving vector store {vector_store.identifier}: {e}")
|
||||
continue
|
||||
|
||||
# Sort by created_at
|
||||
|
|
@ -219,7 +227,8 @@ class VectorIORouter(VectorIO):
|
|||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_retrieve_vector_store: {vector_store_id}")
|
||||
return await self.routing_table.openai_retrieve_vector_store(vector_store_id)
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store(vector_store_id)
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
|
|
@ -229,7 +238,8 @@ class VectorIORouter(VectorIO):
|
|||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_update_vector_store: {vector_store_id}")
|
||||
return await self.routing_table.openai_update_vector_store(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_update_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
name=name,
|
||||
expires_after=expires_after,
|
||||
|
|
@ -254,7 +264,8 @@ class VectorIORouter(VectorIO):
|
|||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
logger.debug(f"VectorIORouter.openai_search_vector_store: {vector_store_id}")
|
||||
return await self.routing_table.openai_search_vector_store(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
query=query,
|
||||
filters=filters,
|
||||
|
|
@ -272,7 +283,8 @@ class VectorIORouter(VectorIO):
|
|||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
logger.debug(f"VectorIORouter.openai_attach_file_to_vector_store: {vector_store_id}, {file_id}")
|
||||
return await self.routing_table.openai_attach_file_to_vector_store(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_attach_file_to_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
attributes=attributes,
|
||||
|
|
@ -289,7 +301,8 @@ class VectorIORouter(VectorIO):
|
|||
filter: VectorStoreFileStatus | None = None,
|
||||
) -> list[VectorStoreFileObject]:
|
||||
logger.debug(f"VectorIORouter.openai_list_files_in_vector_store: {vector_store_id}")
|
||||
return await self.routing_table.openai_list_files_in_vector_store(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_list_files_in_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
limit=limit,
|
||||
order=order,
|
||||
|
|
@ -304,7 +317,8 @@ class VectorIORouter(VectorIO):
|
|||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file: {vector_store_id}, {file_id}")
|
||||
return await self.routing_table.openai_retrieve_vector_store_file(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
)
|
||||
|
|
@ -315,7 +329,8 @@ class VectorIORouter(VectorIO):
|
|||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file_contents: {vector_store_id}, {file_id}")
|
||||
return await self.routing_table.openai_retrieve_vector_store_file_contents(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_contents(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
)
|
||||
|
|
@ -327,7 +342,8 @@ class VectorIORouter(VectorIO):
|
|||
attributes: dict[str, Any],
|
||||
) -> VectorStoreFileObject:
|
||||
logger.debug(f"VectorIORouter.openai_update_vector_store_file: {vector_store_id}, {file_id}")
|
||||
return await self.routing_table.openai_update_vector_store_file(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_update_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
attributes=attributes,
|
||||
|
|
@ -339,7 +355,8 @@ class VectorIORouter(VectorIO):
|
|||
file_id: str,
|
||||
) -> VectorStoreFileDeleteResponse:
|
||||
logger.debug(f"VectorIORouter.openai_delete_vector_store_file: {vector_store_id}, {file_id}")
|
||||
return await self.routing_table.openai_delete_vector_store_file(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_delete_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
)
|
||||
|
|
@ -370,17 +387,13 @@ class VectorIORouter(VectorIO):
|
|||
async def openai_create_vector_store_file_batch(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_ids: list[str],
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
params: Annotated[OpenAICreateVectorStoreFileBatchRequestWithExtraBody, Body(...)],
|
||||
) -> VectorStoreFileBatchObject:
|
||||
logger.debug(f"VectorIORouter.openai_create_vector_store_file_batch: {vector_store_id}, {len(file_ids)} files")
|
||||
return await self.routing_table.openai_create_vector_store_file_batch(
|
||||
vector_store_id=vector_store_id,
|
||||
file_ids=file_ids,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
logger.debug(
|
||||
f"VectorIORouter.openai_create_vector_store_file_batch: {vector_store_id}, {len(params.file_ids)} files"
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_create_vector_store_file_batch(vector_store_id, params)
|
||||
|
||||
async def openai_retrieve_vector_store_file_batch(
|
||||
self,
|
||||
|
|
@ -388,7 +401,8 @@ class VectorIORouter(VectorIO):
|
|||
vector_store_id: str,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file_batch: {batch_id}, {vector_store_id}")
|
||||
return await self.routing_table.openai_retrieve_vector_store_file_batch(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
|
@ -404,7 +418,8 @@ class VectorIORouter(VectorIO):
|
|||
order: str | None = "desc",
|
||||
) -> VectorStoreFilesListInBatchResponse:
|
||||
logger.debug(f"VectorIORouter.openai_list_files_in_vector_store_file_batch: {batch_id}, {vector_store_id}")
|
||||
return await self.routing_table.openai_list_files_in_vector_store_file_batch(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
after=after,
|
||||
|
|
@ -420,7 +435,8 @@ class VectorIORouter(VectorIO):
|
|||
vector_store_id: str,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
logger.debug(f"VectorIORouter.openai_cancel_vector_store_file_batch: {batch_id}, {vector_store_id}")
|
||||
return await self.routing_table.openai_cancel_vector_store_file_batch(
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_cancel_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ from typing import Any
|
|||
from llama_stack.apis.common.errors import ModelNotFoundError
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.resource import ResourceType
|
||||
from llama_stack.apis.scoring_functions import ScoringFn
|
||||
from llama_stack.core.access_control.access_control import AccessDeniedError, is_action_allowed
|
||||
from llama_stack.core.access_control.datatypes import Action
|
||||
from llama_stack.core.datatypes import (
|
||||
|
|
@ -17,6 +16,7 @@ from llama_stack.core.datatypes import (
|
|||
RoutableObject,
|
||||
RoutableObjectWithProvider,
|
||||
RoutedProtocol,
|
||||
ScoringFnWithOwner,
|
||||
)
|
||||
from llama_stack.core.request_headers import get_authenticated_user
|
||||
from llama_stack.core.store import DistributionRegistry
|
||||
|
|
@ -41,7 +41,7 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable
|
|||
elif api == Api.safety:
|
||||
return await p.register_shield(obj)
|
||||
elif api == Api.vector_io:
|
||||
return await p.register_vector_db(obj)
|
||||
return await p.register_vector_store(obj)
|
||||
elif api == Api.datasetio:
|
||||
return await p.register_dataset(obj)
|
||||
elif api == Api.scoring:
|
||||
|
|
@ -57,7 +57,7 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable
|
|||
async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
|
||||
api = get_impl_api(p)
|
||||
if api == Api.vector_io:
|
||||
return await p.unregister_vector_db(obj.identifier)
|
||||
return await p.unregister_vector_store(obj.identifier)
|
||||
elif api == Api.inference:
|
||||
return await p.unregister_model(obj.identifier)
|
||||
elif api == Api.safety:
|
||||
|
|
@ -108,13 +108,13 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
elif api == Api.safety:
|
||||
p.shield_store = self
|
||||
elif api == Api.vector_io:
|
||||
p.vector_db_store = self
|
||||
p.vector_store_store = self
|
||||
elif api == Api.datasetio:
|
||||
p.dataset_store = self
|
||||
elif api == Api.scoring:
|
||||
p.scoring_function_store = self
|
||||
scoring_functions = await p.list_scoring_functions()
|
||||
await add_objects(scoring_functions, pid, ScoringFn)
|
||||
await add_objects(scoring_functions, pid, ScoringFnWithOwner)
|
||||
elif api == Api.eval:
|
||||
p.benchmark_store = self
|
||||
elif api == Api.tool_runtime:
|
||||
|
|
@ -134,15 +134,15 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
from .scoring_functions import ScoringFunctionsRoutingTable
|
||||
from .shields import ShieldsRoutingTable
|
||||
from .toolgroups import ToolGroupsRoutingTable
|
||||
from .vector_dbs import VectorDBsRoutingTable
|
||||
from .vector_stores import VectorStoresRoutingTable
|
||||
|
||||
def apiname_object():
|
||||
if isinstance(self, ModelsRoutingTable):
|
||||
return ("Inference", "model")
|
||||
elif isinstance(self, ShieldsRoutingTable):
|
||||
return ("Safety", "shield")
|
||||
elif isinstance(self, VectorDBsRoutingTable):
|
||||
return ("VectorIO", "vector_db")
|
||||
elif isinstance(self, VectorStoresRoutingTable):
|
||||
return ("VectorIO", "vector_store")
|
||||
elif isinstance(self, DatasetsRoutingTable):
|
||||
return ("DatasetIO", "dataset")
|
||||
elif isinstance(self, ScoringFunctionsRoutingTable):
|
||||
|
|
@ -248,25 +248,7 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
|
||||
|
||||
async def lookup_model(routing_table: CommonRoutingTableImpl, model_id: str) -> Model:
|
||||
# first try to get the model by identifier
|
||||
# this works if model_id is an alias or is of the form provider_id/provider_model_id
|
||||
model = await routing_table.get_object_by_identifier("model", model_id)
|
||||
if model is not None:
|
||||
return model
|
||||
|
||||
logger.warning(
|
||||
f"WARNING: model identifier '{model_id}' not found in routing table. Falling back to "
|
||||
"searching in all providers. This is only for backwards compatibility and will stop working "
|
||||
"soon. Migrate your calls to use fully scoped `provider_id/model_id` names."
|
||||
)
|
||||
# if not found, this means model_id is an unscoped provider_model_id, we need
|
||||
# to iterate (given a lack of an efficient index on the KVStore)
|
||||
models = await routing_table.get_all_with_type("model")
|
||||
matching_models = [m for m in models if m.provider_resource_id == model_id]
|
||||
if len(matching_models) == 0:
|
||||
if not model:
|
||||
raise ModelNotFoundError(model_id)
|
||||
|
||||
if len(matching_models) > 1:
|
||||
raise ValueError(f"Multiple providers found for '{model_id}': {[m.provider_id for m in matching_models]}")
|
||||
|
||||
return matching_models[0]
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
try:
|
||||
models = await provider.list_models()
|
||||
except Exception as e:
|
||||
logger.debug(f"Model refresh failed for provider {provider_id}: {e}")
|
||||
logger.warning(f"Model refresh failed for provider {provider_id}: {e}")
|
||||
continue
|
||||
|
||||
self.listed_providers.add(provider_id)
|
||||
|
|
@ -104,15 +104,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
|
||||
raise ValueError("Embedding model must have an embedding dimension in its metadata")
|
||||
|
||||
# an identifier different than provider_model_id implies it is an alias, so that
|
||||
# becomes the globally unique identifier. otherwise provider_model_ids can conflict,
|
||||
# so as a general rule we must use the provider_id to disambiguate.
|
||||
|
||||
if model_id != provider_model_id:
|
||||
identifier = model_id
|
||||
else:
|
||||
identifier = f"{provider_id}/{provider_model_id}"
|
||||
|
||||
identifier = f"{provider_id}/{provider_model_id}"
|
||||
model = ModelWithOwner(
|
||||
identifier=identifier,
|
||||
provider_resource_id=provider_model_id,
|
||||
|
|
|
|||
|
|
@ -6,12 +6,11 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError, VectorStoreNotFoundError
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.apis.resource import ResourceType
|
||||
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
|
||||
|
||||
# Removed VectorStores import to avoid exposing public API
|
||||
from llama_stack.apis.vector_io.vector_io import (
|
||||
SearchRankingOptions,
|
||||
VectorStoreChunkingStrategy,
|
||||
|
|
@ -24,7 +23,7 @@ from llama_stack.apis.vector_io.vector_io import (
|
|||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.core.datatypes import (
|
||||
VectorDBWithOwner,
|
||||
VectorStoreWithOwner,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
|
|
@ -33,25 +32,24 @@ from .common import CommonRoutingTableImpl, lookup_model
|
|||
logger = get_logger(name=__name__, category="core::routing_tables")
|
||||
|
||||
|
||||
class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
||||
async def list_vector_dbs(self) -> ListVectorDBsResponse:
|
||||
return ListVectorDBsResponse(data=await self.get_all_with_type("vector_db"))
|
||||
class VectorStoresRoutingTable(CommonRoutingTableImpl):
|
||||
"""Internal routing table for vector_store operations.
|
||||
|
||||
async def get_vector_db(self, vector_db_id: str) -> VectorDB:
|
||||
vector_db = await self.get_object_by_identifier("vector_db", vector_db_id)
|
||||
if vector_db is None:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
return vector_db
|
||||
Does not inherit from VectorStores to avoid exposing public API endpoints.
|
||||
Only provides internal routing functionality for VectorIORouter.
|
||||
"""
|
||||
|
||||
async def register_vector_db(
|
||||
# Internal methods only - no public API exposure
|
||||
|
||||
async def register_vector_store(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
vector_store_id: str,
|
||||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
vector_db_name: str | None = None,
|
||||
) -> VectorDB:
|
||||
provider_vector_store_id: str | None = None,
|
||||
vector_store_name: str | None = None,
|
||||
) -> Any:
|
||||
if provider_id is None:
|
||||
if len(self.impls_by_provider_id) > 0:
|
||||
provider_id = list(self.impls_by_provider_id.keys())[0]
|
||||
|
|
@ -66,49 +64,24 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
raise ModelNotFoundError(embedding_model)
|
||||
if model.model_type != ModelType.embedding:
|
||||
raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding)
|
||||
if "embedding_dimension" not in model.metadata:
|
||||
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
|
||||
|
||||
provider = self.impls_by_provider_id[provider_id]
|
||||
logger.warning(
|
||||
"VectorDB is being deprecated in future releases in favor of VectorStore. Please migrate your usage accordingly."
|
||||
)
|
||||
vector_store = await provider.openai_create_vector_store(
|
||||
name=vector_db_name or vector_db_id,
|
||||
embedding_model=embedding_model,
|
||||
embedding_dimension=model.metadata["embedding_dimension"],
|
||||
vector_store = VectorStoreWithOwner(
|
||||
identifier=vector_store_id,
|
||||
type=ResourceType.vector_store.value,
|
||||
provider_id=provider_id,
|
||||
provider_vector_db_id=provider_vector_db_id,
|
||||
provider_resource_id=provider_vector_store_id,
|
||||
embedding_model=embedding_model,
|
||||
embedding_dimension=embedding_dimension,
|
||||
vector_store_name=vector_store_name,
|
||||
)
|
||||
|
||||
vector_store_id = vector_store.id
|
||||
actual_provider_vector_db_id = provider_vector_db_id or vector_store_id
|
||||
logger.warning(
|
||||
f"Ignoring vector_db_id {vector_db_id} and using vector_store_id {vector_store_id} instead. Setting VectorDB {vector_db_id} to VectorDB.vector_db_name"
|
||||
)
|
||||
|
||||
vector_db_data = {
|
||||
"identifier": vector_store_id,
|
||||
"type": ResourceType.vector_db.value,
|
||||
"provider_id": provider_id,
|
||||
"provider_resource_id": actual_provider_vector_db_id,
|
||||
"embedding_model": embedding_model,
|
||||
"embedding_dimension": model.metadata["embedding_dimension"],
|
||||
"vector_db_name": vector_store.name,
|
||||
}
|
||||
vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data)
|
||||
await self.register_object(vector_db)
|
||||
return vector_db
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
existing_vector_db = await self.get_vector_db(vector_db_id)
|
||||
await self.unregister_object(existing_vector_db)
|
||||
await self.register_object(vector_store)
|
||||
return vector_store
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store(vector_store_id)
|
||||
|
||||
|
|
@ -119,7 +92,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("update", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_update_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -132,12 +105,22 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
await self.assert_action_allowed("delete", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("delete", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
result = await provider.openai_delete_vector_store(vector_store_id)
|
||||
await self.unregister_vector_db(vector_store_id)
|
||||
await self.unregister_vector_store(vector_store_id)
|
||||
return result
|
||||
|
||||
async def unregister_vector_store(self, vector_store_id: str) -> None:
|
||||
"""Remove the vector store from the routing table registry."""
