Merge origin/main into add-missing-provider-data-impls

Resolved conflicts in:
- benchmarking/k8s-benchmark/stack_run_config.yaml (accepted new storage schema)
- llama_stack/providers/remote/inference/cerebras/cerebras.py (kept provider data support)
- llama_stack/providers/remote/inference/cerebras/config.py (kept provider data support)
- llama_stack/providers/remote/inference/nvidia/config.py (kept provider data support)
- llama_stack/providers/remote/inference/runpod/config.py (merged imports)
- pyproject.toml (kept databricks-sdk dependency)
This commit is contained in:
Ashwin Bharambe 2025-10-27 11:39:00 -07:00
commit 9eb9a37ee4
1880 changed files with 804868 additions and 70533 deletions

View file

@ -17,7 +17,7 @@ from llama_stack.apis.models import Model
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.apis.shields import Shield
from llama_stack.apis.tools import ToolGroup
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.schema_utils import json_schema_type
@ -68,10 +68,10 @@ class ShieldsProtocolPrivate(Protocol):
async def unregister_shield(self, identifier: str) -> None: ...
class VectorDBsProtocolPrivate(Protocol):
async def register_vector_db(self, vector_db: VectorDB) -> None: ...
class VectorStoresProtocolPrivate(Protocol):
async def register_vector_store(self, vector_store: VectorStore) -> None: ...
async def unregister_vector_db(self, vector_db_id: str) -> None: ...
async def unregister_vector_store(self, vector_store_id: str) -> None: ...
class DatasetsProtocolPrivate(Protocol):

View file

@ -11,7 +11,12 @@ from llama_stack.core.datatypes import AccessRule, Api
from .config import MetaReferenceAgentsImplConfig
async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: dict[Api, Any], policy: list[AccessRule]):
async def get_provider_impl(
config: MetaReferenceAgentsImplConfig,
deps: dict[Api, Any],
policy: list[AccessRule],
telemetry_enabled: bool = False,
):
from .agents import MetaReferenceAgentsImpl
impl = MetaReferenceAgentsImpl(
@ -21,8 +26,9 @@ async def get_provider_impl(config: MetaReferenceAgentsImplConfig, deps: dict[Ap
deps[Api.safety],
deps[Api.tool_runtime],
deps[Api.tool_groups],
deps[Api.conversations],
policy,
Api.telemetry in deps,
telemetry_enabled,
)
await impl.initialize()
return impl

View file

@ -49,6 +49,7 @@ from llama_stack.apis.inference import (
Inference,
Message,
OpenAIAssistantMessageParam,
OpenAIChatCompletionRequestWithExtraBody,
OpenAIDeveloperMessageParam,
OpenAIMessageParam,
OpenAISystemMessageParam,
@ -66,6 +67,7 @@ from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.datatypes import AccessRule
from llama_stack.core.telemetry import tracing
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import (
BuiltinTool,
@ -77,7 +79,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
convert_tooldef_to_openai_tool,
)
from llama_stack.providers.utils.kvstore import KVStore
from llama_stack.providers.utils.telemetry import tracing
from .persistence import AgentPersistence
from .safety import SafetyException, ShieldRunnerMixin
@ -582,7 +583,7 @@ class ChatAgent(ShieldRunnerMixin):
max_tokens = getattr(sampling_params, "max_tokens", None)
# Use OpenAI chat completion
openai_stream = await self.inference_api.openai_chat_completion(
params = OpenAIChatCompletionRequestWithExtraBody(
model=self.agent_config.model,
messages=openai_messages,
tools=openai_tools if openai_tools else None,
@ -593,6 +594,7 @@ class ChatAgent(ShieldRunnerMixin):
max_tokens=max_tokens,
stream=True,
)
openai_stream = await self.inference_api.openai_chat_completion(params)
# Convert OpenAI stream back to Llama Stack format
response_stream = convert_openai_chat_completion_stream(

View file

@ -28,8 +28,10 @@ from llama_stack.apis.agents import (
Session,
Turn,
)
from llama_stack.apis.agents.agents import ResponseGuardrail
from llama_stack.apis.agents.openai_responses import OpenAIResponseText
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.conversations import Conversations
from llama_stack.apis.inference import (
Inference,
ToolConfig,
@ -63,6 +65,7 @@ class MetaReferenceAgentsImpl(Agents):
safety_api: Safety,
tool_runtime_api: ToolRuntime,
tool_groups_api: ToolGroups,
conversations_api: Conversations,
policy: list[AccessRule],
telemetry_enabled: bool = False,
):
@ -72,6 +75,7 @@ class MetaReferenceAgentsImpl(Agents):
self.safety_api = safety_api
self.tool_runtime_api = tool_runtime_api
self.tool_groups_api = tool_groups_api
self.conversations_api = conversations_api
self.telemetry_enabled = telemetry_enabled
self.in_memory_store = InmemoryKVStoreImpl()
@ -79,8 +83,8 @@ class MetaReferenceAgentsImpl(Agents):
self.policy = policy
async def initialize(self) -> None:
self.persistence_store = await kvstore_impl(self.config.persistence_store)
self.responses_store = ResponsesStore(self.config.responses_store, self.policy)
self.persistence_store = await kvstore_impl(self.config.persistence.agent_state)
self.responses_store = ResponsesStore(self.config.persistence.responses, self.policy)
await self.responses_store.initialize()
self.openai_responses_impl = OpenAIResponsesImpl(
inference_api=self.inference_api,
@ -88,6 +92,8 @@ class MetaReferenceAgentsImpl(Agents):
tool_runtime_api=self.tool_runtime_api,
responses_store=self.responses_store,
vector_io_api=self.vector_io_api,
safety_api=self.safety_api,
conversations_api=self.conversations_api,
)
async def create_agent(
@ -325,6 +331,7 @@ class MetaReferenceAgentsImpl(Agents):
model: str,
instructions: str | None = None,
previous_response_id: str | None = None,
conversation: str | None = None,
store: bool | None = True,
stream: bool | None = False,
temperature: float | None = None,
@ -332,13 +339,14 @@ class MetaReferenceAgentsImpl(Agents):
tools: list[OpenAIResponseInputTool] | None = None,
include: list[str] | None = None,
max_infer_iters: int | None = 10,
shields: list | None = None,
guardrails: list[ResponseGuardrail] | None = None,
) -> OpenAIResponseObject:
return await self.openai_responses_impl.create_openai_response(
input,
model,
instructions,
previous_response_id,
conversation,
store,
stream,
temperature,
@ -346,7 +354,7 @@ class MetaReferenceAgentsImpl(Agents):
tools,
include,
max_infer_iters,
shields,
guardrails,
)
async def list_openai_responses(

View file

@ -8,24 +8,30 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore import KVStoreConfig
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference
class AgentPersistenceConfig(BaseModel):
"""Nested persistence configuration for agents."""
agent_state: KVStoreReference
responses: ResponsesStoreReference
class MetaReferenceAgentsImplConfig(BaseModel):
persistence_store: KVStoreConfig
responses_store: SqlStoreConfig
persistence: AgentPersistenceConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"persistence_store": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="agents_store.db",
),
"responses_store": SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="responses_store.db",
),
"persistence": {
"agent_state": KVStoreReference(
backend="kv_default",
namespace="agents",
).model_dump(exclude_none=True),
"responses": ResponsesStoreReference(
backend="sql_default",
table_name="responses",
).model_dump(exclude_none=True),
}
}