|
||||
try:
|
||||
vector_store_obj = await self.get_object_by_identifier("vector_store", vector_store_id)
|
||||
if vector_store_obj:
|
||||
await self.unregister_object(vector_store_obj)
|
||||
except Exception as e:
|
||||
# Log the error but don't fail the operation
|
||||
logger.warning(f"Failed to unregister vector store {vector_store_id} from routing table: {e}")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
|
@ -148,7 +131,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
rewrite_query: bool | None = False,
|
||||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -167,7 +150,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("update", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_attach_file_to_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -185,7 +168,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
before: str | None = None,
|
||||
filter: VectorStoreFileStatus | None = None,
|
||||
) -> list[VectorStoreFileObject]:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_list_files_in_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -201,7 +184,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -213,7 +196,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_contents(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -226,7 +209,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
file_id: str,
|
||||
attributes: dict[str, Any],
|
||||
) -> VectorStoreFileObject:
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("update", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_update_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -239,7 +222,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileDeleteResponse:
|
||||
await self.assert_action_allowed("delete", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("delete", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_delete_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -253,7 +236,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: Any | None = None,
|
||||
):
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("update", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_create_vector_store_file_batch(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -267,7 +250,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
):
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
|
|
@ -284,7 +267,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
):
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
|
|
@ -301,7 +284,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
):
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
await self.assert_action_allowed("update", "vector_store", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_cancel_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
|
|
@ -27,6 +27,11 @@ class AuthenticationMiddleware:
|
|||
3. Extracts user attributes from the provider's response
|
||||
4. Makes these attributes available to the route handlers for access control
|
||||
|
||||
Unauthenticated Access:
|
||||
Endpoints can opt out of authentication by setting require_authentication=False
|
||||
in their @webmethod decorator. This is typically used for operational endpoints
|
||||
like /health and /version to support monitoring, load balancers, and observability tools.
|
||||
|
||||
The middleware supports multiple authentication providers through the AuthProvider interface:
|
||||
- Kubernetes: Validates tokens against the Kubernetes API server
|
||||
- Custom: Validates tokens against a custom endpoint
|
||||
|
|
@ -88,7 +93,26 @@ class AuthenticationMiddleware:
|
|||
|
||||
async def __call__(self, scope, receive, send):
|
||||
if scope["type"] == "http":
|
||||
# First, handle authentication
|
||||
# Find the route and check if authentication is required
|
||||
path = scope.get("path", "")
|
||||
method = scope.get("method", hdrs.METH_GET)
|
||||
|
||||
if not hasattr(self, "route_impls"):
|
||||
self.route_impls = initialize_route_impls(self.impls)
|
||||
|
||||
webmethod = None
|
||||
try:
|
||||
_, _, _, webmethod = find_matching_route(method, path, self.route_impls)
|
||||
except ValueError:
|
||||
# If no matching endpoint is found, pass here to run auth anyways
|
||||
pass
|
||||
|
||||
# If webmethod explicitly sets require_authentication=False, allow without auth
|
||||
if webmethod and webmethod.require_authentication is False:
|
||||
logger.debug(f"Allowing unauthenticated access to endpoint: {path}")
|
||||
return await self.app(scope, receive, send)
|
||||
|
||||
# Handle authentication
|
||||
headers = dict(scope.get("headers", []))
|
||||
auth_header = headers.get(b"authorization", b"").decode()
|
||||
|
||||
|
|
@ -127,19 +151,7 @@ class AuthenticationMiddleware:
|
|||
)
|
||||
|
||||
# Scope-based API access control
|
||||
path = scope.get("path", "")
|
||||
method = scope.get("method", hdrs.METH_GET)
|
||||
|
||||
if not hasattr(self, "route_impls"):
|
||||
self.route_impls = initialize_route_impls(self.impls)
|
||||
|
||||
try:
|
||||
_, _, _, webmethod = find_matching_route(method, path, self.route_impls)
|
||||
except ValueError:
|
||||
# If no matching endpoint is found, pass through to FastAPI
|
||||
return await self.app(scope, receive, send)
|
||||
|
||||
if webmethod.required_scope:
|
||||
if webmethod and webmethod.required_scope:
|
||||
user = user_from_scope(scope)
|
||||
if not _has_required_scope(webmethod.required_scope, user):
|
||||
return await self._send_auth_error(
|
||||
|
|
|
|||
|
|
@ -5,13 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import ssl
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from asyncio import Lock
|
||||
from urllib.parse import parse_qs, urljoin, urlparse
|
||||
|
||||
import httpx
|
||||
from jose import jwt
|
||||
import jwt
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.common.errors import TokenValidationError
|
||||
|
|
@ -74,13 +72,30 @@ class AuthProvider(ABC):
|
|||
def get_attributes_from_claims(claims: dict[str, str], mapping: dict[str, str]) -> dict[str, list[str]]:
|
||||
attributes: dict[str, list[str]] = {}
|
||||
for claim_key, attribute_key in mapping.items():
|
||||
if claim_key not in claims:
|
||||
# First try dot notation for nested traversal (e.g., "resource_access.llamastack.roles")
|
||||
# Then fall back to literal key with dots (e.g., "my.dotted.key")
|
||||
claim: object = claims
|
||||
keys = claim_key.split(".")
|
||||
for key in keys:
|
||||
if isinstance(claim, dict) and key in claim:
|
||||
claim = claim[key]
|
||||
else:
|
||||
claim = None
|
||||
break
|
||||
|
||||
if claim is None and claim_key in claims:
|
||||
# Fall back to checking if claim_key exists as a literal key
|
||||
claim = claims[claim_key]
|
||||
|
||||
if claim is None:
|
||||
continue
|
||||
claim = claims[claim_key]
|
||||
|
||||
if isinstance(claim, list):
|
||||
values = claim
|
||||
else:
|
||||
elif isinstance(claim, str):
|
||||
values = claim.split()
|
||||
else:
|
||||
continue
|
||||
|
||||
if attribute_key in attributes:
|
||||
attributes[attribute_key].extend(values)
|
||||
|
|
@ -98,9 +113,7 @@ class OAuth2TokenAuthProvider(AuthProvider):
|
|||
|
||||
def __init__(self, config: OAuth2TokenAuthConfig):
|
||||
self.config = config
|
||||
self._jwks_at: float = 0.0
|
||||
self._jwks: dict[str, str] = {}
|
||||
self._jwks_lock = Lock()
|
||||
self._jwks_client: jwt.PyJWKClient | None = None
|
||||
|
||||
async def validate_token(self, token: str, scope: dict | None = None) -> User:
|
||||
if self.config.jwks:
|
||||
|
|
@ -109,23 +122,60 @@ class OAuth2TokenAuthProvider(AuthProvider):
|
|||
return await self.introspect_token(token, scope)
|
||||
raise ValueError("One of jwks or introspection must be configured")
|
||||
|
||||
def _get_jwks_client(self) -> jwt.PyJWKClient:
|
||||
if self._jwks_client is None:
|
||||
ssl_context = None
|
||||
if not self.config.verify_tls:
|
||||
# Disable SSL verification if verify_tls is False
|
||||
ssl_context = ssl.create_default_context()
|
||||
ssl_context.check_hostname = False
|
||||
ssl_context.verify_mode = ssl.CERT_NONE
|
||||
elif self.config.tls_cafile:
|
||||
# Use custom CA file if provided
|
||||
ssl_context = ssl.create_default_context(
|
||||
cafile=self.config.tls_cafile.as_posix(),
|
||||
)
|
||||
# If verify_tls is True and no tls_cafile, ssl_context remains None (use system defaults)
|
||||
|
||||
# Prepare headers for JWKS request - this is needed for Kubernetes to authenticate
|
||||
# to the JWK endpoint, we must use the token in the config to authenticate
|
||||
headers = {}
|
||||
if self.config.jwks and self.config.jwks.token:
|
||||
headers["Authorization"] = f"Bearer {self.config.jwks.token}"
|
||||
|
||||
self._jwks_client = jwt.PyJWKClient(
|
||||
self.config.jwks.uri if self.config.jwks else None,
|
||||
cache_keys=True,
|
||||
max_cached_keys=10,
|
||||
lifespan=self.config.jwks.key_recheck_period if self.config.jwks else None,
|
||||
headers=headers,
|
||||
ssl_context=ssl_context,
|
||||
)
|
||||
return self._jwks_client
|
||||
|
||||
async def validate_jwt_token(self, token: str, scope: dict | None = None) -> User:
|
||||
"""Validate a token using the JWT token."""
|
||||
await self._refresh_jwks()
|
||||
|
||||
try:
|
||||
header = jwt.get_unverified_header(token)
|
||||
kid = header["kid"]
|
||||
if kid not in self._jwks:
|
||||
raise ValueError(f"Unknown key ID: {kid}")
|
||||
key_data = self._jwks[kid]
|
||||
algorithm = header.get("alg", "RS256")
|
||||
jwks_client: jwt.PyJWKClient = self._get_jwks_client()
|
||||
signing_key = jwks_client.get_signing_key_from_jwt(token)
|
||||
algorithm = jwt.get_unverified_header(token)["alg"]
|
||||
claims = jwt.decode(
|
||||
token,
|
||||
key_data,
|
||||
signing_key.key,
|
||||
algorithms=[algorithm],
|
||||
audience=self.config.audience,
|
||||
issuer=self.config.issuer,
|
||||
options={"verify_exp": True, "verify_aud": True, "verify_iss": True},
|
||||
)
|
||||
|
||||
# Decode and verify the JWT
|
||||
claims = jwt.decode(
|
||||
token,
|
||||
signing_key.key,
|
||||
algorithms=[algorithm],
|
||||
audience=self.config.audience,
|
||||
issuer=self.config.issuer,
|
||||
options={"verify_exp": True, "verify_aud": True, "verify_iss": True},
|
||||
)
|
||||
except Exception as exc:
|
||||
raise ValueError("Invalid JWT token") from exc
|
||||
|
|
@ -201,37 +251,6 @@ class OAuth2TokenAuthProvider(AuthProvider):
|
|||
else:
|
||||
return "Authentication required. Please provide a valid OAuth2 Bearer token in the Authorization header"
|
||||
|
||||
async def _refresh_jwks(self) -> None:
|
||||
"""
|
||||
Refresh the JWKS cache.
|
||||
|
||||
This is a simple cache that expires after a certain amount of time (defined by `key_recheck_period`).
|
||||
If the cache is expired, we refresh the JWKS from the JWKS URI.
|
||||
|
||||
Notes: for Kubernetes which doesn't fully implement the OIDC protocol:
|
||||
* It doesn't have user authentication flows
|
||||
* It doesn't have refresh tokens
|
||||
"""
|
||||
async with self._jwks_lock:
|
||||
if self.config.jwks is None:
|
||||
raise ValueError("JWKS is not configured")
|
||||
if time.time() - self._jwks_at > self.config.jwks.key_recheck_period:
|
||||
headers = {}
|
||||
if self.config.jwks.token:
|
||||
headers["Authorization"] = f"Bearer {self.config.jwks.token}"
|
||||
verify = self.config.tls_cafile.as_posix() if self.config.tls_cafile else self.config.verify_tls
|
||||
async with httpx.AsyncClient(verify=verify) as client:
|
||||
res = await client.get(self.config.jwks.uri, timeout=5, headers=headers)
|
||||
res.raise_for_status()
|
||||
jwks_data = res.json()["keys"]
|
||||
updated = {}
|
||||
for k in jwks_data:
|
||||
kid = k["kid"]
|
||||
# Store the entire key object as it may be needed for different algorithms
|
||||
updated[kid] = k
|
||||
self._jwks = updated
|
||||
self._jwks_at = time.time()
|
||||
|
||||
|
||||
class CustomAuthProvider(AuthProvider):
|
||||
"""Custom authentication provider that uses an external endpoint."""
|
||||
|
|
|
|||
|
|
@ -10,10 +10,10 @@ from datetime import UTC, datetime, timedelta
|
|||
|
||||
from starlette.types import ASGIApp, Receive, Scope, Send
|
||||
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference, StorageBackendType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.providers.utils.kvstore.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.kvstore import _KVSTORE_BACKENDS, kvstore_impl
|
||||
|
||||
logger = get_logger(name=__name__, category="core::server")
|
||||
|
||||
|
|
@ -33,7 +33,7 @@ class QuotaMiddleware:
|
|||
def __init__(
|
||||
self,
|
||||
app: ASGIApp,
|
||||
kv_config: KVStoreConfig,
|
||||
kv_config: KVStoreReference,
|
||||
anonymous_max_requests: int,
|
||||
authenticated_max_requests: int,
|
||||
window_seconds: int = 86400,
|
||||
|
|
@ -45,15 +45,15 @@ class QuotaMiddleware:
|
|||
self.authenticated_max_requests = authenticated_max_requests
|
||||
self.window_seconds = window_seconds
|
||||
|
||||
if isinstance(self.kv_config, SqliteKVStoreConfig):
|
||||
logger.warning(
|
||||
"QuotaMiddleware: Using SQLite backend. Expiry/TTL is not enforced; cleanup is manual. "
|
||||
f"window_seconds={self.window_seconds}"
|
||||
)
|
||||
|
||||
async def _get_kv(self) -> KVStore:
|
||||
if self.kv is None:
|
||||
self.kv = await kvstore_impl(self.kv_config)
|
||||
backend_config = _KVSTORE_BACKENDS.get(self.kv_config.backend)
|
||||
if backend_config and backend_config.type == StorageBackendType.KV_SQLITE:
|
||||
logger.warning(
|
||||
"QuotaMiddleware: Using SQLite backend. Expiry/TTL is not enforced; cleanup is manual. "
|
||||
f"window_seconds={self.window_seconds}"
|
||||
)
|
||||
return self.kv
|
||||
|
||||
async def __call__(self, scope: Scope, receive: Receive, send: Send):
|
||||
|
|
|
|||
|
|
@ -36,7 +36,6 @@ from llama_stack.apis.common.responses import PaginatedResponse
|
|||
from llama_stack.core.access_control.access_control import AccessDeniedError
|
||||
from llama_stack.core.datatypes import (
|
||||
AuthenticationRequiredError,
|
||||
LoggingConfig,
|
||||
StackRunConfig,
|
||||
process_cors_config,
|
||||
)
|
||||
|
|
@ -53,19 +52,13 @@ from llama_stack.core.stack import (
|
|||
cast_image_name_to_string,
|
||||
replace_env_vars,
|
||||
)
|
||||
from llama_stack.core.telemetry import Telemetry
|
||||
from llama_stack.core.telemetry.tracing import CURRENT_TRACE_CONTEXT, setup_logger
|
||||
from llama_stack.core.utils.config import redact_sensitive_fields
|
||||
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
|
||||
from llama_stack.core.utils.context import preserve_contexts_async_generator
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.log import LoggingConfig, get_logger, setup_logging
|
||||
from llama_stack.providers.datatypes import Api
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.config import TelemetryConfig
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import (
|
||||
TelemetryAdapter,
|
||||
)
|
||||
from llama_stack.providers.utils.telemetry.tracing import (
|
||||
CURRENT_TRACE_CONTEXT,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
from .auth import AuthenticationMiddleware
|
||||
from .quota import QuotaMiddleware
|
||||
|
|
@ -138,6 +131,13 @@ def translate_exception(exc: Exception) -> HTTPException | RequestValidationErro
|
|||
return HTTPException(status_code=httpx.codes.NOT_IMPLEMENTED, detail=f"Not implemented: {str(exc)}")
|
||||
elif isinstance(exc, AuthenticationRequiredError):
|
||||
return HTTPException(status_code=httpx.codes.UNAUTHORIZED, detail=f"Authentication required: {str(exc)}")
|
||||
elif hasattr(exc, "status_code") and isinstance(getattr(exc, "status_code", None), int):
|
||||
# Handle provider SDK exceptions (e.g., OpenAI's APIStatusError and subclasses)
|
||||
# These include AuthenticationError (401), PermissionDeniedError (403), etc.
|
||||
# This preserves the actual HTTP status code from the provider
|
||||
status_code = exc.status_code
|
||||
detail = str(exc)
|
||||
return HTTPException(status_code=status_code, detail=detail)
|
||||
else:
|
||||
return HTTPException(
|
||||
status_code=httpx.codes.INTERNAL_SERVER_ERROR,
|
||||
|
|
@ -167,7 +167,9 @@ class StackApp(FastAPI):
|
|||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: StackApp):
|
||||
logger.info("Starting up")
|
||||
server_version = parse_version("llama-stack")
|
||||
|
||||
logger.info(f"Starting up Llama Stack server (version: {server_version})")
|
||||
assert app.stack is not None
|
||||
app.stack.create_registry_refresh_task()
|
||||
yield
|
||||
|
|
@ -177,7 +179,17 @@ async def lifespan(app: StackApp):
|
|||
|
||||
def is_streaming_request(func_name: str, request: Request, **kwargs):
|
||||
# TODO: pass the api method and punt it to the Protocol definition directly
|
||||
return kwargs.get("stream", False)
|
||||
# If there's a stream parameter at top level, use it
|
||||
if "stream" in kwargs:
|
||||
return kwargs["stream"]
|
||||
|
||||
# If there's a stream parameter inside a "params" parameter, e.g. openai_chat_completion() use it
|
||||
if "params" in kwargs:
|
||||
params = kwargs["params"]
|
||||
if hasattr(params, "stream"):
|
||||
return params.stream
|
||||
|
||||
return False
|
||||
|
||||
|
||||
async def maybe_await(value):
|
||||
|
|
@ -232,15 +244,31 @@ def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
|
|||
|
||||
await log_request_pre_validation(request)
|
||||
|
||||
test_context_token = None
|
||||
test_context_var = None
|
||||
reset_test_context_fn = None
|
||||
|
||||
# Use context manager with both provider data and auth attributes
|
||||
with request_provider_data_context(request.headers, user):
|
||||
if os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE"):
|
||||
from llama_stack.core.testing_context import (
|
||||
TEST_CONTEXT,
|
||||
reset_test_context,
|
||||
sync_test_context_from_provider_data,
|
||||
)
|
||||
|
||||
test_context_token = sync_test_context_from_provider_data()
|
||||
test_context_var = TEST_CONTEXT
|
||||
reset_test_context_fn = reset_test_context
|
||||
|
||||
is_streaming = is_streaming_request(func.__name__, request, **kwargs)
|
||||
|
||||
try:
|
||||
if is_streaming:
|
||||
gen = preserve_contexts_async_generator(
|
||||
sse_generator(func(**kwargs)), [CURRENT_TRACE_CONTEXT, PROVIDER_DATA_VAR]
|
||||
)
|
||||
context_vars = [CURRENT_TRACE_CONTEXT, PROVIDER_DATA_VAR]
|
||||
if test_context_var is not None:
|
||||
context_vars.append(test_context_var)
|
||||
gen = preserve_contexts_async_generator(sse_generator(func(**kwargs)), context_vars)
|
||||
return StreamingResponse(gen, media_type="text/event-stream")
|
||||
else:
|
||||
value = func(**kwargs)
|
||||
|
|
@ -258,6 +286,9 @@ def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
|
|||
else:
|
||||
logger.error(f"Error executing endpoint {route=} {method=}: {str(e)}")
|
||||
raise translate_exception(e) from e
|
||||
finally:
|
||||
if test_context_token is not None and reset_test_context_fn is not None:
|
||||
reset_test_context_fn(test_context_token)
|
||||
|
||||
sig = inspect.signature(func)
|
||||
|
||||
|
|
@ -338,6 +369,9 @@ def create_app() -> StackApp:
|
|||
Returns:
|
||||
Configured StackApp instance.
|
||||
"""
|
||||
# Initialize logging from environment variables first
|
||||
setup_logging()
|
||||
|
||||
config_file = os.getenv("LLAMA_STACK_CONFIG")
|
||||
if config_file is None:
|
||||
raise ValueError("LLAMA_STACK_CONFIG environment variable is required")
|
||||
|
|
@ -409,10 +443,8 @@ def create_app() -> StackApp:
|
|||
if cors_config:
|
||||
app.add_middleware(CORSMiddleware, **cors_config.model_dump())
|
||||
|
||||
if Api.telemetry in impls:
|
||||
setup_logger(impls[Api.telemetry])
|
||||
else:
|
||||
setup_logger(TelemetryAdapter(TelemetryConfig(), {}))
|
||||
if config.telemetry.enabled:
|
||||
setup_logger(Telemetry())
|
||||
|
||||
# Load external APIs if configured
|
||||
external_apis = load_external_apis(config)
|
||||
|
|
@ -470,7 +502,8 @@ def create_app() -> StackApp:
|
|||
app.exception_handler(RequestValidationError)(global_exception_handler)
|
||||
app.exception_handler(Exception)(global_exception_handler)
|
||||
|
||||
app.add_middleware(TracingMiddleware, impls=impls, external_apis=external_apis)
|
||||
if config.telemetry.enabled:
|
||||
app.add_middleware(TracingMiddleware, impls=impls, external_apis=external_apis)
|
||||
|
||||
return app
|
||||
|
||||
|
|
|
|||
|
|
@ -7,8 +7,8 @@ from aiohttp import hdrs
|
|||
|
||||
from llama_stack.core.external import ExternalApiSpec
|
||||
from llama_stack.core.server.routes import find_matching_route, initialize_route_impls
|
||||
from llama_stack.core.telemetry.tracing import end_trace, start_trace
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.telemetry.tracing import end_trace, start_trace
|
||||
|
||||
logger = get_logger(name=__name__, category="core::server")
|
||||
|
||||
|
|
|
|||
|
|
@ -33,16 +33,25 @@ from llama_stack.apis.shields import Shields
|
|||
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDBs
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl
|
||||
from llama_stack.core.datatypes import Provider, StackRunConfig
|
||||
from llama_stack.core.datatypes import Provider, SafetyConfig, StackRunConfig, VectorStoresConfig
|
||||
from llama_stack.core.distribution import get_provider_registry
|
||||
from llama_stack.core.inspect import DistributionInspectConfig, DistributionInspectImpl
|
||||
from llama_stack.core.prompts.prompts import PromptServiceConfig, PromptServiceImpl
|
||||
from llama_stack.core.providers import ProviderImpl, ProviderImplConfig
|
||||
from llama_stack.core.resolver import ProviderRegistry, resolve_impls
|
||||
from llama_stack.core.routing_tables.common import CommonRoutingTableImpl
|
||||
from llama_stack.core.storage.datatypes import (
|
||||
InferenceStoreReference,
|
||||
KVStoreReference,
|
||||
ServerStoresConfig,
|
||||
SqliteKVStoreConfig,
|
||||
SqliteSqlStoreConfig,
|
||||
SqlStoreReference,
|
||||
StorageBackendConfig,
|
||||
StorageConfig,
|
||||
)
|
||||
from llama_stack.core.store.registry import create_dist_registry
|
||||
from llama_stack.core.utils.dynamic import instantiate_class_type
|
||||
from llama_stack.log import get_logger
|
||||
|
|
@ -53,7 +62,6 @@ logger = get_logger(name=__name__, category="core")
|
|||
|
||||
class LlamaStack(
|
||||
Providers,
|
||||
VectorDBs,
|
||||
Inference,
|
||||
Agents,
|
||||
Safety,
|
||||
|
|
@ -83,7 +91,6 @@ class LlamaStack(
|
|||
RESOURCES = [
|
||||
("models", Api.models, "register_model", "list_models"),
|
||||
("shields", Api.shields, "register_shield", "list_shields"),
|
||||
("vector_dbs", Api.vector_dbs, "register_vector_db", "list_vector_dbs"),
|
||||
("datasets", Api.datasets, "register_dataset", "list_datasets"),
|
||||
(
|
||||
"scoring_fns",
|
||||
|
|
@ -103,7 +110,7 @@ TEST_RECORDING_CONTEXT = None
|
|||
|
||||
async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
|
||||
for rsrc, api, register_method, list_method in RESOURCES:
|
||||
objects = getattr(run_config, rsrc)
|
||||
objects = getattr(run_config.registered_resources, rsrc)
|
||||
if api not in impls:
|
||||
continue
|
||||
|
||||
|
|
@ -132,6 +139,66 @@ async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
|
|||
)
|
||||
|
||||
|
||||
async def validate_vector_stores_config(vector_stores_config: VectorStoresConfig | None, impls: dict[Api, Any]):
|
||||
"""Validate vector stores configuration."""
|
||||
if vector_stores_config is None:
|
||||
return
|
||||
|
||||
default_embedding_model = vector_stores_config.default_embedding_model
|
||||
if default_embedding_model is None:
|
||||
return
|
||||
|
||||
provider_id = default_embedding_model.provider_id
|
||||
model_id = default_embedding_model.model_id
|
||||
default_model_id = f"{provider_id}/{model_id}"
|
||||
|
||||
if Api.models not in impls:
|
||||
raise ValueError(f"Models API is not available but vector_stores config requires model '{default_model_id}'")
|
||||
|
||||
models_impl = impls[Api.models]
|
||||
response = await models_impl.list_models()
|
||||
models_list = {m.identifier: m for m in response.data if m.model_type == "embedding"}
|
||||
|
||||
default_model = models_list.get(default_model_id)
|
||||
if default_model is None:
|
||||
raise ValueError(f"Embedding model '{default_model_id}' not found. Available embedding models: {models_list}")
|
||||
|
||||
embedding_dimension = default_model.metadata.get("embedding_dimension")
|
||||
if embedding_dimension is None:
|
||||
raise ValueError(f"Embedding model '{default_model_id}' is missing 'embedding_dimension' in metadata")
|
||||
|
||||
try:
|
||||
int(embedding_dimension)
|
||||
except ValueError as err:
|
||||
raise ValueError(f"Embedding dimension '{embedding_dimension}' cannot be converted to an integer") from err
|
||||
|
||||
logger.debug(f"Validated default embedding model: {default_model_id} (dimension: {embedding_dimension})")
|
||||
|
||||
|
||||
async def validate_safety_config(safety_config: SafetyConfig | None, impls: dict[Api, Any]):
|
||||
if safety_config is None or safety_config.default_shield_id is None:
|
||||
return
|
||||
|
||||
if Api.shields not in impls:
|
||||
raise ValueError("Safety configuration requires the shields API to be enabled")
|
||||
|
||||
if Api.safety not in impls:
|
||||
raise ValueError("Safety configuration requires the safety API to be enabled")
|
||||
|
||||
shields_impl = impls[Api.shields]
|
||||
response = await shields_impl.list_shields()
|
||||
shields_by_id = {shield.identifier: shield for shield in response.data}
|
||||
|
||||
default_shield_id = safety_config.default_shield_id
|
||||
# don't validate if there are no shields registered
|
||||
if shields_by_id and default_shield_id not in shields_by_id:
|
||||
available = sorted(shields_by_id)
|
||||
raise ValueError(
|
||||
f"Configured default_shield_id '{default_shield_id}' not found among registered shields."
|
||||
f" Available shields: {available}"
|
||||
)
|
||||
|
||||
|
||||
class EnvVarError(Exception):
|
||||
def __init__(self, var_name: str, path: str = ""):
|
||||
self.var_name = var_name
|
||||
|
|
@ -306,6 +373,25 @@ def add_internal_implementations(impls: dict[Api, Any], run_config: StackRunConf
|
|||
impls[Api.conversations] = conversations_impl
|
||||
|
||||
|
||||
def _initialize_storage(run_config: StackRunConfig):
|
||||
kv_backends: dict[str, StorageBackendConfig] = {}
|
||||
sql_backends: dict[str, StorageBackendConfig] = {}
|
||||
for backend_name, backend_config in run_config.storage.backends.items():
|
||||
type = backend_config.type.value
|
||||
if type.startswith("kv_"):
|
||||
kv_backends[backend_name] = backend_config
|
||||
elif type.startswith("sql_"):
|
||||
sql_backends[backend_name] = backend_config
|
||||
else:
|
||||
raise ValueError(f"Unknown storage backend type: {type}")
|
||||
|
||||
from llama_stack.providers.utils.kvstore.kvstore import register_kvstore_backends
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
|
||||
|
||||
register_kvstore_backends(kv_backends)
|
||||
register_sqlstore_backends(sql_backends)
|
||||
|
||||
|
||||
class Stack:
|
||||
def __init__(self, run_config: StackRunConfig, provider_registry: ProviderRegistry | None = None):
|
||||
self.run_config = run_config
|
||||
|
|
@ -316,22 +402,31 @@ class Stack:
|
|||
# asked for in the run config.
|
||||
async def initialize(self):
|
||||
if "LLAMA_STACK_TEST_INFERENCE_MODE" in os.environ:
|
||||
from llama_stack.testing.inference_recorder import setup_inference_recording
|
||||
from llama_stack.testing.api_recorder import setup_api_recording
|
||||
|
||||
global TEST_RECORDING_CONTEXT
|
||||
TEST_RECORDING_CONTEXT = setup_inference_recording()
|
||||
TEST_RECORDING_CONTEXT = setup_api_recording()
|
||||
if TEST_RECORDING_CONTEXT:
|
||||
TEST_RECORDING_CONTEXT.__enter__()
|
||||
logger.info(f"Inference recording enabled: mode={os.environ.get('LLAMA_STACK_TEST_INFERENCE_MODE')}")
|
||||
logger.info(f"API recording enabled: mode={os.environ.get('LLAMA_STACK_TEST_INFERENCE_MODE')}")
|
||||
|
||||
dist_registry, _ = await create_dist_registry(self.run_config.metadata_store, self.run_config.image_name)
|
||||
_initialize_storage(self.run_config)
|
||||
stores = self.run_config.storage.stores
|
||||
if not stores.metadata:
|
||||
raise ValueError("storage.stores.metadata must be configured with a kv_* backend")
|
||||
dist_registry, _ = await create_dist_registry(stores.metadata, self.run_config.image_name)
|
||||
policy = self.run_config.server.auth.access_policy if self.run_config.server.auth else []
|
||||
impls = await resolve_impls(
|
||||
self.run_config, self.provider_registry or get_provider_registry(self.run_config), dist_registry, policy
|
||||
)
|
||||
|
||||
# Add internal implementations after all other providers are resolved
|
||||
add_internal_implementations(impls, self.run_config)
|
||||
internal_impls = {}
|
||||
add_internal_implementations(internal_impls, self.run_config)
|
||||
|
||||
impls = await resolve_impls(
|
||||
self.run_config,
|
||||
self.provider_registry or get_provider_registry(self.run_config),
|
||||
dist_registry,
|
||||
policy,
|
||||
internal_impls,
|
||||
)
|
||||
|
||||
if Api.prompts in impls:
|
||||
await impls[Api.prompts].initialize()
|
||||
|
|
@ -339,8 +434,9 @@ class Stack:
|
|||
await impls[Api.conversations].initialize()
|
||||
|
||||
await register_resources(self.run_config, impls)
|
||||
|
||||
await refresh_registry_once(impls)
|
||||
await validate_vector_stores_config(self.run_config.vector_stores, impls)
|
||||
await validate_safety_config(self.run_config.safety, impls)
|
||||
self.impls = impls
|
||||
|
||||
def create_registry_refresh_task(self):
|
||||
|
|
@ -381,7 +477,7 @@ class Stack:
|
|||
try:
|
||||
TEST_RECORDING_CONTEXT.__exit__(None, None, None)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during inference recording cleanup: {e}")
|
||||
logger.error(f"Error during API recording cleanup: {e}")
|
||||
|
||||
global REGISTRY_REFRESH_TASK
|
||||
if REGISTRY_REFRESH_TASK:
|
||||
|
|
@ -460,5 +556,17 @@ def run_config_from_adhoc_config_spec(
|
|||
image_name="distro-test",
|
||||
apis=list(provider_configs_by_api.keys()),
|
||||
providers=provider_configs_by_api,
|
||||
storage=StorageConfig(
|
||||
backends={
|
||||
"kv_default": SqliteKVStoreConfig(db_path=f"{distro_dir}/kvstore.db"),
|
||||
"sql_default": SqliteSqlStoreConfig(db_path=f"{distro_dir}/sql_store.db"),
|
||||
},
|
||||
stores=ServerStoresConfig(
|
||||
metadata=KVStoreReference(backend="kv_default", namespace="registry"),
|
||||
inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"),
|
||||
conversations=SqlStoreReference(backend="sql_default", table_name="openai_conversations"),
|
||||
prompts=KVStoreReference(backend="kv_default", namespace="prompts"),
|
||||
),
|
||||
),
|
||||
)
|
||||
return config
|
||||
|
|
|
|||
287
llama_stack/core/storage/datatypes.py
Normal file
287
llama_stack/core/storage/datatypes.py
Normal file
|
|
@ -0,0 +1,287 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import re
|
||||
from abc import abstractmethod
|
||||
from enum import StrEnum
|
||||
from pathlib import Path
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
|
||||
class StorageBackendType(StrEnum):
|
||||
KV_REDIS = "kv_redis"
|
||||
KV_SQLITE = "kv_sqlite"
|
||||
KV_POSTGRES = "kv_postgres"
|
||||
KV_MONGODB = "kv_mongodb"
|
||||
SQL_SQLITE = "sql_sqlite"
|
||||
SQL_POSTGRES = "sql_postgres"
|
||||
|
||||
|
||||
class CommonConfig(BaseModel):
|
||||
namespace: str | None = Field(
|
||||
default=None,
|
||||
description="All keys will be prefixed with this namespace",
|
||||
)
|
||||
|
||||
|
||||
class RedisKVStoreConfig(CommonConfig):
|
||||
type: Literal[StorageBackendType.KV_REDIS] = StorageBackendType.KV_REDIS
|
||||
host: str = "localhost"
|
||||
port: int = 6379
|
||||
|
||||
@property
|
||||
def url(self) -> str:
|
||||
return f"redis://{self.host}:{self.port}"
|
||||
|
||||
@classmethod
|
||||
def pip_packages(cls) -> list[str]:
|
||||
return ["redis"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls):
|
||||
return {
|
||||
"type": StorageBackendType.KV_REDIS.value,
|
||||
"host": "${env.REDIS_HOST:=localhost}",
|
||||
"port": "${env.REDIS_PORT:=6379}",
|
||||
}
|
||||
|
||||
|
||||
class SqliteKVStoreConfig(CommonConfig):
|
||||
type: Literal[StorageBackendType.KV_SQLITE] = StorageBackendType.KV_SQLITE
|
||||
db_path: str = Field(
|
||||
description="File path for the sqlite database",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def pip_packages(cls) -> list[str]:
|
||||
return ["aiosqlite"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, db_name: str = "kvstore.db"):
|
||||
return {
|
||||
"type": StorageBackendType.KV_SQLITE.value,
|
||||
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
|
||||
}
|
||||
|
||||
|
||||
class PostgresKVStoreConfig(CommonConfig):
|
||||
type: Literal[StorageBackendType.KV_POSTGRES] = StorageBackendType.KV_POSTGRES
|
||||
host: str = "localhost"
|
||||
port: int | str = 5432
|
||||
db: str = "llamastack"
|
||||
user: str
|
||||
password: str | None = None
|
||||
ssl_mode: str | None = None
|
||||
ca_cert_path: str | None = None
|
||||
table_name: str = "llamastack_kvstore"
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, table_name: str = "llamastack_kvstore", **kwargs):
|
||||
return {
|
||||
"type": StorageBackendType.KV_POSTGRES.value,
|
||||
"host": "${env.POSTGRES_HOST:=localhost}",
|
||||
"port": "${env.POSTGRES_PORT:=5432}",
|
||||
"db": "${env.POSTGRES_DB:=llamastack}",
|
||||
"user": "${env.POSTGRES_USER:=llamastack}",
|
||||
"password": "${env.POSTGRES_PASSWORD:=llamastack}",
|
||||
"table_name": "${env.POSTGRES_TABLE_NAME:=" + table_name + "}",
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@field_validator("table_name")
|
||||
def validate_table_name(cls, v: str) -> str:
|
||||
# PostgreSQL identifiers rules:
|
||||
# - Must start with a letter or underscore
|
||||
# - Can contain letters, numbers, and underscores
|
||||
# - Maximum length is 63 bytes
|
||||
pattern = r"^[a-zA-Z_][a-zA-Z0-9_]*$"
|
||||
if not re.match(pattern, v):
|
||||
raise ValueError(
|
||||
"Invalid table name. Must start with letter or underscore and contain only letters, numbers, and underscores"
|
||||
)
|
||||
if len(v) > 63:
|
||||
raise ValueError("Table name must be less than 63 characters")
|
||||
return v
|
||||
|
||||
@classmethod
|
||||
def pip_packages(cls) -> list[str]:
|
||||
return ["psycopg2-binary"]
|
||||
|
||||
|
||||
class MongoDBKVStoreConfig(CommonConfig):
|
||||
type: Literal[StorageBackendType.KV_MONGODB] = StorageBackendType.KV_MONGODB
|
||||
host: str = "localhost"
|
||||
port: int = 27017
|
||||
db: str = "llamastack"
|
||||
user: str | None = None
|
||||
password: str | None = None
|
||||
collection_name: str = "llamastack_kvstore"
|
||||
|
||||
@classmethod
|
||||
def pip_packages(cls) -> list[str]:
|
||||
return ["pymongo"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, collection_name: str = "llamastack_kvstore"):
|
||||
return {
|
||||
"type": StorageBackendType.KV_MONGODB.value,
|
||||
"host": "${env.MONGODB_HOST:=localhost}",
|
||||
"port": "${env.MONGODB_PORT:=5432}",
|
||||
"db": "${env.MONGODB_DB}",
|
||||
"user": "${env.MONGODB_USER}",
|
||||
"password": "${env.MONGODB_PASSWORD}",
|
||||
"collection_name": "${env.MONGODB_COLLECTION_NAME:=" + collection_name + "}",
|
||||
}
|
||||
|
||||
|
||||
class SqlAlchemySqlStoreConfig(BaseModel):
|
||||
@property
|
||||
@abstractmethod
|
||||
def engine_str(self) -> str: ...
|
||||
|
||||
# TODO: move this when we have a better way to specify dependencies with internal APIs
|
||||
@classmethod
|
||||
def pip_packages(cls) -> list[str]:
|
||||
return ["sqlalchemy[asyncio]"]
|
||||
|
||||
|
||||
class SqliteSqlStoreConfig(SqlAlchemySqlStoreConfig):
|
||||
type: Literal[StorageBackendType.SQL_SQLITE] = StorageBackendType.SQL_SQLITE
|
||||
db_path: str = Field(
|
||||
description="Database path, e.g. ~/.llama/distributions/ollama/sqlstore.db",
|
||||
)
|
||||
|
||||
@property
|
||||
def engine_str(self) -> str:
|
||||
return "sqlite+aiosqlite:///" + Path(self.db_path).expanduser().as_posix()
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, db_name: str = "sqlstore.db"):
|
||||
return {
|
||||
"type": StorageBackendType.SQL_SQLITE.value,
|
||||
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def pip_packages(cls) -> list[str]:
|
||||
return super().pip_packages() + ["aiosqlite"]
|
||||
|
||||
|
||||
class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig):
|
||||
type: Literal[StorageBackendType.SQL_POSTGRES] = StorageBackendType.SQL_POSTGRES
|
||||
host: str = "localhost"
|
||||
port: int | str = 5432
|
||||
db: str = "llamastack"
|
||||
user: str
|
||||
password: str | None = None
|
||||
|
||||
@property
|
||||
def engine_str(self) -> str:
|
||||
return f"postgresql+asyncpg://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}"
|
||||
|
||||
@classmethod
|
||||
def pip_packages(cls) -> list[str]:
|
||||
return super().pip_packages() + ["asyncpg"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs):
|
||||
return {
|
||||
"type": StorageBackendType.SQL_POSTGRES.value,
|
||||
"host": "${env.POSTGRES_HOST:=localhost}",
|
||||
"port": "${env.POSTGRES_PORT:=5432}",
|
||||
"db": "${env.POSTGRES_DB:=llamastack}",
|
||||
"user": "${env.POSTGRES_USER:=llamastack}",
|
||||
"password": "${env.POSTGRES_PASSWORD:=llamastack}",
|
||||
}
|
||||
|
||||
|
||||
# reference = (backend_name, table_name)
|
||||
class SqlStoreReference(BaseModel):
|
||||
"""A reference to a 'SQL-like' persistent store. A table name must be provided."""
|
||||
|
||||
table_name: str = Field(
|
||||
description="Name of the table to use for the SqlStore",
|
||||
)
|
||||
|
||||
backend: str = Field(
|
||||
description="Name of backend from storage.backends",
|
||||
)
|
||||
|
||||
|
||||
# reference = (backend_name, namespace)
|
||||
class KVStoreReference(BaseModel):
|
||||
"""A reference to a 'key-value' persistent store. A namespace must be provided."""
|
||||
|
||||
namespace: str = Field(
|
||||
description="Key prefix for KVStore backends",
|
||||
)
|
||||
|
||||
backend: str = Field(
|
||||
description="Name of backend from storage.backends",
|
||||
)
|
||||
|
||||
|
||||
StorageBackendConfig = Annotated[
|
||||
RedisKVStoreConfig
|
||||
| SqliteKVStoreConfig
|
||||
| PostgresKVStoreConfig
|
||||
| MongoDBKVStoreConfig
|
||||
| SqliteSqlStoreConfig
|
||||
| PostgresSqlStoreConfig,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
||||
|
||||
class InferenceStoreReference(SqlStoreReference):
|
||||
"""Inference store configuration with queue tuning."""
|
||||
|
||||
max_write_queue_size: int = Field(
|
||||
default=10000,
|
||||
description="Max queued writes for inference store",
|
||||
)
|
||||
num_writers: int = Field(
|
||||
default=4,
|
||||
description="Number of concurrent background writers",
|
||||
)
|
||||
|
||||
|
||||
class ResponsesStoreReference(InferenceStoreReference):
|
||||
"""Responses store configuration with queue tuning."""
|
||||
|
||||
|
||||
class ServerStoresConfig(BaseModel):
|
||||
metadata: KVStoreReference | None = Field(
|
||||
default=None,
|
||||
description="Metadata store configuration (uses KV backend)",
|
||||
)
|
||||
inference: InferenceStoreReference | None = Field(
|
||||
default=None,
|
||||
description="Inference store configuration (uses SQL backend)",
|
||||
)
|
||||
conversations: SqlStoreReference | None = Field(
|
||||
default=None,
|
||||
description="Conversations store configuration (uses SQL backend)",
|
||||
)
|
||||
responses: ResponsesStoreReference | None = Field(
|
||||
default=None,
|
||||
description="Responses store configuration (uses SQL backend)",
|
||||
)
|
||||
prompts: KVStoreReference | None = Field(
|
||||
default=None,
|
||||
description="Prompts store configuration (uses KV backend)",
|
||||
)
|
||||
|
||||
|
||||
class StorageConfig(BaseModel):
|
||||
backends: dict[str, StorageBackendConfig] = Field(
|
||||
description="Named backend configurations (e.g., 'default', 'cache')",
|
||||
)
|
||||
stores: ServerStoresConfig = Field(
|
||||
default_factory=lambda: ServerStoresConfig(),
|
||||
description="Named references to storage backends used by the stack core",
|
||||
)
|
||||
|
|
@ -11,10 +11,9 @@ from typing import Protocol
|
|||
import pydantic
|
||||
|
||||
from llama_stack.core.datatypes import RoutableObjectWithProvider
|
||||
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
|
||||
logger = get_logger(__name__, category="core::registry")
|
||||
|
||||
|
|
@ -96,11 +95,10 @@ class DiskDistributionRegistry(DistributionRegistry):
|
|||
|
||||
async def register(self, obj: RoutableObjectWithProvider) -> bool:
|
||||
existing_obj = await self.get(obj.type, obj.identifier)
|
||||
# dont register if the object's providerid already exists
|
||||
if existing_obj and existing_obj.provider_id == obj.provider_id:
|
||||
if existing_obj and existing_obj != obj:
|
||||
raise ValueError(
|
||||
f"Provider '{obj.provider_id}' is already registered."
|
||||
f"Unregister the existing provider first before registering it again."