View file

@ -11,6 +11,7 @@ from collections.abc import AsyncIterator
from pydantic import BaseModel, TypeAdapter
from llama_stack.apis.agents import Order
from llama_stack.apis.agents.agents import ResponseGuardrailSpec
from llama_stack.apis.agents.openai_responses import (
ListOpenAIResponseInputItem,
ListOpenAIResponseObject,
@ -24,11 +25,17 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseText,
OpenAIResponseTextFormat,
)
from llama_stack.apis.common.errors import (
InvalidConversationIdError,
)
from llama_stack.apis.conversations import Conversations
from llama_stack.apis.conversations.conversations import ConversationItem
from llama_stack.apis.inference import (
Inference,
OpenAIMessageParam,
OpenAISystemMessageParam,
)
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.log import get_logger
@ -39,10 +46,11 @@ from llama_stack.providers.utils.responses.responses_store import (
from .streaming import StreamingResponseOrchestrator
from .tool_executor import ToolExecutor
from .types import ChatCompletionContext
from .types import ChatCompletionContext, ToolContext
from .utils import (
convert_response_input_to_chat_messages,
convert_response_text_to_chat_response_format,
extract_guardrail_ids,
)
logger = get_logger(name=__name__, category="openai_responses")
@ -61,12 +69,16 @@ class OpenAIResponsesImpl:
tool_runtime_api: ToolRuntime,
responses_store: ResponsesStore,
vector_io_api: VectorIO, # VectorIO
safety_api: Safety,
conversations_api: Conversations,
):
self.inference_api = inference_api
self.tool_groups_api = tool_groups_api
self.tool_runtime_api = tool_runtime_api
self.responses_store = responses_store
self.vector_io_api = vector_io_api
self.safety_api = safety_api
self.conversations_api = conversations_api
self.tool_executor = ToolExecutor(
tool_groups_api=tool_groups_api,
tool_runtime_api=tool_runtime_api,
@ -91,13 +103,16 @@ class OpenAIResponsesImpl:
async def _process_input_with_previous_response(
self,
input: str | list[OpenAIResponseInput],
tools: list[OpenAIResponseInputTool] | None,
previous_response_id: str | None,
conversation: str | None,
) -> tuple[str | list[OpenAIResponseInput], list[OpenAIMessageParam]]:
"""Process input with optional previous response context.
Returns:
tuple: (all_input for storage, messages for chat completion)
tuple: (all_input for storage, messages for chat completion, tool context)
"""
tool_context = ToolContext(tools)
if previous_response_id:
previous_response: _OpenAIResponseObjectWithInputAndMessages = (
await self.responses_store.get_response_object(previous_response_id)
@ -108,20 +123,45 @@ class OpenAIResponsesImpl:
# Use stored messages directly and convert only new input
message_adapter = TypeAdapter(list[OpenAIMessageParam])
messages = message_adapter.validate_python(previous_response.messages)
new_messages = await convert_response_input_to_chat_messages(input)
new_messages = await convert_response_input_to_chat_messages(input, previous_messages=messages)
messages.extend(new_messages)
else:
# Backward compatibility: reconstruct from inputs
messages = await convert_response_input_to_chat_messages(all_input)
tool_context.recover_tools_from_previous_response(previous_response)
elif conversation is not None:
conversation_items = await self.conversations_api.list_items(conversation, order="asc")
# Use stored messages as source of truth (like previous_response.messages)
stored_messages = await self.responses_store.get_conversation_messages(conversation)
all_input = input
if not conversation_items.data:
# First turn - just convert the new input
messages = await convert_response_input_to_chat_messages(input)
else:
if not stored_messages:
all_input = conversation_items.data
if isinstance(input, str):
all_input.append(
OpenAIResponseMessage(
role="user", content=[OpenAIResponseInputMessageContentText(text=input)]
)
)
else:
all_input.extend(input)
else:
all_input = input
messages = stored_messages or []
new_messages = await convert_response_input_to_chat_messages(all_input, previous_messages=messages)
messages.extend(new_messages)
else:
all_input = input
messages = await convert_response_input_to_chat_messages(input)
messages = await convert_response_input_to_chat_messages(all_input)
return all_input, messages
async def _prepend_instructions(self, messages, instructions):
if instructions:
messages.insert(0, OpenAISystemMessageParam(content=instructions))
return all_input, messages, tool_context
async def get_openai_response(
self,
@ -201,6 +241,7 @@ class OpenAIResponsesImpl:
model: str,
instructions: str | None = None,
previous_response_id: str | None = None,
conversation: str | None = None,
store: bool | None = True,
stream: bool | None = False,
temperature: float | None = None,
@ -208,17 +249,25 @@ class OpenAIResponsesImpl:
tools: list[OpenAIResponseInputTool] | None = None,
include: list[str] | None = None,
max_infer_iters: int | None = 10,
shields: list | None = None,
guardrails: list[ResponseGuardrailSpec] | None = None,
):
stream = bool(stream)
text = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")) if text is None else text
# Shields parameter received via extra_body - not yet implemented
if shields is not None:
raise NotImplementedError("Shields parameter is not yet implemented in the meta-reference provider")
guardrail_ids = extract_guardrail_ids(guardrails) if guardrails else []
if conversation is not None:
if previous_response_id is not None:
raise ValueError(
"Mutually exclusive parameters: 'previous_response_id' and 'conversation'. Ensure you are only providing one of these parameters."
)
if not conversation.startswith("conv_"):
raise InvalidConversationIdError(conversation)
stream_gen = self._create_streaming_response(
input=input,
conversation=conversation,
model=model,
instructions=instructions,
previous_response_id=previous_response_id,
@ -227,22 +276,39 @@ class OpenAIResponsesImpl:
text=text,
tools=tools,
max_infer_iters=max_infer_iters,
guardrail_ids=guardrail_ids,
)
if stream:
return stream_gen
else:
response = None
async for stream_chunk in stream_gen:
if stream_chunk.type == "response.completed":
if response is not None:
raise ValueError("The response stream completed multiple times! Earlier response: {response}")
response = stream_chunk.response
# don't leave the generator half complete!
final_response = None
final_event_type = None
failed_response = None
if response is None:
raise ValueError("The response stream never completed")
return response
async for stream_chunk in stream_gen:
if stream_chunk.type in {"response.completed", "response.incomplete"}:
if final_response is not None:
raise ValueError(
"The response stream produced multiple terminal responses! "
f"Earlier response from {final_event_type}"
)
final_response = stream_chunk.response
final_event_type = stream_chunk.type
elif stream_chunk.type == "response.failed":
failed_response = stream_chunk.response
if failed_response is not None:
error_message = (
failed_response.error.message
if failed_response and failed_response.error
else "Response stream failed without error details"
)
raise RuntimeError(f"OpenAI response failed: {error_message}")
if final_response is None:
raise ValueError("The response stream never reached a terminal state")
return final_response
async def _create_streaming_response(
self,
@ -250,15 +316,21 @@ class OpenAIResponsesImpl:
model: str,
instructions: str | None = None,
previous_response_id: str | None = None,
conversation: str | None = None,
store: bool | None = True,
temperature: float | None = None,
text: OpenAIResponseText | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
max_infer_iters: int | None = 10,
guardrail_ids: list[str] | None = None,
) -> AsyncIterator[OpenAIResponseObjectStream]:
# Input preprocessing
all_input, messages = await self._process_input_with_previous_response(input, previous_response_id)
await self._prepend_instructions(messages, instructions)
all_input, messages, tool_context = await self._process_input_with_previous_response(
input, tools, previous_response_id, conversation
)
if instructions:
messages.insert(0, OpenAISystemMessageParam(content=instructions))
# Structured outputs
response_format = await convert_response_text_to_chat_response_format(text)
@ -269,11 +341,12 @@ class OpenAIResponsesImpl:
response_tools=tools,
temperature=temperature,
response_format=response_format,
inputs=input,
tool_context=tool_context,
inputs=all_input,
)
# Create orchestrator and delegate streaming logic
response_id = f"resp-{uuid.uuid4()}"
response_id = f"resp_{uuid.uuid4()}"
created_at = int(time.time())
orchestrator = StreamingResponseOrchestrator(
@ -284,22 +357,68 @@ class OpenAIResponsesImpl:
text=text,
max_infer_iters=max_infer_iters,
tool_executor=self.tool_executor,
safety_api=self.safety_api,
guardrail_ids=guardrail_ids,
instructions=instructions,
)
# Stream the response
final_response = None
async for stream_chunk in orchestrator.create_response():
if stream_chunk.type == "response.completed":
final_response = stream_chunk.response
yield stream_chunk
failed_response = None
# Store the response if requested
if store and final_response:
await self._store_response(
response=final_response,
input=all_input,
messages=orchestrator.final_messages,
)
output_items = []
async for stream_chunk in orchestrator.create_response():
if stream_chunk.type in {"response.completed", "response.incomplete"}:
final_response = stream_chunk.response
elif stream_chunk.type == "response.failed":
failed_response = stream_chunk.response
if stream_chunk.type == "response.output_item.done":
item = stream_chunk.item
output_items.append(item)
# Store and sync before yielding terminal events
# This ensures the storage/syncing happens even if the consumer breaks after receiving the event
if (
stream_chunk.type in {"response.completed", "response.incomplete"}
and final_response
and failed_response is None
):
messages_to_store = list(
filter(lambda x: not isinstance(x, OpenAISystemMessageParam), orchestrator.final_messages)
)
if store:
# TODO: we really should work off of output_items instead of "final_messages"
await self._store_response(
response=final_response,
input=all_input,
messages=messages_to_store,
)
if conversation:
await self._sync_response_to_conversation(conversation, input, output_items)
await self.responses_store.store_conversation_messages(conversation, messages_to_store)
yield stream_chunk
async def delete_openai_response(self, response_id: str) -> OpenAIDeleteResponseObject:
return await self.responses_store.delete_response_object(response_id)
async def _sync_response_to_conversation(
self, conversation_id: str, input: str | list[OpenAIResponseInput] | None, output_items: list[ConversationItem]
) -> None:
"""Sync content and response messages to the conversation."""
conversation_items = []
if isinstance(input, str):
conversation_items.append(
OpenAIResponseMessage(role="user", content=[OpenAIResponseInputMessageContentText(text=input)])
)
elif isinstance(input, list):
conversation_items.extend(input)
conversation_items.extend(output_items)
adapter = TypeAdapter(list[ConversationItem])
validated_items = adapter.validate_python(conversation_items)
await self.conversations_api.add_items(conversation_id, validated_items)