|
||||
f"Object of type '{obj.type}' and identifier '{obj.identifier}' already exists. "
|
||||
"Unregister it first if you want to replace it."
|
||||
)
|
||||
|
||||
await self.kvstore.set(
|
||||
|
|
@ -192,16 +190,10 @@ class CachedDiskDistributionRegistry(DiskDistributionRegistry):
|
|||
|
||||
|
||||
async def create_dist_registry(
|
||||
metadata_store: KVStoreConfig | None,
|
||||
image_name: str,
|
||||
metadata_store: KVStoreReference, image_name: str
|
||||
) -> tuple[CachedDiskDistributionRegistry, KVStore]:
|
||||
# instantiate kvstore for storing and retrieving distribution metadata
|
||||
if metadata_store:
|
||||
dist_kvstore = await kvstore_impl(metadata_store)
|
||||
else:
|
||||
dist_kvstore = await kvstore_impl(
|
||||
SqliteKVStoreConfig(db_path=(DISTRIBS_BASE_DIR / image_name / "kvstore.db").as_posix())
|
||||
)
|
||||
dist_kvstore = await kvstore_impl(metadata_store)
|
||||
dist_registry = CachedDiskDistributionRegistry(dist_kvstore)
|
||||
await dist_registry.initialize()
|
||||
return dist_registry, dist_kvstore
|
||||
|
|
|
|||
32
llama_stack/core/telemetry/__init__.py
Normal file
32
llama_stack/core/telemetry/__init__.py
Normal file
|
|
@ -0,0 +1,32 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .telemetry import Telemetry
|
||||
from .trace_protocol import serialize_value, trace_protocol
|
||||
from .tracing import (
|
||||
CURRENT_TRACE_CONTEXT,
|
||||
ROOT_SPAN_MARKERS,
|
||||
end_trace,
|
||||
enqueue_event,
|
||||
get_current_span,
|
||||
setup_logger,
|
||||
span,
|
||||
start_trace,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"Telemetry",
|
||||
"trace_protocol",
|
||||
"serialize_value",
|
||||
"CURRENT_TRACE_CONTEXT",
|
||||
"ROOT_SPAN_MARKERS",
|
||||
"end_trace",
|
||||
"enqueue_event",
|
||||
"get_current_span",
|
||||
"setup_logger",
|
||||
"span",
|
||||
"start_trace",
|
||||
]
|
||||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import datetime
|
||||
import os
|
||||
import threading
|
||||
from typing import Any
|
||||
|
||||
|
|
@ -13,43 +13,24 @@ from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExp
|
|||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
|
||||
from opentelemetry.sdk.resources import Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor
|
||||
from opentelemetry.semconv.resource import ResourceAttributes
|
||||
from opentelemetry.trace.propagation.tracecontext import TraceContextTextMapPropagator
|
||||
|
||||
from llama_stack.apis.telemetry import (
|
||||
Event,
|
||||
MetricEvent,
|
||||
MetricLabelMatcher,
|
||||
MetricQueryType,
|
||||
QueryCondition,
|
||||
QueryMetricsResponse,
|
||||
QuerySpanTreeResponse,
|
||||
QueryTracesResponse,
|
||||
Span,
|
||||
SpanEndPayload,
|
||||
SpanStartPayload,
|
||||
SpanStatus,
|
||||
StructuredLogEvent,
|
||||
Telemetry,
|
||||
Trace,
|
||||
UnstructuredLogEvent,
|
||||
)
|
||||
from llama_stack.core.datatypes import Api
|
||||
from llama_stack.apis.telemetry import (
|
||||
Telemetry as TelemetryBase,
|
||||
)
|
||||
from llama_stack.core.telemetry.tracing import ROOT_SPAN_MARKERS
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.console_span_processor import (
|
||||
ConsoleSpanProcessor,
|
||||
)
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.sqlite_span_processor import (
|
||||
SQLiteSpanProcessor,
|
||||
)
|
||||
from llama_stack.providers.utils.telemetry.dataset_mixin import TelemetryDatasetMixin
|
||||
from llama_stack.providers.utils.telemetry.sqlite_trace_store import SQLiteTraceStore
|
||||
from llama_stack.providers.utils.telemetry.tracing import ROOT_SPAN_MARKERS
|
||||
|
||||
from .config import TelemetryConfig, TelemetrySink
|
||||
|
||||
_GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
|
||||
"active_spans": {},
|
||||
|
|
@ -68,66 +49,48 @@ def is_tracing_enabled(tracer):
|
|||
return span.is_recording()
|
||||
|
||||
|
||||
class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
||||
def __init__(self, config: TelemetryConfig, deps: dict[Api, Any]) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = deps.get(Api.datasetio)
|
||||
class Telemetry(TelemetryBase):
|
||||
def __init__(self) -> None:
|
||||
self.meter = None
|
||||
|
||||
resource = Resource.create(
|
||||
{
|
||||
ResourceAttributes.SERVICE_NAME: self.config.service_name,
|
||||
}
|
||||
)
|
||||
|
||||
global _TRACER_PROVIDER
|
||||
# Initialize the correct span processor based on the provider state.
|
||||
# This is needed since once the span processor is set, it cannot be unset.
|
||||
# Recreating the telemetry adapter multiple times will result in duplicate span processors.
|
||||
# Since the library client can be recreated multiple times in a notebook,
|
||||
# the kernel will hold on to the span processor and cause duplicate spans to be written.
|
||||
if _TRACER_PROVIDER is None:
|
||||
provider = TracerProvider(resource=resource)
|
||||
trace.set_tracer_provider(provider)
|
||||
_TRACER_PROVIDER = provider
|
||||
if os.environ.get("OTEL_EXPORTER_OTLP_ENDPOINT"):
|
||||
if _TRACER_PROVIDER is None:
|
||||
provider = TracerProvider()
|
||||
trace.set_tracer_provider(provider)
|
||||
_TRACER_PROVIDER = provider
|
||||
|
||||
# Use single OTLP endpoint for all telemetry signals
|
||||
if TelemetrySink.OTEL_TRACE in self.config.sinks or TelemetrySink.OTEL_METRIC in self.config.sinks:
|
||||
if self.config.otel_exporter_otlp_endpoint is None:
|
||||
raise ValueError(
|
||||
"otel_exporter_otlp_endpoint is required when OTEL_TRACE or OTEL_METRIC is enabled"
|
||||
)
|
||||
# Use single OTLP endpoint for all telemetry signals
|
||||
|
||||
# Let OpenTelemetry SDK handle endpoint construction automatically
|
||||
# The SDK will read OTEL_EXPORTER_OTLP_ENDPOINT and construct appropriate URLs
|
||||
# https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
|
||||
if TelemetrySink.OTEL_TRACE in self.config.sinks:
|
||||
span_exporter = OTLPSpanExporter()
|
||||
span_processor = BatchSpanProcessor(span_exporter)
|
||||
trace.get_tracer_provider().add_span_processor(span_processor)
|
||||
span_exporter = OTLPSpanExporter()
|
||||
span_processor = BatchSpanProcessor(span_exporter)
|
||||
trace.get_tracer_provider().add_span_processor(span_processor)
|
||||
|
||||
if TelemetrySink.OTEL_METRIC in self.config.sinks:
|
||||
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
|
||||
metric_provider = MeterProvider(resource=resource, metric_readers=[metric_reader])
|
||||
metrics.set_meter_provider(metric_provider)
|
||||
|
||||
if TelemetrySink.SQLITE in self.config.sinks:
|
||||
trace.get_tracer_provider().add_span_processor(SQLiteSpanProcessor(self.config.sqlite_db_path))
|
||||
if TelemetrySink.CONSOLE in self.config.sinks:
|
||||
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor(print_attributes=True))
|
||||
|
||||
if TelemetrySink.OTEL_METRIC in self.config.sinks:
|
||||
self.meter = metrics.get_meter(__name__)
|
||||
if TelemetrySink.SQLITE in self.config.sinks:
|
||||
self.trace_store = SQLiteTraceStore(self.config.sqlite_db_path)
|
||||
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
|
||||
metric_provider = MeterProvider(metric_readers=[metric_reader])
|
||||
metrics.set_meter_provider(metric_provider)
|
||||
self.is_otel_endpoint_set = True
|
||||
else:
|
||||
logger.warning("OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry")
|
||||
self.is_otel_endpoint_set = False
|
||||
|
||||
self.meter = metrics.get_meter(__name__)
|
||||
self._lock = _global_lock
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
trace.get_tracer_provider().force_flush()
|
||||
if self.is_otel_endpoint_set:
|
||||
trace.get_tracer_provider().force_flush()
|
||||
|
||||
async def log_event(self, event: Event, ttl_seconds: int = 604800) -> None:
|
||||
if isinstance(event, UnstructuredLogEvent):
|
||||
|
|
@ -139,47 +102,6 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
else:
|
||||
raise ValueError(f"Unknown event type: {event}")
|
||||
|
||||
async def query_metrics(
|
||||
self,
|
||||
metric_name: str,
|
||||
start_time: int,
|
||||
end_time: int | None = None,
|
||||
granularity: str | None = None,
|
||||
query_type: MetricQueryType = MetricQueryType.RANGE,
|
||||
label_matchers: list[MetricLabelMatcher] | None = None,
|
||||
) -> QueryMetricsResponse:
|
||||
"""Query metrics from the telemetry store.
|
||||
|
||||
Args:
|
||||
metric_name: The name of the metric to query (e.g., "prompt_tokens")
|
||||
start_time: Start time as Unix timestamp
|
||||
end_time: End time as Unix timestamp (defaults to now if None)
|
||||
granularity: Time granularity for aggregation
|
||||
query_type: Type of query (RANGE or INSTANT)
|
||||
label_matchers: Label filters to apply
|
||||
|
||||
Returns:
|
||||
QueryMetricsResponse with metric time series data
|
||||
"""
|
||||
# Convert timestamps to datetime objects
|
||||
start_dt = datetime.datetime.fromtimestamp(start_time, datetime.UTC)
|
||||
end_dt = datetime.datetime.fromtimestamp(end_time, datetime.UTC) if end_time else None
|
||||
|
||||
# Use SQLite trace store if available
|
||||
if hasattr(self, "trace_store") and self.trace_store:
|
||||
return await self.trace_store.query_metrics(
|
||||
metric_name=metric_name,
|
||||
start_time=start_dt,
|
||||
end_time=end_dt,
|
||||
granularity=granularity,
|
||||
query_type=query_type,
|
||||
label_matchers=label_matchers,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"In order to query_metrics, you must have {TelemetrySink.SQLITE} set in your telemetry sinks"
|
||||
)
|
||||
|
||||
def _log_unstructured(self, event: UnstructuredLogEvent, ttl_seconds: int) -> None:
|
||||
with self._lock:
|
||||
# Use global storage instead of instance storage
|
||||
|
|
@ -326,39 +248,3 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
_GLOBAL_STORAGE["active_spans"].pop(span_id, None)
|
||||
else:
|
||||
raise ValueError(f"Unknown structured log event: {event}")
|
||||
|
||||
async def query_traces(
|
||||
self,
|
||||
attribute_filters: list[QueryCondition] | None = None,
|
||||
limit: int | None = 100,
|
||||
offset: int | None = 0,
|
||||
order_by: list[str] | None = None,
|
||||
) -> QueryTracesResponse:
|
||||
return QueryTracesResponse(
|
||||
data=await self.trace_store.query_traces(
|
||||
attribute_filters=attribute_filters,
|
||||
limit=limit,
|
||||
offset=offset,
|
||||
order_by=order_by,
|
||||
)
|
||||
)
|
||||
|
||||
async def get_trace(self, trace_id: str) -> Trace:
|
||||
return await self.trace_store.get_trace(trace_id)
|
||||
|
||||
async def get_span(self, trace_id: str, span_id: str) -> Span:
|
||||
return await self.trace_store.get_span(trace_id, span_id)
|
||||
|
||||
async def get_span_tree(
|
||||
self,
|
||||
span_id: str,
|
||||
attributes_to_return: list[str] | None = None,
|
||||
max_depth: int | None = None,
|
||||
) -> QuerySpanTreeResponse:
|
||||
return QuerySpanTreeResponse(
|
||||
data=await self.trace_store.get_span_tree(
|
||||
span_id=span_id,
|
||||
attributes_to_return=attributes_to_return,
|
||||
max_depth=max_depth,
|
||||
)
|
||||
)
|
||||
|
|
@ -9,27 +9,29 @@ import inspect
|
|||
import json
|
||||
from collections.abc import AsyncGenerator, Callable
|
||||
from functools import wraps
|
||||
from typing import Any
|
||||
from typing import Any, cast
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.models.llama.datatypes import Primitive
|
||||
|
||||
type JSONValue = Primitive | list["JSONValue"] | dict[str, "JSONValue"]
|
||||
|
||||
def serialize_value(value: Any) -> Primitive:
|
||||
|
||||
def serialize_value(value: Any) -> str:
|
||||
return str(_prepare_for_json(value))
|
||||
|
||||
|
||||
def _prepare_for_json(value: Any) -> str:
|
||||
def _prepare_for_json(value: Any) -> JSONValue:
|
||||
"""Serialize a single value into JSON-compatible format."""
|
||||
if value is None:
|
||||
return ""
|
||||
elif isinstance(value, str | int | float | bool):
|
||||
return value
|
||||
elif hasattr(value, "_name_"):
|
||||
return value._name_
|
||||
return cast(str, value._name_)
|
||||
elif isinstance(value, BaseModel):
|
||||
return json.loads(value.model_dump_json())
|
||||
return cast(JSONValue, json.loads(value.model_dump_json()))
|
||||
elif isinstance(value, list | tuple | set):
|
||||
return [_prepare_for_json(item) for item in value]
|
||||
elif isinstance(value, dict):
|
||||
|
|
@ -37,53 +39,53 @@ def _prepare_for_json(value: Any) -> str:
|
|||
else:
|
||||
try:
|
||||
json.dumps(value)
|
||||
return value
|
||||
return cast(JSONValue, value)
|
||||
except Exception:
|
||||
return str(value)
|
||||
|
||||
|
||||
def trace_protocol[T](cls: type[T]) -> type[T]:
|
||||
def trace_protocol[T: type[Any]](cls: T) -> T:
|
||||
"""
|
||||
A class decorator that automatically traces all methods in a protocol/base class
|
||||
and its inheriting classes.
|
||||
"""
|
||||
|
||||
def trace_method(method: Callable) -> Callable:
|
||||
def trace_method(method: Callable[..., Any]) -> Callable[..., Any]:
|
||||
is_async = asyncio.iscoroutinefunction(method)
|
||||
is_async_gen = inspect.isasyncgenfunction(method)
|
||||
|
||||
def create_span_context(self: Any, *args: Any, **kwargs: Any) -> tuple:
|
||||
def create_span_context(self: Any, *args: Any, **kwargs: Any) -> tuple[str, str, dict[str, Primitive]]:
|
||||
class_name = self.__class__.__name__
|
||||
method_name = method.__name__
|
||||
span_type = "async_generator" if is_async_gen else "async" if is_async else "sync"
|
||||
sig = inspect.signature(method)
|
||||
param_names = list(sig.parameters.keys())[1:] # Skip 'self'
|
||||
combined_args = {}
|
||||
combined_args: dict[str, str] = {}
|
||||
for i, arg in enumerate(args):
|
||||
param_name = param_names[i] if i < len(param_names) else f"position_{i + 1}"
|
||||
combined_args[param_name] = serialize_value(arg)
|
||||
for k, v in kwargs.items():
|
||||
combined_args[str(k)] = serialize_value(v)
|
||||
|
||||
span_attributes = {
|
||||
span_attributes: dict[str, Primitive] = {
|
||||
"__autotraced__": True,
|
||||
"__class__": class_name,
|
||||
"__method__": method_name,
|
||||
"__type__": span_type,
|
||||
"__args__": str(combined_args),
|
||||
"__args__": json.dumps(combined_args),
|
||||
}
|
||||
|
||||
return class_name, method_name, span_attributes
|
||||
|
||||
@wraps(method)
|
||||
async def async_gen_wrapper(self: Any, *args: Any, **kwargs: Any) -> AsyncGenerator:
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
async def async_gen_wrapper(self: Any, *args: Any, **kwargs: Any) -> AsyncGenerator[Any, None]:
|
||||
from llama_stack.core.telemetry import tracing
|
||||
|
||||
class_name, method_name, span_attributes = create_span_context(self, *args, **kwargs)
|
||||
|
||||
with tracing.span(f"{class_name}.{method_name}", span_attributes) as span:
|
||||
count = 0
|
||||
try:
|
||||
count = 0
|
||||
async for item in method(self, *args, **kwargs):
|
||||
yield item
|
||||
count += 1
|
||||
|
|
@ -92,7 +94,7 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
|
|||
|
||||
@wraps(method)
|
||||
async def async_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
from llama_stack.core.telemetry import tracing
|
||||
|
||||
class_name, method_name, span_attributes = create_span_context(self, *args, **kwargs)
|
||||
|
||||
|
|
@ -107,7 +109,7 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
|
|||
|
||||
@wraps(method)
|
||||
def sync_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
from llama_stack.core.telemetry import tracing
|
||||
|
||||
class_name, method_name, span_attributes = create_span_context(self, *args, **kwargs)
|
||||
|
||||
|
|
@ -127,16 +129,17 @@ def trace_protocol[T](cls: type[T]) -> type[T]:
|
|||
else:
|
||||
return sync_wrapper
|
||||
|
||||
original_init_subclass = getattr(cls, "__init_subclass__", None)
|
||||
original_init_subclass = cast(Callable[..., Any] | None, getattr(cls, "__init_subclass__", None))
|
||||
|
||||
def __init_subclass__(cls_child, **kwargs): # noqa: N807
|
||||
def __init_subclass__(cls_child: type[Any], **kwargs: Any) -> None: # noqa: N807
|
||||
if original_init_subclass:
|
||||
original_init_subclass(**kwargs)
|
||||
cast(Callable[..., None], original_init_subclass)(**kwargs)
|
||||
|
||||
for name, method in vars(cls_child).items():
|
||||
if inspect.isfunction(method) and not name.startswith("_"):
|
||||
setattr(cls_child, name, trace_method(method)) # noqa: B010
|
||||
|
||||
cls.__init_subclass__ = classmethod(__init_subclass__)
|
||||
cls_any = cast(Any, cls)
|
||||
cls_any.__init_subclass__ = classmethod(__init_subclass__)
|
||||
|
||||
return cls
|
||||
|
|
@ -15,7 +15,7 @@ import time
|
|||
from collections.abc import Callable
|
||||
from datetime import UTC, datetime
|
||||
from functools import wraps
|
||||
from typing import Any
|
||||
from typing import Any, Self
|
||||
|
||||
from llama_stack.apis.telemetry import (
|
||||
Event,
|
||||
|
|
@ -28,8 +28,8 @@ from llama_stack.apis.telemetry import (
|
|||
Telemetry,
|
||||
UnstructuredLogEvent,
|
||||
)
|
||||
from llama_stack.core.telemetry.trace_protocol import serialize_value
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import serialize_value
|
||||
|
||||
logger = get_logger(__name__, category="core")
|
||||
|
||||
|
|
@ -89,9 +89,6 @@ def generate_trace_id() -> str:
|
|||
return trace_id_to_str(trace_id)
|
||||
|
||||
|
||||
CURRENT_TRACE_CONTEXT = contextvars.ContextVar("trace_context", default=None)
|
||||
BACKGROUND_LOGGER = None
|
||||
|
||||
LOG_QUEUE_FULL_LOG_INTERVAL_SECONDS = 60.0
|
||||
|
||||
|
||||
|
|
@ -104,7 +101,7 @@ class BackgroundLogger:
|
|||
self._last_queue_full_log_time: float = 0.0
|
||||
self._dropped_since_last_notice: int = 0
|
||||
|
||||
def log_event(self, event):
|
||||
def log_event(self, event: Event) -> None:
|
||||
try:
|
||||
self.log_queue.put_nowait(event)
|
||||
except queue.Full:
|
||||
|
|
@ -137,10 +134,13 @@ class BackgroundLogger:
|
|||
finally:
|
||||
self.log_queue.task_done()
|
||||
|
||||
def __del__(self):
|
||||
def __del__(self) -> None:
|
||||
self.log_queue.join()
|
||||
|
||||
|
||||
BACKGROUND_LOGGER: BackgroundLogger | None = None
|
||||
|
||||
|
||||
def enqueue_event(event: Event) -> None:
|
||||
"""Enqueue a telemetry event to the background logger if available.
|
||||
|
||||
|
|
@ -155,13 +155,12 @@ def enqueue_event(event: Event) -> None:
|
|||
|
||||
|
||||
class TraceContext:
|
||||
spans: list[Span] = []
|
||||
|
||||
def __init__(self, logger: BackgroundLogger, trace_id: str):
|
||||
self.logger = logger
|
||||
self.trace_id = trace_id
|
||||
self.spans: list[Span] = []
|
||||
|
||||
def push_span(self, name: str, attributes: dict[str, Any] = None) -> Span:
|
||||
def push_span(self, name: str, attributes: dict[str, Any] | None = None) -> Span:
|
||||
current_span = self.get_current_span()
|
||||
span = Span(
|
||||
span_id=generate_span_id(),
|
||||
|
|
@ -188,7 +187,7 @@ class TraceContext:
|
|||
self.spans.append(span)
|
||||
return span
|
||||
|
||||
def pop_span(self, status: SpanStatus = SpanStatus.OK):
|
||||
def pop_span(self, status: SpanStatus = SpanStatus.OK) -> None:
|
||||
span = self.spans.pop()
|
||||
if span is not None:
|
||||
self.logger.log_event(
|
||||
|
|
@ -203,10 +202,15 @@ class TraceContext:
|
|||
)
|
||||
)
|
||||
|
||||
def get_current_span(self):
|
||||
def get_current_span(self) -> Span | None:
|
||||
return self.spans[-1] if self.spans else None
|
||||
|
||||
|
||||
CURRENT_TRACE_CONTEXT: contextvars.ContextVar[TraceContext | None] = contextvars.ContextVar(
|
||||
"trace_context", default=None
|
||||
)
|
||||
|
||||
|
||||
def setup_logger(api: Telemetry, level: int = logging.INFO):
|
||||
global BACKGROUND_LOGGER
|
||||
|
||||
|
|
@ -217,12 +221,12 @@ def setup_logger(api: Telemetry, level: int = logging.INFO):
|
|||
root_logger.addHandler(TelemetryHandler())
|
||||
|
||||
|
||||
async def start_trace(name: str, attributes: dict[str, Any] = None) -> TraceContext:
|
||||
async def start_trace(name: str, attributes: dict[str, Any] | None = None) -> TraceContext | None:
|
||||
global CURRENT_TRACE_CONTEXT, BACKGROUND_LOGGER
|
||||
|
||||
if BACKGROUND_LOGGER is None:
|
||||
logger.debug("No Telemetry implementation set. Skipping trace initialization...")
|
||||
return
|
||||
return None
|
||||
|
||||
trace_id = generate_trace_id()
|
||||
context = TraceContext(BACKGROUND_LOGGER, trace_id)
|
||||
|
|
@ -269,7 +273,7 @@ def severity(levelname: str) -> LogSeverity:
|
|||
# TODO: ideally, the actual emitting should be done inside a separate daemon
|
||||
# process completely isolated from the server
|
||||
class TelemetryHandler(logging.Handler):
|
||||
def emit(self, record: logging.LogRecord):
|
||||
def emit(self, record: logging.LogRecord) -> None:
|
||||
# horrendous hack to avoid logging from asyncio and getting into an infinite loop
|
||||
if record.module in ("asyncio", "selector_events"):
|
||||
return
|
||||
|
|
@ -293,17 +297,17 @@ class TelemetryHandler(logging.Handler):
|
|||
)
|
||||
)
|
||||
|
||||
def close(self):
|
||||
def close(self) -> None:
|
||||
pass
|
||||
|
||||
|
||||
class SpanContextManager:
|
||||
def __init__(self, name: str, attributes: dict[str, Any] = None):
|
||||
def __init__(self, name: str, attributes: dict[str, Any] | None = None):
|
||||
self.name = name
|
||||
self.attributes = attributes
|
||||
self.span = None
|
||||
self.span: Span | None = None
|
||||
|
||||
def __enter__(self):
|
||||
def __enter__(self) -> Self:
|
||||
global CURRENT_TRACE_CONTEXT
|
||||
context = CURRENT_TRACE_CONTEXT.get()
|
||||
if not context:
|
||||
|
|
@ -313,7 +317,7 @@ class SpanContextManager:
|
|||
self.span = context.push_span(self.name, self.attributes)
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
def __exit__(self, exc_type, exc_value, traceback) -> None:
|
||||
global CURRENT_TRACE_CONTEXT
|
||||
context = CURRENT_TRACE_CONTEXT.get()
|
||||
if not context:
|
||||
|
|
@ -322,13 +326,13 @@ class SpanContextManager:
|
|||
|
||||
context.pop_span()
|
||||
|
||||
def set_attribute(self, key: str, value: Any):
|
||||
def set_attribute(self, key: str, value: Any) -> None:
|
||||
if self.span:
|
||||
if self.span.attributes is None:
|
||||
self.span.attributes = {}
|
||||
self.span.attributes[key] = serialize_value(value)
|
||||
|
||||
async def __aenter__(self):
|
||||
async def __aenter__(self) -> Self:
|
||||
global CURRENT_TRACE_CONTEXT
|
||||
context = CURRENT_TRACE_CONTEXT.get()
|
||||
if not context:
|
||||
|
|
@ -338,7 +342,7 @@ class SpanContextManager:
|
|||
self.span = context.push_span(self.name, self.attributes)
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_value, traceback):
|
||||
async def __aexit__(self, exc_type, exc_value, traceback) -> None:
|
||||
global CURRENT_TRACE_CONTEXT
|
||||
context = CURRENT_TRACE_CONTEXT.get()
|
||||
if not context:
|
||||
|
|
@ -347,19 +351,19 @@ class SpanContextManager:
|
|||
|
||||
context.pop_span()
|
||||
|
||||
def __call__(self, func: Callable):
|
||||
def __call__(self, func: Callable[..., Any]) -> Callable[..., Any]:
|
||||
@wraps(func)
|
||||
def sync_wrapper(*args, **kwargs):
|
||||
def sync_wrapper(*args: Any, **kwargs: Any) -> Any:
|
||||
with self:
|
||||
return func(*args, **kwargs)
|
||||
|
||||
@wraps(func)
|
||||
async def async_wrapper(*args, **kwargs):
|
||||
async def async_wrapper(*args: Any, **kwargs: Any) -> Any:
|
||||
async with self:
|
||||
return await func(*args, **kwargs)
|
||||
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
||||
if asyncio.iscoroutinefunction(func):
|
||||
return async_wrapper(*args, **kwargs)
|
||||
else:
|
||||
|
|
@ -368,7 +372,7 @@ class SpanContextManager:
|
|||
return wrapper
|
||||
|
||||
|
||||
def span(name: str, attributes: dict[str, Any] = None):
|
||||
def span(name: str, attributes: dict[str, Any] | None = None) -> SpanContextManager:
|
||||
return SpanContextManager(name, attributes)
|
||||
|
||||
|
||||
49
llama_stack/core/testing_context.py
Normal file
49
llama_stack/core/testing_context.py
Normal file
|
|
@ -0,0 +1,49 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from contextvars import ContextVar
|
||||
|
||||
from llama_stack.core.request_headers import PROVIDER_DATA_VAR
|
||||
|
||||
TEST_CONTEXT: ContextVar[str | None] = ContextVar("llama_stack_test_context", default=None)
|
||||
|
||||
|
||||
def get_test_context() -> str | None:
|
||||
return TEST_CONTEXT.get()
|
||||
|
||||
|
||||
def set_test_context(value: str | None):
|
||||
return TEST_CONTEXT.set(value)
|
||||
|
||||
|
||||
def reset_test_context(token) -> None:
|
||||
TEST_CONTEXT.reset(token)
|
||||
|
||||
|
||||
def sync_test_context_from_provider_data():
|
||||
"""Sync test context from provider data when running in server test mode."""
|
||||
if "LLAMA_STACK_TEST_INFERENCE_MODE" not in os.environ:
|
||||
return None
|
||||
|
||||
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
|
||||
if stack_config_type != "server":
|
||||
return None
|
||||
|
||||
try:
|
||||
provider_data = PROVIDER_DATA_VAR.get()
|
||||
except LookupError:
|
||||
provider_data = None
|
||||
|
||||
if provider_data and "__test_id" in provider_data:
|
||||
return TEST_CONTEXT.set(provider_data["__test_id"])
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def is_debug_mode() -> bool:
|
||||
"""Check if test recording debug mode is enabled via LLAMA_STACK_TEST_DEBUG env var."""
|
||||
return os.environ.get("LLAMA_STACK_TEST_DEBUG", "").lower() in ("1", "true", "yes")
|
||||
|
|
@ -9,7 +9,7 @@
|
|||
1. Start up Llama Stack API server. More details [here](https://llamastack.github.io/latest/getting_started/index.htmll).