View file

@ -13,17 +13,24 @@ from llama_stack.apis.agents.openai_responses import (
ApprovalFilter,
MCPListToolsTool,
OpenAIResponseContentPartOutputText,
OpenAIResponseContentPartReasoningText,
OpenAIResponseContentPartRefusal,
OpenAIResponseError,
OpenAIResponseInputTool,
OpenAIResponseInputToolMCP,
OpenAIResponseMCPApprovalRequest,
OpenAIResponseMessage,
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponseObjectStreamResponseCompleted,
OpenAIResponseObjectStreamResponseContentPartAdded,
OpenAIResponseObjectStreamResponseContentPartDone,
OpenAIResponseObjectStreamResponseCreated,
OpenAIResponseObjectStreamResponseFailed,
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta,
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone,
OpenAIResponseObjectStreamResponseIncomplete,
OpenAIResponseObjectStreamResponseInProgress,
OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta,
OpenAIResponseObjectStreamResponseMcpCallArgumentsDone,
OpenAIResponseObjectStreamResponseMcpListToolsCompleted,
@ -31,24 +38,43 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseObjectStreamResponseOutputItemAdded,
OpenAIResponseObjectStreamResponseOutputItemDone,
OpenAIResponseObjectStreamResponseOutputTextDelta,
OpenAIResponseObjectStreamResponseReasoningTextDelta,
OpenAIResponseObjectStreamResponseReasoningTextDone,
OpenAIResponseObjectStreamResponseRefusalDelta,
OpenAIResponseObjectStreamResponseRefusalDone,
OpenAIResponseOutput,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageFileSearchToolCall,
OpenAIResponseOutputMessageFunctionToolCall,
OpenAIResponseOutputMessageMCPCall,
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseOutputMessageWebSearchToolCall,
OpenAIResponseText,
OpenAIResponseUsage,
OpenAIResponseUsageInputTokensDetails,
OpenAIResponseUsageOutputTokensDetails,
WebSearchToolTypes,
)
from llama_stack.apis.inference import (
Inference,
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIChatCompletionRequestWithExtraBody,
OpenAIChatCompletionToolCall,
OpenAIChoice,
OpenAIMessageParam,
)
from llama_stack.core.telemetry import tracing
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
from .types import ChatCompletionContext, ChatCompletionResult
from .utils import convert_chat_choice_to_response_message, is_function_tool_call
from .utils import (
convert_chat_choice_to_response_message,
is_function_tool_call,
run_guardrails,
)
logger = get_logger(name=__name__, category="agents::meta_reference")
@ -84,6 +110,9 @@ class StreamingResponseOrchestrator:
text: OpenAIResponseText,
max_infer_iters: int,
tool_executor, # Will be the tool execution logic from the main class
instructions: str,
safety_api,
guardrail_ids: list[str] | None = None,
):
self.inference_api = inference_api
self.ctx = ctx
@ -92,118 +121,215 @@ class StreamingResponseOrchestrator:
self.text = text
self.max_infer_iters = max_infer_iters
self.tool_executor = tool_executor
self.safety_api = safety_api
self.guardrail_ids = guardrail_ids or []
self.sequence_number = 0
# Store MCP tool mapping that gets built during tool processing
self.mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] = {}
self.mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] = ctx.tool_context.previous_tools or {}
# Track final messages after all tool executions
self.final_messages: list[OpenAIMessageParam] = []
# mapping for annotations
self.citation_files: dict[str, str] = {}
# Track accumulated usage across all inference calls
self.accumulated_usage: OpenAIResponseUsage | None = None
# Track if we've sent a refusal response
self.violation_detected = False
# system message that is inserted into the model's context
self.instructions = instructions
async def create_response(self) -> AsyncIterator[OpenAIResponseObjectStream]:
# Initialize output messages
output_messages: list[OpenAIResponseOutput] = []
# Create initial response and emit response.created immediately
initial_response = OpenAIResponseObject(
async def _create_refusal_response(self, violation_message: str) -> OpenAIResponseObjectStream:
"""Create a refusal response to replace streaming content."""
refusal_content = OpenAIResponseContentPartRefusal(refusal=violation_message)
# Create a completed refusal response
refusal_response = OpenAIResponseObject(
id=self.response_id,
created_at=self.created_at,
model=self.ctx.model,
status="completed",
output=[OpenAIResponseMessage(role="assistant", content=[refusal_content], type="message")],
)
return OpenAIResponseObjectStreamResponseCompleted(response=refusal_response)
def _clone_outputs(self, outputs: list[OpenAIResponseOutput]) -> list[OpenAIResponseOutput]:
cloned: list[OpenAIResponseOutput] = []
for item in outputs:
if hasattr(item, "model_copy"):
cloned.append(item.model_copy(deep=True))
else:
cloned.append(item)
return cloned
def _snapshot_response(
self,
status: str,
outputs: list[OpenAIResponseOutput],
*,
error: OpenAIResponseError | None = None,
) -> OpenAIResponseObject:
return OpenAIResponseObject(
created_at=self.created_at,
id=self.response_id,
model=self.ctx.model,
object="response",
status="in_progress",
output=output_messages.copy(),
status=status,
output=self._clone_outputs(outputs),
text=self.text,
tools=self.ctx.available_tools(),
error=error,
usage=self.accumulated_usage,
instructions=self.instructions,
)
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
async def create_response(self) -> AsyncIterator[OpenAIResponseObjectStream]:
output_messages: list[OpenAIResponseOutput] = []
# Process all tools (including MCP tools) and emit streaming events
if self.ctx.response_tools:
async for stream_event in self._process_tools(self.ctx.response_tools, output_messages):
yield stream_event
# Emit response.created followed by response.in_progress to align with OpenAI streaming
yield OpenAIResponseObjectStreamResponseCreated(
response=self._snapshot_response("in_progress", output_messages)
)
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseInProgress(
response=self._snapshot_response("in_progress", output_messages),
sequence_number=self.sequence_number,
)
# Input safety validation - check messages before processing
if self.guardrail_ids:
combined_text = interleaved_content_as_str([msg.content for msg in self.ctx.messages])
input_violation_message = await run_guardrails(self.safety_api, combined_text, self.guardrail_ids)
if input_violation_message:
logger.info(f"Input guardrail violation: {input_violation_message}")
yield await self._create_refusal_response(input_violation_message)
return
async for stream_event in self._process_tools(output_messages):
yield stream_event
n_iter = 0
messages = self.ctx.messages.copy()
final_status = "completed"
last_completion_result: ChatCompletionResult | None = None
while True:
# Text is the default response format for chat completion so don't need to pass it
# (some providers don't support non-empty response_format when tools are present)
response_format = None if self.ctx.response_format.type == "text" else self.ctx.response_format
logger.debug(f"calling openai_chat_completion with tools: {self.ctx.chat_tools}")
completion_result = await self.inference_api.openai_chat_completion(
model=self.ctx.model,
messages=messages,
tools=self.ctx.chat_tools,
stream=True,
temperature=self.ctx.temperature,
response_format=response_format,
)
try:
while True:
# Text is the default response format for chat completion so don't need to pass it
# (some providers don't support non-empty response_format when tools are present)
response_format = (
None if getattr(self.ctx.response_format, "type", None) == "text" else self.ctx.response_format
)
logger.debug(f"calling openai_chat_completion with tools: {self.ctx.chat_tools}")
# Process streaming chunks and build complete response
completion_result_data = None
async for stream_event_or_result in self._process_streaming_chunks(completion_result, output_messages):
if isinstance(stream_event_or_result, ChatCompletionResult):
completion_result_data = stream_event_or_result
else:
yield stream_event_or_result
if not completion_result_data:
raise ValueError("Streaming chunk processor failed to return completion data")
current_response = self._build_chat_completion(completion_result_data)
params = OpenAIChatCompletionRequestWithExtraBody(
model=self.ctx.model,
messages=messages,
tools=self.ctx.chat_tools,
stream=True,
temperature=self.ctx.temperature,
response_format=response_format,
stream_options={
"include_usage": True,
},
)
completion_result = await self.inference_api.openai_chat_completion(params)
function_tool_calls, non_function_tool_calls, approvals, next_turn_messages = self._separate_tool_calls(
current_response, messages
)
# Process streaming chunks and build complete response
completion_result_data = None
async for stream_event_or_result in self._process_streaming_chunks(completion_result, output_messages):
if isinstance(stream_event_or_result, ChatCompletionResult):
completion_result_data = stream_event_or_result
else:
yield stream_event_or_result
# add any approval requests required
for tool_call in approvals:
async for evt in self._add_mcp_approval_request(
tool_call.function.name, tool_call.function.arguments, output_messages
# If violation detected, skip the rest of processing since we already sent refusal
if self.violation_detected:
return
if not completion_result_data:
raise ValueError("Streaming chunk processor failed to return completion data")
last_completion_result = completion_result_data
current_response = self._build_chat_completion(completion_result_data)
(
function_tool_calls,
non_function_tool_calls,
approvals,
next_turn_messages,
) = self._separate_tool_calls(current_response, messages)
# add any approval requests required
for tool_call in approvals:
async for evt in self._add_mcp_approval_request(
tool_call.function.name, tool_call.function.arguments, output_messages
):
yield evt
# Handle choices with no tool calls
for choice in current_response.choices:
if not (choice.message.tool_calls and self.ctx.response_tools):
output_messages.append(
await convert_chat_choice_to_response_message(
choice,
self.citation_files,
message_id=completion_result_data.message_item_id,
)
)
# Execute tool calls and coordinate results
async for stream_event in self._coordinate_tool_execution(
function_tool_calls,
non_function_tool_calls,
completion_result_data,
output_messages,
next_turn_messages,
):
yield evt
yield stream_event
# Handle choices with no tool calls
for choice in current_response.choices:
if not (choice.message.tool_calls and self.ctx.response_tools):
output_messages.append(await convert_chat_choice_to_response_message(choice, self.citation_files))
messages = next_turn_messages
# Execute tool calls and coordinate results
async for stream_event in self._coordinate_tool_execution(
function_tool_calls,
non_function_tool_calls,
completion_result_data,
output_messages,
next_turn_messages,
):
yield stream_event
if not function_tool_calls and not non_function_tool_calls:
break
if not function_tool_calls and not non_function_tool_calls:
break
if function_tool_calls:
logger.info("Exiting inference loop since there is a function (client-side) tool call")
break
if function_tool_calls:
logger.info("Exiting inference loop since there is a function (client-side) tool call")
break
n_iter += 1
if n_iter >= self.max_infer_iters:
logger.info(
f"Exiting inference loop since iteration count({n_iter}) exceeds {self.max_infer_iters=}"
)
final_status = "incomplete"
break
n_iter += 1
if n_iter >= self.max_infer_iters:
logger.info(f"Exiting inference loop since iteration count({n_iter}) exceeds {self.max_infer_iters=}")
break
if last_completion_result and last_completion_result.finish_reason == "length":
final_status = "incomplete"
messages = next_turn_messages
except Exception as exc: # noqa: BLE001
self.final_messages = messages.copy()
self.sequence_number += 1
error = OpenAIResponseError(code="internal_error", message=str(exc))
failure_response = self._snapshot_response("failed", output_messages, error=error)
yield OpenAIResponseObjectStreamResponseFailed(
response=failure_response,
sequence_number=self.sequence_number,
)
return
self.final_messages = messages.copy() + [current_response.choices[0].message]
self.final_messages = messages.copy()
# Create final response
final_response = OpenAIResponseObject(
created_at=self.created_at,
id=self.response_id,
model=self.ctx.model,
object="response",
status="completed",
text=self.text,
output=output_messages,
)
# Emit response.completed
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
if final_status == "incomplete":
self.sequence_number += 1
final_response = self._snapshot_response("incomplete", output_messages)
yield OpenAIResponseObjectStreamResponseIncomplete(
response=final_response,
sequence_number=self.sequence_number,
)
else:
final_response = self._snapshot_response("completed", output_messages)
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
def _separate_tool_calls(self, current_response, messages) -> tuple[list, list, list, list]:
"""Separate tool calls into function and non-function categories."""
@ -232,14 +358,183 @@ class StreamingResponseOrchestrator:
non_function_tool_calls.append(tool_call)
else:
logger.info(f"Approval denied for {tool_call.id} on {tool_call.function.name}")
next_turn_messages.pop()
else:
logger.info(f"Requesting approval for {tool_call.id} on {tool_call.function.name}")
approvals.append(tool_call)
next_turn_messages.pop()
else:
non_function_tool_calls.append(tool_call)
return function_tool_calls, non_function_tool_calls, approvals, next_turn_messages
def _accumulate_chunk_usage(self, chunk: OpenAIChatCompletionChunk) -> None:
"""Accumulate usage from a streaming chunk into the response usage format."""
if not chunk.usage:
return
if self.accumulated_usage is None:
# Convert from chat completion format to response format
self.accumulated_usage = OpenAIResponseUsage(
input_tokens=chunk.usage.prompt_tokens,
output_tokens=chunk.usage.completion_tokens,
total_tokens=chunk.usage.total_tokens,
input_tokens_details=(
OpenAIResponseUsageInputTokensDetails(cached_tokens=chunk.usage.prompt_tokens_details.cached_tokens)
if chunk.usage.prompt_tokens_details
else None
),
output_tokens_details=(
OpenAIResponseUsageOutputTokensDetails(
reasoning_tokens=chunk.usage.completion_tokens_details.reasoning_tokens
)
if chunk.usage.completion_tokens_details
else None
),
)
else:
# Accumulate across multiple inference calls
self.accumulated_usage = OpenAIResponseUsage(
input_tokens=self.accumulated_usage.input_tokens + chunk.usage.prompt_tokens,
output_tokens=self.accumulated_usage.output_tokens + chunk.usage.completion_tokens,
total_tokens=self.accumulated_usage.total_tokens + chunk.usage.total_tokens,
# Use latest non-null details
input_tokens_details=(
OpenAIResponseUsageInputTokensDetails(cached_tokens=chunk.usage.prompt_tokens_details.cached_tokens)
if chunk.usage.prompt_tokens_details
else self.accumulated_usage.input_tokens_details
),
output_tokens_details=(
OpenAIResponseUsageOutputTokensDetails(
reasoning_tokens=chunk.usage.completion_tokens_details.reasoning_tokens
)
if chunk.usage.completion_tokens_details
else self.accumulated_usage.output_tokens_details
),
)
async def _handle_reasoning_content_chunk(
self,
reasoning_content: str,
reasoning_part_emitted: bool,
reasoning_content_index: int,
message_item_id: str,
message_output_index: int,
) -> AsyncIterator[OpenAIResponseObjectStream]:
# Emit content_part.added event for first reasoning chunk
if not reasoning_part_emitted:
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseContentPartAdded(
content_index=reasoning_content_index,
response_id=self.response_id,
item_id=message_item_id,
output_index=message_output_index,
part=OpenAIResponseContentPartReasoningText(
text="", # Will be filled incrementally via reasoning deltas
),
sequence_number=self.sequence_number,
)
# Emit reasoning_text.delta event
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseReasoningTextDelta(
content_index=reasoning_content_index,
delta=reasoning_content,
item_id=message_item_id,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
async def _handle_refusal_content_chunk(
self,
refusal_content: str,
refusal_part_emitted: bool,
refusal_content_index: int,
message_item_id: str,
message_output_index: int,
) -> AsyncIterator[OpenAIResponseObjectStream]:
# Emit content_part.added event for first refusal chunk
if not refusal_part_emitted:
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseContentPartAdded(
content_index=refusal_content_index,
response_id=self.response_id,
item_id=message_item_id,
output_index=message_output_index,
part=OpenAIResponseContentPartRefusal(
refusal="", # Will be filled incrementally via refusal deltas
),
sequence_number=self.sequence_number,
)
# Emit refusal.delta event
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseRefusalDelta(
content_index=refusal_content_index,
delta=refusal_content,
item_id=message_item_id,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
async def _emit_reasoning_done_events(
self,
reasoning_text_accumulated: list[str],
reasoning_content_index: int,
message_item_id: str,
message_output_index: int,
) -> AsyncIterator[OpenAIResponseObjectStream]:
final_reasoning_text = "".join(reasoning_text_accumulated)
# Emit reasoning_text.done event
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseReasoningTextDone(
content_index=reasoning_content_index,
text=final_reasoning_text,
item_id=message_item_id,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
# Emit content_part.done for reasoning
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseContentPartDone(
content_index=reasoning_content_index,
response_id=self.response_id,
item_id=message_item_id,
output_index=message_output_index,
part=OpenAIResponseContentPartReasoningText(
text=final_reasoning_text,
),
sequence_number=self.sequence_number,
)
async def _emit_refusal_done_events(
self,
refusal_text_accumulated: list[str],
refusal_content_index: int,
message_item_id: str,
message_output_index: int,
) -> AsyncIterator[OpenAIResponseObjectStream]:
final_refusal_text = "".join(refusal_text_accumulated)
# Emit refusal.done event
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseRefusalDone(
content_index=refusal_content_index,
refusal=final_refusal_text,
item_id=message_item_id,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
# Emit content_part.done for refusal
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseContentPartDone(
content_index=refusal_content_index,
response_id=self.response_id,
item_id=message_item_id,
output_index=message_output_index,
part=OpenAIResponseContentPartRefusal(
refusal=final_refusal_text,
),
sequence_number=self.sequence_number,
)
async def _process_streaming_chunks(
self, completion_result, output_messages: list[OpenAIResponseOutput]
) -> AsyncIterator[OpenAIResponseObjectStream | ChatCompletionResult]:
@ -257,41 +552,112 @@ class StreamingResponseOrchestrator:
# Track tool call items for streaming events
tool_call_item_ids: dict[int, str] = {}
# Track content parts for streaming events
message_item_added_emitted = False
content_part_emitted = False
reasoning_part_emitted = False
refusal_part_emitted = False
content_index = 0
reasoning_content_index = 1 # reasoning is a separate content part
refusal_content_index = 2 # refusal is a separate content part
message_output_index = len(output_messages)
reasoning_text_accumulated = []
refusal_text_accumulated = []
async for chunk in completion_result:
chat_response_id = chunk.id
chunk_created = chunk.created
chunk_model = chunk.model
# Accumulate usage from chunks (typically in final chunk with stream_options)
self._accumulate_chunk_usage(chunk)
# Track deltas for this specific chunk for guardrail validation
chunk_events: list[OpenAIResponseObjectStream] = []
for chunk_choice in chunk.choices:
# Emit incremental text content as delta events
if chunk_choice.delta.content:
# Emit output_item.added for the message on first content
if not message_item_added_emitted:
message_item_added_emitted = True
self.sequence_number += 1
message_item = OpenAIResponseMessage(
id=message_item_id,
content=[],
role="assistant",
status="in_progress",
)
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
response_id=self.response_id,
item=message_item,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
# Emit content_part.added event for first text chunk
if not content_part_emitted:
content_part_emitted = True
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseContentPartAdded(
content_index=content_index,
response_id=self.response_id,
item_id=message_item_id,
output_index=message_output_index,
part=OpenAIResponseContentPartOutputText(
text="", # Will be filled incrementally via text deltas
),
sequence_number=self.sequence_number,
)
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
content_index=0,
text_delta_event = OpenAIResponseObjectStreamResponseOutputTextDelta(
content_index=content_index,
delta=chunk_choice.delta.content,
item_id=message_item_id,
output_index=0,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
# Buffer text delta events for guardrail check
if self.guardrail_ids:
chunk_events.append(text_delta_event)
else:
yield text_delta_event
# Collect content for final response
chat_response_content.append(chunk_choice.delta.content or "")
if chunk_choice.finish_reason:
chunk_finish_reason = chunk_choice.finish_reason
# Handle reasoning content if present (non-standard field for o1/o3 models)
if hasattr(chunk_choice.delta, "reasoning_content") and chunk_choice.delta.reasoning_content:
async for event in self._handle_reasoning_content_chunk(
reasoning_content=chunk_choice.delta.reasoning_content,
reasoning_part_emitted=reasoning_part_emitted,
reasoning_content_index=reasoning_content_index,
message_item_id=message_item_id,
message_output_index=message_output_index,
):
# Buffer reasoning events for guardrail check
if self.guardrail_ids:
chunk_events.append(event)
else:
yield event
reasoning_part_emitted = True
reasoning_text_accumulated.append(chunk_choice.delta.reasoning_content)
# Handle refusal content if present
if chunk_choice.delta.refusal:
async for event in self._handle_refusal_content_chunk(
refusal_content=chunk_choice.delta.refusal,
refusal_part_emitted=refusal_part_emitted,
refusal_content_index=refusal_content_index,
message_item_id=message_item_id,
message_output_index=message_output_index,
):
yield event
refusal_part_emitted = True
refusal_text_accumulated.append(chunk_choice.delta.refusal)
# Aggregate tool call arguments across chunks
if chunk_choice.delta.tool_calls:
for tool_call in chunk_choice.delta.tool_calls:
@ -310,19 +676,22 @@ class StreamingResponseOrchestrator:
# Emit output_item.added event for the new function call
self.sequence_number += 1
function_call_item = OpenAIResponseOutputMessageFunctionToolCall(
arguments="", # Will be filled incrementally via delta events
call_id=tool_call.id or "",
name=tool_call.function.name if tool_call.function else "",
id=tool_call_item_id,
status="in_progress",
)
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
response_id=self.response_id,
item=function_call_item,
output_index=len(output_messages),
sequence_number=self.sequence_number,
)
is_mcp_tool = tool_call.function.name and tool_call.function.name in self.mcp_tool_to_server
if not is_mcp_tool and tool_call.function.name not in ["web_search", "knowledge_search"]:
# for MCP tools (and even other non-function tools) we emit an output message item later
function_call_item = OpenAIResponseOutputMessageFunctionToolCall(
arguments="", # Will be filled incrementally via delta events
call_id=tool_call.id or "",
name=tool_call.function.name if tool_call.function else "",
id=tool_call_item_id,
status="in_progress",
)
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
response_id=self.response_id,
item=function_call_item,
output_index=len(output_messages),
sequence_number=self.sequence_number,
)
# Stream tool call arguments as they arrive (differentiate between MCP and function calls)
if tool_call.function and tool_call.function.arguments:
@ -354,6 +723,22 @@ class StreamingResponseOrchestrator:
response_tool_call.function.arguments or ""
) + tool_call.function.arguments
# Output Safety Validation for this chunk
if self.guardrail_ids:
# Check guardrails on accumulated text so far
accumulated_text = "".join(chat_response_content)
violation_message = await run_guardrails(self.safety_api, accumulated_text, self.guardrail_ids)
if violation_message:
logger.info(f"Output guardrail violation: {violation_message}")
chunk_events.clear()
yield await self._create_refusal_response(violation_message)
self.violation_detected = True
return
else:
# No violation detected, emit all content events for this chunk
for event in chunk_events:
yield event
# Emit arguments.done events for completed tool calls (differentiate between MCP and function calls)
for tool_call_index in sorted(chat_response_tool_calls.keys()):
tool_call = chat_response_tool_calls[tool_call_index]
@ -383,18 +768,66 @@ class StreamingResponseOrchestrator:
final_text = "".join(chat_response_content)
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseContentPartDone(
content_index=content_index,
response_id=self.response_id,
item_id=message_item_id,
output_index=message_output_index,
part=OpenAIResponseContentPartOutputText(
text=final_text,
),
sequence_number=self.sequence_number,
)
# Emit reasoning done events if reasoning content was streamed
if reasoning_part_emitted:
async for event in self._emit_reasoning_done_events(
reasoning_text_accumulated=reasoning_text_accumulated,
reasoning_content_index=reasoning_content_index,
message_item_id=message_item_id,
message_output_index=message_output_index,
):
yield event
# Emit refusal done events if refusal content was streamed
if refusal_part_emitted:
async for event in self._emit_refusal_done_events(
refusal_text_accumulated=refusal_text_accumulated,
refusal_content_index=refusal_content_index,
message_item_id=message_item_id,
message_output_index=message_output_index,
):
yield event
# Clear content when there are tool calls (OpenAI spec behavior)
if chat_response_tool_calls:
chat_response_content = []
# Emit output_item.done for message when we have content and no tool calls
if message_item_added_emitted and not chat_response_tool_calls:
content_parts = []
if content_part_emitted:
final_text = "".join(chat_response_content)
content_parts.append(
OpenAIResponseOutputMessageContentOutputText(
text=final_text,
annotations=[],
)
)
self.sequence_number += 1
message_item = OpenAIResponseMessage(
id=message_item_id,
content=content_parts,
role="assistant",
status="completed",
)
yield OpenAIResponseObjectStreamResponseOutputItemDone(
response_id=self.response_id,
item=message_item,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
yield ChatCompletionResult(
response_id=chat_response_id,
content=chat_response_content,
@ -455,6 +888,36 @@ class StreamingResponseOrchestrator:
if not matching_item_id:
matching_item_id = f"tc_{uuid.uuid4()}"
self.sequence_number += 1
if tool_call.function.name and tool_call.function.name in self.mcp_tool_to_server:
item = OpenAIResponseOutputMessageMCPCall(
arguments="",
name=tool_call.function.name,
id=matching_item_id,
server_label=self.mcp_tool_to_server[tool_call.function.name].server_label,
status="in_progress",
)
elif tool_call.function.name == "web_search":
item = OpenAIResponseOutputMessageWebSearchToolCall(
id=matching_item_id,
status="in_progress",
)
elif tool_call.function.name == "knowledge_search":
item = OpenAIResponseOutputMessageFileSearchToolCall(
id=matching_item_id,
status="in_progress",
queries=[tool_call.function.arguments or ""],
)
else:
raise ValueError(f"Unsupported tool call: {tool_call.function.name}")
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
response_id=self.response_id,
item=item,
output_index=len(output_messages),
sequence_number=self.sequence_number,
)
# Execute tool call with streaming
tool_call_log = None
tool_response_message = None
@ -525,7 +988,7 @@ class StreamingResponseOrchestrator:
sequence_number=self.sequence_number,
)
async def _process_tools(
async def _process_new_tools(
self, tools: list[OpenAIResponseInputTool], output_messages: list[OpenAIResponseOutput]
) -> AsyncIterator[OpenAIResponseObjectStream]:
"""Process all tools and emit appropriate streaming events."""
@ -580,7 +1043,6 @@ class StreamingResponseOrchestrator:
yield OpenAIResponseObjectStreamResponseMcpListToolsInProgress(
sequence_number=self.sequence_number,
)
try:
# Parse allowed/never allowed tools
always_allowed = None
@ -593,14 +1055,22 @@ class StreamingResponseOrchestrator:
never_allowed = mcp_tool.allowed_tools.never
# Call list_mcp_tools
tool_defs = await list_mcp_tools(
endpoint=mcp_tool.server_url,
headers=mcp_tool.headers or {},
)
tool_defs = None
list_id = f"mcp_list_{uuid.uuid4()}"
attributes = {
"server_label": mcp_tool.server_label,
"server_url": mcp_tool.server_url,
"mcp_list_tools_id": list_id,
}
async with tracing.span("list_mcp_tools", attributes):
tool_defs = await list_mcp_tools(
endpoint=mcp_tool.server_url,
headers=mcp_tool.headers or {},
)
# Create the MCP list tools message
mcp_list_message = OpenAIResponseOutputMessageMCPListTools(
id=f"mcp_list_{uuid.uuid4()}",
id=list_id,
server_label=mcp_tool.server_label,
tools=[],
)
@ -634,39 +1104,26 @@ class StreamingResponseOrchestrator:
},
)
)
# Add the MCP list message to output
output_messages.append(mcp_list_message)
# Emit output_item.added for the MCP list tools message
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
response_id=self.response_id,
item=mcp_list_message,
output_index=len(output_messages) - 1,
sequence_number=self.sequence_number,
)
# Emit mcp_list_tools.completed
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseMcpListToolsCompleted(
sequence_number=self.sequence_number,
)
# Emit output_item.done for the MCP list tools message
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputItemDone(
response_id=self.response_id,
item=mcp_list_message,
output_index=len(output_messages) - 1,
sequence_number=self.sequence_number,
)
async for stream_event in self._add_mcp_list_tools(mcp_list_message, output_messages):
yield stream_event
except Exception as e:
# TODO: Emit mcp_list_tools.failed event if needed
logger.exception(f"Failed to list MCP tools from {mcp_tool.server_url}: {e}")
raise
async def _process_tools(
self, output_messages: list[OpenAIResponseOutput]
) -> AsyncIterator[OpenAIResponseObjectStream]:
# Handle all mcp tool lists from previous response that are still valid:
for tool in self.ctx.tool_context.previous_tool_listings:
async for evt in self._reuse_mcp_list_tools(tool, output_messages):
yield evt
# Process all remaining tools (including MCP tools) and emit streaming events
if self.ctx.tool_context.tools_to_process:
async for stream_event in self._process_new_tools(self.ctx.tool_context.tools_to_process, output_messages):
yield stream_event
def _approval_required(self, tool_name: str) -> bool:
if tool_name not in self.mcp_tool_to_server:
return False
@ -701,7 +1158,6 @@ class StreamingResponseOrchestrator:
output_index=len(output_messages) - 1,
sequence_number=self.sequence_number,
)
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputItemDone(
response_id=self.response_id,
@ -709,3 +1165,64 @@ class StreamingResponseOrchestrator:
output_index=len(output_messages) - 1,
sequence_number=self.sequence_number,
)
async def _add_mcp_list_tools(
self, mcp_list_message: OpenAIResponseOutputMessageMCPListTools, output_messages: list[OpenAIResponseOutput]
) -> AsyncIterator[OpenAIResponseObjectStream]:
# Add the MCP list message to output
output_messages.append(mcp_list_message)
# Emit output_item.added for the MCP list tools message
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
response_id=self.response_id,
item=OpenAIResponseOutputMessageMCPListTools(
id=mcp_list_message.id,
server_label=mcp_list_message.server_label,
tools=[],
),
output_index=len(output_messages) - 1,
sequence_number=self.sequence_number,
)
# Emit mcp_list_tools.completed
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseMcpListToolsCompleted(
sequence_number=self.sequence_number,
)
# Emit output_item.done for the MCP list tools message
self.sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputItemDone(
response_id=self.response_id,
item=mcp_list_message,
output_index=len(output_messages) - 1,
sequence_number=self.sequence_number,
)
async def _reuse_mcp_list_tools(
self, original: OpenAIResponseOutputMessageMCPListTools, output_messages: list[OpenAIResponseOutput]
) -> AsyncIterator[OpenAIResponseObjectStream]:
for t in original.tools:
from llama_stack.models.llama.datatypes import ToolDefinition
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
# convert from input_schema to map of ToolParamDefinitions...
tool_def = ToolDefinition(
tool_name=t.name,
description=t.description,
input_schema=t.input_schema,
)
# ...then can convert that to openai completions tool
openai_tool = convert_tooldef_to_openai_tool(tool_def)
if self.ctx.chat_tools is None:
self.ctx.chat_tools = []
self.ctx.chat_tools.append(openai_tool)
mcp_list_message = OpenAIResponseOutputMessageMCPListTools(
id=f"mcp_list_{uuid.uuid4()}",
server_label=original.server_label,
tools=original.tools,
)
async for stream_event in self._add_mcp_list_tools(mcp_list_message, output_messages):
yield stream_event

View file

@ -11,6 +11,9 @@ from collections.abc import AsyncIterator
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputToolFileSearch,
OpenAIResponseInputToolMCP,
OpenAIResponseObjectStreamResponseFileSearchCallCompleted,
OpenAIResponseObjectStreamResponseFileSearchCallInProgress,
OpenAIResponseObjectStreamResponseFileSearchCallSearching,
OpenAIResponseObjectStreamResponseMcpCallCompleted,
OpenAIResponseObjectStreamResponseMcpCallFailed,
OpenAIResponseObjectStreamResponseMcpCallInProgress,
@ -34,6 +37,7 @@ from llama_stack.apis.inference import (
)
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.core.telemetry import tracing
from llama_stack.log import get_logger
from .types import ChatCompletionContext, ToolExecutionResult
@ -89,7 +93,7 @@ class ToolExecutor:
# Build result messages from tool execution
output_message, input_message = await self._build_result_messages(
function, tool_call_id, tool_kwargs, ctx, error_exc, result, has_error, mcp_tool_to_server
function, tool_call_id, item_id, tool_kwargs, ctx, error_exc, result, has_error, mcp_tool_to_server
)
# Yield the final result
@ -220,7 +224,13 @@ class ToolExecutor:
output_index=output_index,
sequence_number=sequence_number,
)
# Note: knowledge_search and other custom tools don't have specific streaming events in OpenAI spec
elif function_name == "knowledge_search":
sequence_number += 1
progress_event = OpenAIResponseObjectStreamResponseFileSearchCallInProgress(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
if progress_event:
yield ToolExecutionResult(stream_event=progress_event, sequence_number=sequence_number)
@ -235,6 +245,16 @@ class ToolExecutor:
)
yield ToolExecutionResult(stream_event=searching_event, sequence_number=sequence_number)
# For file search, emit searching event
if function_name == "knowledge_search":
sequence_number += 1
searching_event = OpenAIResponseObjectStreamResponseFileSearchCallSearching(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
yield ToolExecutionResult(stream_event=searching_event, sequence_number=sequence_number)
async def _execute_tool(
self,
function_name: str,
@ -251,12 +271,18 @@ class ToolExecutor:
from llama_stack.providers.utils.tools.mcp import invoke_mcp_tool
mcp_tool = mcp_tool_to_server[function_name]
result = await invoke_mcp_tool(
endpoint=mcp_tool.server_url,
headers=mcp_tool.headers or {},
tool_name=function_name,
kwargs=tool_kwargs,
)
attributes = {
"server_label": mcp_tool.server_label,
"server_url": mcp_tool.server_url,
"tool_name": function_name,
}
async with tracing.span("invoke_mcp_tool", attributes):
result = await invoke_mcp_tool(
endpoint=mcp_tool.server_url,
headers=mcp_tool.headers or {},
tool_name=function_name,
kwargs=tool_kwargs,
)
elif function_name == "knowledge_search":
response_file_search_tool = next(
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)),
@ -266,15 +292,20 @@ class ToolExecutor:
# Use vector_stores.search API instead of knowledge_search tool
# to support filters and ranking_options
query = tool_kwargs.get("query", "")
result = await self._execute_knowledge_search_via_vector_store(
query=query,
response_file_search_tool=response_file_search_tool,
)
async with tracing.span("knowledge_search", {}):
result = await self._execute_knowledge_search_via_vector_store(
query=query,
response_file_search_tool=response_file_search_tool,
)
else:
result = await self.tool_runtime_api.invoke_tool(
tool_name=function_name,
kwargs=tool_kwargs,
)
attributes = {
"tool_name": function_name,
}
async with tracing.span("invoke_tool", attributes):
result = await self.tool_runtime_api.invoke_tool(
tool_name=function_name,
kwargs=tool_kwargs,
)
except Exception as e:
error_exc = e
@ -310,7 +341,13 @@ class ToolExecutor:
output_index=output_index,
sequence_number=sequence_number,
)
# Note: knowledge_search and other custom tools don't have specific completion events in OpenAI spec
elif function_name == "knowledge_search":
sequence_number += 1
completion_event = OpenAIResponseObjectStreamResponseFileSearchCallCompleted(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
if completion_event:
yield ToolExecutionResult(stream_event=completion_event, sequence_number=sequence_number)
@ -319,6 +356,7 @@ class ToolExecutor:
self,
function,
tool_call_id: str,
item_id: str,
tool_kwargs: dict,
ctx: ChatCompletionContext,
error_exc: Exception | None,
@ -338,7 +376,7 @@ class ToolExecutor:
)
message = OpenAIResponseOutputMessageMCPCall(
id=tool_call_id,
id=item_id,
arguments=function.arguments,
name=function.name,
server_label=mcp_tool_to_server[function.name].server_label,
@ -352,14 +390,14 @@ class ToolExecutor:
else:
if function.name == "web_search":
message = OpenAIResponseOutputMessageWebSearchToolCall(
id=tool_call_id,
id=item_id,
status="completed",
)
if has_error:
message.status = "failed"
elif function.name == "knowledge_search":
message = OpenAIResponseOutputMessageFileSearchToolCall(
id=tool_call_id,
id=item_id,
queries=[tool_kwargs.get("query", "")],
status="completed",
)

View file

@ -12,10 +12,18 @@ from pydantic import BaseModel
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInput,
OpenAIResponseInputTool,
OpenAIResponseInputToolFileSearch,
OpenAIResponseInputToolFunction,
OpenAIResponseInputToolMCP,
OpenAIResponseInputToolWebSearch,
OpenAIResponseMCPApprovalRequest,
OpenAIResponseMCPApprovalResponse,
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponseOutput,
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseTool,
OpenAIResponseToolMCP,
)
from llama_stack.apis.inference import OpenAIChatCompletionToolCall, OpenAIMessageParam, OpenAIResponseFormatParam
@ -55,6 +63,86 @@ class ChatCompletionResult:
return bool(self.tool_calls)
class ToolContext(BaseModel):
"""Holds information about tools from this and (if relevant)
previous response in order to facilitate reuse of previous
listings where appropriate."""
# tools argument passed into current request:
current_tools: list[OpenAIResponseInputTool]
# reconstructed map of tool -> mcp server from previous response:
previous_tools: dict[str, OpenAIResponseInputToolMCP]
# reusable mcp-list-tools objects from previous response:
previous_tool_listings: list[OpenAIResponseOutputMessageMCPListTools]
# tool arguments from current request that still need to be processed:
tools_to_process: list[OpenAIResponseInputTool]
def __init__(
self,
current_tools: list[OpenAIResponseInputTool] | None,
):
super().__init__(
current_tools=current_tools or [],
previous_tools={},
previous_tool_listings=[],
tools_to_process=current_tools or [],
)
def recover_tools_from_previous_response(
self,
previous_response: OpenAIResponseObject,
):
"""Determine which mcp_list_tools objects from previous response we can reuse."""
if self.current_tools and previous_response.tools:
previous_tools_by_label: dict[str, OpenAIResponseToolMCP] = {}
for tool in previous_response.tools:
if isinstance(tool, OpenAIResponseToolMCP):
previous_tools_by_label[tool.server_label] = tool
# collect tool definitions which are the same in current and previous requests:
tools_to_process = []
matched: dict[str, OpenAIResponseInputToolMCP] = {}
for tool in self.current_tools:
if isinstance(tool, OpenAIResponseInputToolMCP) and tool.server_label in previous_tools_by_label:
previous_tool = previous_tools_by_label[tool.server_label]
if previous_tool.allowed_tools == tool.allowed_tools:
matched[tool.server_label] = tool
else:
tools_to_process.append(tool)
else:
tools_to_process.append(tool)
# tools that are not the same or were not previously defined need to be processed:
self.tools_to_process = tools_to_process
# for all matched definitions, get the mcp_list_tools objects from the previous output:
self.previous_tool_listings = [
obj for obj in previous_response.output if obj.type == "mcp_list_tools" and obj.server_label in matched
]
# reconstruct the tool to server mappings that can be reused:
for listing in self.previous_tool_listings:
definition = matched[listing.server_label]
for tool in listing.tools:
self.previous_tools[tool.name] = definition
def available_tools(self) -> list[OpenAIResponseTool]:
if not self.current_tools:
return []
def convert_tool(tool: OpenAIResponseInputTool) -> OpenAIResponseTool:
if isinstance(tool, OpenAIResponseInputToolWebSearch):
return tool
if isinstance(tool, OpenAIResponseInputToolFileSearch):
return tool
if isinstance(tool, OpenAIResponseInputToolFunction):
return tool
if isinstance(tool, OpenAIResponseInputToolMCP):
return OpenAIResponseToolMCP(
server_label=tool.server_label,
allowed_tools=tool.allowed_tools,
)
return [convert_tool(tool) for tool in self.current_tools]
class ChatCompletionContext(BaseModel):
model: str
messages: list[OpenAIMessageParam]
@ -62,6 +150,7 @@ class ChatCompletionContext(BaseModel):
chat_tools: list[ChatCompletionToolParam] | None = None
temperature: float | None
response_format: OpenAIResponseFormatParam
tool_context: ToolContext | None
approval_requests: list[OpenAIResponseMCPApprovalRequest] = []
approval_responses: dict[str, OpenAIResponseMCPApprovalResponse] = {}
@ -72,6 +161,7 @@ class ChatCompletionContext(BaseModel):
response_tools: list[OpenAIResponseInputTool] | None,
temperature: float | None,
response_format: OpenAIResponseFormatParam,
tool_context: ToolContext,
inputs: list[OpenAIResponseInput] | str,
):
super().__init__(
@ -80,6 +170,7 @@ class ChatCompletionContext(BaseModel):
response_tools=response_tools,
temperature=temperature,
response_format=response_format,
tool_context=tool_context,
)
if not isinstance(inputs, str):
self.approval_requests = [input for input in inputs if input.type == "mcp_approval_request"]
@ -96,3 +187,8 @@ class ChatCompletionContext(BaseModel):
if request.name == tool_name and request.arguments == arguments:
return request
return None
def available_tools(self) -> list[OpenAIResponseTool]:
if not self.tool_context:
return []
return self.tool_context.available_tools()

View file

@ -4,9 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import re
import uuid
from llama_stack.apis.agents.agents import ResponseGuardrailSpec
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseAnnotationFileCitation,
OpenAIResponseInput,
@ -45,10 +47,14 @@ from llama_stack.apis.inference import (
OpenAIToolMessageParam,
OpenAIUserMessageParam,
)
from llama_stack.apis.safety import Safety
async def convert_chat_choice_to_response_message(
choice: OpenAIChoice, citation_files: dict[str, str] | None = None
choice: OpenAIChoice,
citation_files: dict[str, str] | None = None,
*,
message_id: str | None = None,
) -> OpenAIResponseMessage:
"""Convert an OpenAI Chat Completion choice into an OpenAI Response output message."""
output_content = ""
@ -64,7 +70,7 @@ async def convert_chat_choice_to_response_message(
annotations, clean_text = _extract_citations_from_text(output_content, citation_files or {})
return OpenAIResponseMessage(
id=f"msg_{uuid.uuid4()}",
id=message_id or f"msg_{uuid.uuid4()}",
content=[OpenAIResponseOutputMessageContentOutputText(text=clean_text, annotations=annotations)],
status="completed",
role="assistant",
@ -103,9 +109,13 @@ async def convert_response_content_to_chat_content(
async def convert_response_input_to_chat_messages(
input: str | list[OpenAIResponseInput],
previous_messages: list[OpenAIMessageParam] | None = None,
) -> list[OpenAIMessageParam]:
"""
Convert the input from an OpenAI Response API request into OpenAI Chat Completion messages.
:param input: The input to convert
:param previous_messages: Optional previous messages to check for function_call references
"""
messages: list[OpenAIMessageParam] = []
if isinstance(input, list):
@ -169,16 +179,53 @@ async def convert_response_input_to_chat_messages(
raise ValueError(
f"Llama Stack OpenAI Responses does not yet support message role '{input_item.role}' in this context"
)
# Skip user messages that duplicate the last user message in previous_messages
# This handles cases where input includes context for function_call_outputs
if previous_messages and input_item.role == "user":
last_user_msg = None
for msg in reversed(previous_messages):
if isinstance(msg, OpenAIUserMessageParam):
last_user_msg = msg
break
if last_user_msg:
last_user_content = getattr(last_user_msg, "content", None)
if last_user_content == content:
continue # Skip duplicate user message
messages.append(message_type(content=content))
if len(tool_call_results):
raise ValueError(
f"Received function_call_output(s) with call_id(s) {tool_call_results.keys()}, but no corresponding function_call"
)
# Check if unpaired function_call_outputs reference function_calls from previous messages
if previous_messages:
previous_call_ids = _extract_tool_call_ids(previous_messages)
for call_id in list(tool_call_results.keys()):
if call_id in previous_call_ids:
# Valid: this output references a call from previous messages
# Add the tool message
messages.append(tool_call_results[call_id])
del tool_call_results[call_id]
# If still have unpaired outputs, error
if len(tool_call_results):
raise ValueError(
f"Received function_call_output(s) with call_id(s) {tool_call_results.keys()}, but no corresponding function_call"
)
else:
messages.append(OpenAIUserMessageParam(content=input))
return messages
def _extract_tool_call_ids(messages: list[OpenAIMessageParam]