|
||||
|
||||
```
|
||||
llama stack build --distro together --image-type venv
|
||||
llama stack list-deps together | xargs -L1 uv pip install
|
||||
|
||||
llama stack run together
|
||||
```
|
||||
|
|
|
|||
|
|
@ -11,19 +11,17 @@ from llama_stack.core.ui.page.distribution.eval_tasks import benchmarks
|
|||
from llama_stack.core.ui.page.distribution.models import models
|
||||
from llama_stack.core.ui.page.distribution.scoring_functions import scoring_functions
|
||||
from llama_stack.core.ui.page.distribution.shields import shields
|
||||
from llama_stack.core.ui.page.distribution.vector_dbs import vector_dbs
|
||||
|
||||
|
||||
def resources_page():
|
||||
options = [
|
||||
"Models",
|
||||
"Vector Databases",
|
||||
"Shields",
|
||||
"Scoring Functions",
|
||||
"Datasets",
|
||||
"Benchmarks",
|
||||
]
|
||||
icons = ["magic", "memory", "shield", "file-bar-graph", "database", "list-task"]
|
||||
icons = ["magic", "shield", "file-bar-graph", "database", "list-task"]
|
||||
selected_resource = option_menu(
|
||||
None,
|
||||
options,
|
||||
|
|
@ -37,8 +35,6 @@ def resources_page():
|
|||
)
|
||||
if selected_resource == "Benchmarks":
|
||||
benchmarks()
|
||||
elif selected_resource == "Vector Databases":
|
||||
vector_dbs()
|
||||
elif selected_resource == "Datasets":
|
||||
datasets()
|
||||
elif selected_resource == "Models":
|
||||
|
|
|
|||
|
|
@ -1,20 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.core.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def vector_dbs():
|
||||
st.header("Vector Databases")
|
||||
vector_dbs_info = {v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()}
|
||||
|
||||
if len(vector_dbs_info) > 0:
|
||||
selected_vector_db = st.selectbox("Select a vector database", list(vector_dbs_info.keys()))
|
||||
st.json(vector_dbs_info[selected_vector_db])
|
||||
else:
|
||||
st.info("No vector databases found")
|
||||
|
|
@ -1,301 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
|
||||
import streamlit as st
|
||||
from llama_stack_client import Agent, AgentEventLogger, RAGDocument
|
||||
|
||||
from llama_stack.apis.common.content_types import ToolCallDelta
|
||||
from llama_stack.core.ui.modules.api import llama_stack_api
|
||||
from llama_stack.core.ui.modules.utils import data_url_from_file
|
||||
|
||||
|
||||
def rag_chat_page():
|
||||
st.title("🦙 RAG")
|
||||
|
||||
def reset_agent_and_chat():
|
||||
st.session_state.clear()
|
||||
st.cache_resource.clear()
|
||||
|
||||
def should_disable_input():
|
||||
return "displayed_messages" in st.session_state and len(st.session_state.displayed_messages) > 0
|
||||
|
||||
def log_message(message):
|
||||
with st.chat_message(message["role"]):
|
||||
if "tool_output" in message and message["tool_output"]:
|
||||
with st.expander(label="Tool Output", expanded=False, icon="🛠"):
|
||||
st.write(message["tool_output"])
|
||||
st.markdown(message["content"])
|
||||
|
||||
with st.sidebar:
|
||||
# File/Directory Upload Section
|
||||
st.subheader("Upload Documents", divider=True)
|
||||
uploaded_files = st.file_uploader(
|
||||
"Upload file(s) or directory",
|
||||
accept_multiple_files=True,
|
||||
type=["txt", "pdf", "doc", "docx"], # Add more file types as needed
|
||||
)
|
||||
# Process uploaded files
|
||||
if uploaded_files:
|
||||
st.success(f"Successfully uploaded {len(uploaded_files)} files")
|
||||
# Add memory bank name input field
|
||||
vector_db_name = st.text_input(
|
||||
"Document Collection Name",
|
||||
value="rag_vector_db",
|
||||
help="Enter a unique identifier for this document collection",
|
||||
)
|
||||
if st.button("Create Document Collection"):
|
||||
documents = [
|
||||
RAGDocument(
|
||||
document_id=uploaded_file.name,
|
||||
content=data_url_from_file(uploaded_file),
|
||||
)
|
||||
for i, uploaded_file in enumerate(uploaded_files)
|
||||
]
|
||||
|
||||
providers = llama_stack_api.client.providers.list()
|
||||
vector_io_provider = None
|
||||
|
||||
for x in providers:
|
||||
if x.api == "vector_io":
|
||||
vector_io_provider = x.provider_id
|
||||
|
||||
llama_stack_api.client.vector_dbs.register(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
embedding_dimension=384,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
provider_id=vector_io_provider,
|
||||
)
|
||||
|
||||
# insert documents using the custom vector db name
|
||||
llama_stack_api.client.tool_runtime.rag_tool.insert(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
documents=documents,
|
||||
chunk_size_in_tokens=512,
|
||||
)
|
||||
st.success("Vector database created successfully!")
|
||||
|
||||
st.subheader("RAG Parameters", divider=True)
|
||||
|
||||
rag_mode = st.radio(
|
||||
"RAG mode",
|
||||
["Direct", "Agent-based"],
|
||||
captions=[
|
||||
"RAG is performed by directly retrieving the information and augmenting the user query",
|
||||
"RAG is performed by an agent activating a dedicated knowledge search tool.",
|
||||
],
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
|
||||
# select memory banks
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list()
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
selected_vector_dbs = st.multiselect(
|
||||
label="Select Document Collections to use in RAG queries",
|
||||
options=vector_dbs,
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
|
||||
st.subheader("Inference Parameters", divider=True)
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
selected_model = st.selectbox(
|
||||
label="Choose a model",
|
||||
options=available_models,
|
||||
index=0,
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
system_prompt = st.text_area(
|
||||
"System Prompt",
|
||||
value="You are a helpful assistant. ",
|
||||
help="Initial instructions given to the AI to set its behavior and context",
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
temperature = st.slider(
|
||||
"Temperature",
|
||||
min_value=0.0,
|
||||
max_value=1.0,
|
||||
value=0.0,
|
||||
step=0.1,
|
||||
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
|
||||
top_p = st.slider(
|
||||
"Top P",
|
||||
min_value=0.0,
|
||||
max_value=1.0,
|
||||
value=0.95,
|
||||
step=0.1,
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
|
||||
# Add clear chat button to sidebar
|
||||
if st.button("Clear Chat", use_container_width=True):
|
||||
reset_agent_and_chat()
|
||||
st.rerun()
|
||||
|
||||
# Chat Interface
|
||||
if "messages" not in st.session_state:
|
||||
st.session_state.messages = []
|
||||
if "displayed_messages" not in st.session_state:
|
||||
st.session_state.displayed_messages = []
|
||||
|
||||
# Display chat history
|
||||
for message in st.session_state.displayed_messages:
|
||||
log_message(message)
|
||||
|
||||
if temperature > 0.0:
|
||||
strategy = {
|
||||
"type": "top_p",
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
}
|
||||
else:
|
||||
strategy = {"type": "greedy"}
|
||||
|
||||
@st.cache_resource
|
||||
def create_agent():
|
||||
return Agent(
|
||||
llama_stack_api.client,
|
||||
model=selected_model,
|
||||
instructions=system_prompt,
|
||||
sampling_params={
|
||||
"strategy": strategy,
|
||||
},
|
||||
tools=[
|
||||
dict(
|
||||
name="builtin::rag/knowledge_search",
|
||||
args={
|
||||
"vector_db_ids": list(selected_vector_dbs),
|
||||
},
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
if rag_mode == "Agent-based":
|
||||
agent = create_agent()
|
||||
if "agent_session_id" not in st.session_state:
|
||||
st.session_state["agent_session_id"] = agent.create_session(session_name=f"rag_demo_{uuid.uuid4()}")
|
||||
|
||||
session_id = st.session_state["agent_session_id"]
|
||||
|
||||
def agent_process_prompt(prompt):
|
||||
# Add user message to chat history
|
||||
st.session_state.messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# Send the prompt to the agent
|
||||
response = agent.create_turn(
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
}
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Display assistant response
|
||||
with st.chat_message("assistant"):
|
||||
retrieval_message_placeholder = st.expander(label="Tool Output", expanded=False, icon="🛠")
|
||||
message_placeholder = st.empty()
|
||||
full_response = ""
|
||||
retrieval_response = ""
|
||||
for log in AgentEventLogger().log(response):
|
||||
log.print()
|
||||
if log.role == "tool_execution":
|
||||
retrieval_response += log.content.replace("====", "").strip()
|
||||
retrieval_message_placeholder.write(retrieval_response)
|
||||
else:
|
||||
full_response += log.content
|
||||
message_placeholder.markdown(full_response + "▌")
|
||||
message_placeholder.markdown(full_response)
|
||||
|
||||
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
||||
st.session_state.displayed_messages.append(
|
||||
{"role": "assistant", "content": full_response, "tool_output": retrieval_response}
|
||||
)
|
||||
|
||||
def direct_process_prompt(prompt):
|
||||
# Add the system prompt in the beginning of the conversation
|
||||
if len(st.session_state.messages) == 0:
|
||||
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
||||
|
||||
# Query the vector DB
|
||||
rag_response = llama_stack_api.client.tool_runtime.rag_tool.query(
|
||||
content=prompt, vector_db_ids=list(selected_vector_dbs)
|
||||
)
|
||||
prompt_context = rag_response.content
|
||||
|
||||
with st.chat_message("assistant"):
|
||||
with st.expander(label="Retrieval Output", expanded=False):
|
||||
st.write(prompt_context)
|
||||
|
||||
retrieval_message_placeholder = st.empty()
|
||||
message_placeholder = st.empty()
|
||||
full_response = ""
|
||||
retrieval_response = ""
|
||||
|
||||
# Construct the extended prompt
|
||||
extended_prompt = f"Please answer the following query using the context below.\n\nCONTEXT:\n{prompt_context}\n\nQUERY:\n{prompt}"
|
||||
|
||||
# Run inference directly
|
||||
st.session_state.messages.append({"role": "user", "content": extended_prompt})
|
||||
response = llama_stack_api.client.inference.chat_completion(
|
||||
messages=st.session_state.messages,
|
||||
model_id=selected_model,
|
||||
sampling_params={
|
||||
"strategy": strategy,
|
||||
},
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# Display assistant response
|
||||
for chunk in response:
|
||||
response_delta = chunk.event.delta
|
||||
if isinstance(response_delta, ToolCallDelta):
|
||||
retrieval_response += response_delta.tool_call.replace("====", "").strip()
|
||||
retrieval_message_placeholder.info(retrieval_response)
|
||||
else:
|
||||
full_response += chunk.event.delta.text
|
||||
message_placeholder.markdown(full_response + "▌")
|
||||
message_placeholder.markdown(full_response)
|
||||
|
||||
response_dict = {"role": "assistant", "content": full_response, "stop_reason": "end_of_message"}
|
||||
st.session_state.messages.append(response_dict)
|
||||
st.session_state.displayed_messages.append(response_dict)
|
||||
|
||||
# Chat input
|
||||
if prompt := st.chat_input("Ask a question about your documents"):
|
||||
# Add user message to chat history
|
||||
st.session_state.displayed_messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# Display user message
|
||||
with st.chat_message("user"):
|
||||
st.markdown(prompt)
|
||||
|
||||
# store the prompt to process it after page refresh
|
||||
st.session_state.prompt = prompt
|
||||
|
||||
# force page refresh to disable the settings widgets
|
||||
st.rerun()
|
||||
|
||||
if "prompt" in st.session_state and st.session_state.prompt is not None:
|
||||
if rag_mode == "Agent-based":
|
||||
agent_process_prompt(st.session_state.prompt)
|
||||
else: # rag_mode == "Direct"
|
||||
direct_process_prompt(st.session_state.prompt)
|
||||
st.session_state.prompt = None
|
||||
|
||||
|
||||
rag_chat_page()
|
||||
|
|
@ -32,7 +32,7 @@ def tool_chat_page():
|
|||
tool_groups_list = [tool_group.identifier for tool_group in tool_groups]
|
||||
mcp_tools_list = [tool for tool in tool_groups_list if tool.startswith("mcp::")]
|
||||
builtin_tools_list = [tool for tool in tool_groups_list if not tool.startswith("mcp::")]
|
||||
selected_vector_dbs = []
|
||||
selected_vector_stores = []
|
||||
|
||||
def reset_agent():
|
||||
st.session_state.clear()
|
||||
|
|
@ -55,13 +55,13 @@ def tool_chat_page():
|
|||
)
|
||||
|
||||
if "builtin::rag" in toolgroup_selection:
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list() or []
|
||||
if not vector_dbs:
|
||||
vector_stores = llama_stack_api.client.vector_stores.list() or []
|
||||
if not vector_stores:
|
||||
st.info("No vector databases available for selection.")
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
selected_vector_dbs = st.multiselect(
|
||||
vector_stores = [vector_store.identifier for vector_store in vector_stores]
|
||||
selected_vector_stores = st.multiselect(
|
||||
label="Select Document Collections to use in RAG queries",
|
||||
options=vector_dbs,
|
||||
options=vector_stores,
|
||||
on_change=reset_agent,
|
||||
)
|
||||
|
||||
|
|
@ -119,7 +119,7 @@ def tool_chat_page():
|
|||
tool_dict = dict(
|
||||
name="builtin::rag",
|
||||
args={
|
||||
"vector_db_ids": list(selected_vector_dbs),
|
||||
"vector_store_ids": list(selected_vector_stores),
|
||||
},
|
||||
)
|
||||
toolgroup_selection[i] = tool_dict
|
||||
|
|
|
|||
|
|
@ -42,25 +42,25 @@ def resolve_config_or_distro(
|
|||
# Strategy 1: Try as file path first
|
||||
config_path = Path(config_or_distro)
|
||||
if config_path.exists() and config_path.is_file():
|
||||
logger.info(f"Using file path: {config_path}")
|
||||
logger.debug(f"Using file path: {config_path}")
|
||||
return config_path.resolve()
|
||||
|
||||
# Strategy 2: Try as distribution name (if no .yaml extension)
|
||||
if not config_or_distro.endswith(".yaml"):
|
||||
distro_config = _get_distro_config_path(config_or_distro, mode)
|
||||
if distro_config.exists():
|
||||
logger.info(f"Using distribution: {distro_config}")
|
||||
logger.debug(f"Using distribution: {distro_config}")
|
||||
return distro_config
|
||||
|
||||
# Strategy 3: Try as built distribution name
|
||||
distrib_config = DISTRIBS_BASE_DIR / f"llamastack-{config_or_distro}" / f"{config_or_distro}-{mode}.yaml"
|
||||
if distrib_config.exists():
|
||||
logger.info(f"Using built distribution: {distrib_config}")
|
||||
logger.debug(f"Using built distribution: {distrib_config}")
|
||||
return distrib_config
|
||||
|
||||
distrib_config = DISTRIBS_BASE_DIR / f"{config_or_distro}" / f"{config_or_distro}-{mode}.yaml"
|
||||
if distrib_config.exists():
|
||||
logger.info(f"Using built distribution: {distrib_config}")
|
||||
logger.debug(f"Using built distribution: {distrib_config}")
|
||||
return distrib_config
|
||||
|
||||
# Strategy 4: Failed - provide helpful error
|
||||
|
|
|
|||
|
|
@ -25,6 +25,8 @@ distribution_spec:
|
|||
- provider_type: inline::milvus
|
||||
- provider_type: remote::chromadb
|
||||
- provider_type: remote::pgvector
|
||||
- provider_type: remote::qdrant
|
||||
- provider_type: remote::weaviate
|
||||
files:
|
||||
- provider_type: inline::localfs
|
||||
safety:
|
||||
|
|
@ -32,8 +34,6 @@ distribution_spec:
|
|||
- provider_type: inline::code-scanner
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
telemetry:
|
||||
- provider_type: inline::meta-reference
|
||||
post_training:
|
||||
- provider_type: inline::torchtune-cpu
|
||||
eval:
|
||||
|
|
|
|||
|
|
@ -10,7 +10,6 @@ apis:
|
|||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
|
|
@ -94,30 +93,30 @@ providers:
|
|||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/faiss_store.db
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
- provider_id: sqlite-vec
|
||||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sqlite_vec.db
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sqlite_vec_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::sqlite_vec
|
||||
backend: kv_default
|
||||
- provider_id: ${env.MILVUS_URL:+milvus}
|
||||
provider_type: inline::milvus
|
||||
config:
|
||||
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/ci-tests}/milvus.db
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/milvus_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::milvus
|
||||
backend: kv_default
|
||||
- provider_id: ${env.CHROMADB_URL:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests/}/chroma_remote_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.PGVECTOR_DB:+pgvector}
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
|
|
@ -126,17 +125,32 @@ providers:
|
|||
db: ${env.PGVECTOR_DB:=}
|
||||
user: ${env.PGVECTOR_USER:=}
|
||||
password: ${env.PGVECTOR_PASSWORD:=}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/pgvector_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::pgvector
|
||||
backend: kv_default
|
||||
- provider_id: ${env.QDRANT_URL:+qdrant}
|
||||
provider_type: remote::qdrant
|
||||
config:
|
||||
api_key: ${env.QDRANT_API_KEY:=}
|
||||
persistence:
|
||||
namespace: vector_io::qdrant_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
|
||||
provider_type: remote::weaviate
|
||||
config:
|
||||
weaviate_api_key: null
|
||||
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
|
||||
persistence:
|
||||
namespace: vector_io::weaviate
|
||||
backend: kv_default
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/ci-tests/files}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/files_metadata.db
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
@ -148,20 +162,15 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
post_training:
|
||||
- provider_id: torchtune-cpu
|
||||
provider_type: inline::torchtune-cpu
|
||||
|
|
@ -172,21 +181,21 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/meta_reference_eval.db
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/huggingface_datasetio.db
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/localfs_datasetio.db
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
|
|
@ -216,30 +225,57 @@ providers:
|
|||
provider_type: inline::reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/batches.db
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/inference_store.db
|
||||
models: []
|
||||
shields:
|
||||
- shield_id: llama-guard
|
||||
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
||||
provider_shield_id: ${env.SAFETY_MODEL:=}
|
||||
- shield_id: code-scanner
|
||||
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
||||
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
namespace: batches
|
||||
backend: kv_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields:
|
||||
- shield_id: llama-guard
|
||||
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
||||
provider_shield_id: ${env.SAFETY_MODEL:=}
|
||||
- shield_id: code-scanner
|
||||
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
||||
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
vector_stores:
|
||||
default_provider_id: faiss
|
||||
default_embedding_model:
|
||||
provider_id: sentence-transformers
|
||||
model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
safety:
|
||||
default_shield_id: llama-guard
|
||||
|
|
|
|||
|
|
@ -14,8 +14,6 @@ distribution_spec:
|
|||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
telemetry:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
|
|
|
|||
|
|
@ -32,7 +32,6 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
],
|
||||
"safety": [BuildProvider(provider_type="inline::llama-guard")],
|
||||
"agents": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"telemetry": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"eval": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"datasetio": [
|
||||
BuildProvider(provider_type="remote::huggingface"),
|
||||
|
|
@ -87,11 +86,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_id="tgi1",
|
||||
)
|
||||
embedding_model = ModelInput(
|
||||
model_id="all-MiniLM-L6-v2",
|
||||
model_id="nomic-embed-text-v1.5",
|
||||
provider_id="sentence-transformers",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
"embedding_dimension": 768,
|
||||
},
|
||||
)
|
||||
default_tool_groups = [
|
||||
|
|
|
|||
|
|
@ -157,7 +157,7 @@ docker run \
|
|||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --distro {{ name }} --image-type conda
|
||||
llama stack list-deps {{ name }} | xargs -L1 pip install
|
||||
INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
DEH_URL=$DEH_URL \
|
||||
CHROMA_URL=$CHROMA_URL \
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@ apis:
|
|||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
|
|
@ -27,9 +26,9 @@ providers:
|
|||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell/}/chroma_remote_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
@ -39,40 +38,35 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/meta_reference_eval.db
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/huggingface_datasetio.db
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/localfs_datasetio.db
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
|
|
@ -95,36 +89,56 @@ providers:
|
|||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: tgi1
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: brave-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: tgi1
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: brave-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@ apis:
|
|||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
|
|
@ -23,9 +22,9 @@ providers:
|
|||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell/}/chroma_remote_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
@ -35,40 +34,35 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/meta_reference_eval.db
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/huggingface_datasetio.db
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/localfs_datasetio.db
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
|
|
@ -91,31 +85,51 @@ providers:
|
|||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi0
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: brave-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi0
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: brave-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
|
|||
|
|
@ -12,8 +12,6 @@ distribution_spec:
|
|||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
telemetry:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
|
|
|
|||
|
|
@ -29,31 +29,7 @@ The following environment variables can be configured:
|
|||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](../../references/llama_cli_reference/download_models.md) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ llama model list --downloaded
|
||||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Model ┃ Size ┃ Modified Time ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
|
||||
└─────────────────────────────────────────┴──────────┴─────────────────────┘
|
||||
Please check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](../../references/llama_cli_reference/download_models.md) here to download the models using the Hugging Face CLI.
|
||||
```
|
||||
|
||||
## Running the Distribution
|
||||
|
|
@ -94,10 +70,10 @@ docker run \
|
|||
|
||||
### Via venv
|
||||
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --distro {{ name }} --image-type venv
|
||||
llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install
|
||||
INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
llama stack run distributions/{{ name }}/run.yaml \
|
||||
--port 8321
|
||||
|
|
|
|||
|
|
@ -34,7 +34,6 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
],
|
||||
"safety": [BuildProvider(provider_type="inline::llama-guard")],
|
||||
"agents": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"telemetry": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"eval": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"datasetio": [
|
||||
BuildProvider(provider_type="remote::huggingface"),
|
||||
|
|
@ -77,11 +76,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_id="meta-reference-inference",
|
||||
)
|
||||
embedding_model = ModelInput(
|
||||
model_id="all-MiniLM-L6-v2",
|
||||
model_id="nomic-embed-text-v1.5",
|
||||
provider_id="sentence-transformers",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
"embedding_dimension": 768,
|
||||
},
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@ apis:
|
|||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
|
|
@ -38,9 +37,9 @@ providers:
|
|||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
@ -50,40 +49,35 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
|
|
@ -108,36 +102,56 @@ providers:
|
|||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: meta-reference-safety
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: meta-reference-safety
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@ apis:
|
|||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
|
|
@ -28,9 +27,9 @@ providers:
|
|||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
@ -40,40 +39,35 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
|
|
@ -98,31 +92,51 @@ providers:
|
|||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: nomic-embed-text-v1.5
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
|
|||
|
|
@ -10,8 +10,6 @@ distribution_spec:
|
|||
- provider_type: remote::nvidia
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
telemetry:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: remote::nvidia
|
||||
post_training:
|
||||
|
|
|
|||
|
|
@ -126,11 +126,11 @@ docker run \
|
|||
|
||||
### Via venv
|
||||
|
||||
If you've set up your local development environment, you can also build the image using your local virtual environment.
|
||||
If you've set up your local development environment, you can also install the distribution dependencies using your local virtual environment.
|
||||
|
||||
```bash
|
||||
INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
llama stack build --distro nvidia --image-type venv
|
||||
llama stack list-deps nvidia | xargs -L1 uv pip install
|
||||
NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
llama stack run ./run.yaml \
|
||||
|
|
|
|||
|
|
@ -21,7 +21,6 @@ def get_distribution_template(name: str = "nvidia") -> DistributionTemplate:
|
|||
"vector_io": [BuildProvider(provider_type="inline::faiss")],
|
||||
"safety": [BuildProvider(provider_type="remote::nvidia")],
|
||||
"agents": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"telemetry": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"eval": [BuildProvider(provider_type="remote::nvidia")],
|
||||
"post_training": [BuildProvider(provider_type="remote::nvidia")],
|
||||
"datasetio": [
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ apis:
|
|||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
|
|
@ -29,9 +28,9 @@ providers:
|
|||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
|
|
@ -42,20 +41,15 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
|
|
@ -74,8 +68,8 @@ providers:
|
|||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/localfs_datasetio.db
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
|
|
@ -95,32 +89,52 @@ providers:
|
|||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/files_metadata.db
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: nvidia
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: nvidia
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: nvidia
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: nvidia
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: nvidia
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: nvidia
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
|
|||
|
|
@ -9,7 +9,6 @@ apis:
|
|||
- post_training
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
|
|
@ -24,9 +23,9 @@ providers:
|
|||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
|
|
@ -37,20 +36,15 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
|
|
@ -84,22 +78,42 @@ providers:
|
|||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/files_metadata.db
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db
|
||||
models: []
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
|
|||
|
|
@ -16,8 +16,6 @@ distribution_spec:
|
|||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
telemetry:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
|
|
|
|||
|
|
@ -105,7 +105,6 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
],
|
||||
"safety": [BuildProvider(provider_type="inline::llama-guard")],
|
||||
"agents": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"telemetry": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"eval": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"datasetio": [
|
||||
BuildProvider(provider_type="remote::huggingface"),
|
||||
|
|
|
|||
|
|
@ -7,7 +7,6 @@ apis:
|
|||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
|
|
@ -40,16 +39,16 @@ providers:
|
|||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec.db
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::sqlite_vec
|
||||
backend: kv_default
|
||||
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/chroma_remote_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::chroma_remote
|
||||
backend: kv_default
|
||||
- provider_id: ${env.ENABLE_PGVECTOR:+pgvector}
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
|
|
@ -58,9 +57,9 @@ providers:
|
|||
db: ${env.PGVECTOR_DB:=}
|
||||
user: ${env.PGVECTOR_USER:=}
|
||||
password: ${env.PGVECTOR_PASSWORD:=}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/pgvector_registry.db
|
||||
persistence:
|
||||
namespace: vector_io::pgvector
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
@ -70,40 +69,35 @@ providers:
|
|||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/meta_reference_eval.db
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/huggingface_datasetio.db
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/localfs_datasetio.db
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
|
|
@ -128,114 +122,134 @@ providers:
|
|||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: gpt-4o
|
||||
provider_id: openai
|
||||
provider_model_id: gpt-4o
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: claude-3-5-sonnet-latest
|
||||
provider_id: anthropic
|
||||
provider_model_id: claude-3-5-sonnet-latest
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: gemini/gemini-1.5-flash
|
||||
provider_id: gemini
|
||||
provider_model_id: gemini/gemini-1.5-flash
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/llama-3.3-70b-versatile
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-405B-Instruct
|
||||
provider_id: together
|
||||
provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: meta-llama/Llama-Guard-3-8B
|
||||
vector_dbs: []
|
||||
datasets:
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/simpleqa?split=train
|
||||
metadata: {}
|
||||
dataset_id: simpleqa
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/mmlu_cot?split=test&name=all
|
||||
metadata: {}
|
||||
dataset_id: mmlu_cot
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/gpqa_0shot_cot?split=test&name=gpqa_main
|
||||
metadata: {}
|
||||
dataset_id: gpqa_cot
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/math_500?split=test
|
||||
metadata: {}
|
||||
dataset_id: math_500
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/IfEval?split=train
|
||||
metadata: {}
|
||||
dataset_id: ifeval
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/docvqa?split=val
|
||||
metadata: {}
|
||||
dataset_id: docvqa
|
||||
scoring_fns: []
|
||||
benchmarks:
|
||||
- dataset_id: simpleqa
|
||||
scoring_functions:
|
||||
- llm-as-judge::405b-simpleqa
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-simpleqa
|
||||
- dataset_id: mmlu_cot
|
||||
scoring_functions:
|
||||
- basic::regex_parser_multiple_choice_answer
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-mmlu-cot
|
||||
- dataset_id: gpqa_cot
|
||||
scoring_functions:
|
||||
- basic::regex_parser_multiple_choice_answer
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-gpqa-cot
|
||||
- dataset_id: math_500
|
||||
scoring_functions:
|
||||
- basic::regex_parser_math_response
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-math-500
|
||||
- dataset_id: ifeval
|
||||
scoring_functions:
|
||||
- basic::ifeval
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-ifeval
|
||||
- dataset_id: docvqa
|
||||
scoring_functions:
|
||||
- basic::docvqa
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-docvqa
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: gpt-4o
|
||||
provider_id: openai
|
||||
provider_model_id: gpt-4o
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: claude-3-5-sonnet-latest
|
||||
provider_id: anthropic
|
||||
provider_model_id: claude-3-5-sonnet-latest
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: gemini/gemini-1.5-flash
|
||||
provider_id: gemini
|
||||
provider_model_id: gemini/gemini-1.5-flash
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: groq
|
||||
provider_model_id: groq/llama-3.3-70b-versatile
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-405B-Instruct
|
||||
provider_id: together
|
||||
provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: meta-llama/Llama-Guard-3-8B
|
||||
vector_dbs: []
|
||||
datasets:
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/simpleqa?split=train
|
||||
metadata: {}
|
||||
dataset_id: simpleqa
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/mmlu_cot?split=test&name=all
|
||||
metadata: {}
|
||||
dataset_id: mmlu_cot
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/gpqa_0shot_cot?split=test&name=gpqa_main
|
||||
metadata: {}
|
||||
dataset_id: gpqa_cot
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/math_500?split=test
|
||||
metadata: {}
|
||||
dataset_id: math_500
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/IfEval?split=train
|
||||
metadata: {}
|
||||
dataset_id: ifeval
|
||||
- purpose: eval/messages-answer
|
||||
source:
|
||||
type: uri
|
||||
uri: huggingface://datasets/llamastack/docvqa?split=val
|
||||
metadata: {}
|
||||
dataset_id: docvqa
|
||||
scoring_fns: []
|
||||
benchmarks:
|
||||
- dataset_id: simpleqa
|
||||
scoring_functions:
|
||||
- llm-as-judge::405b-simpleqa
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-simpleqa
|
||||
- dataset_id: mmlu_cot
|
||||
scoring_functions:
|
||||
- basic::regex_parser_multiple_choice_answer
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-mmlu-cot
|
||||
- dataset_id: gpqa_cot
|
||||
scoring_functions:
|
||||
- basic::regex_parser_multiple_choice_answer
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-gpqa-cot
|
||||
- dataset_id: math_500
|
||||
scoring_functions:
|
||||
- basic::regex_parser_math_response
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-math-500
|
||||
- dataset_id: ifeval
|
||||
scoring_functions:
|
||||
- basic::ifeval
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-ifeval
|
||||
- dataset_id: docvqa
|
||||
scoring_functions:
|
||||
- basic::docvqa
|
||||
metadata: {}
|
||||
benchmark_id: meta-reference-docvqa
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
|
|||
|
|
@ -11,8 +11,6 @@ distribution_spec:
|
|||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
telemetry:
|
||||
- provider_type: inline::meta-reference
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue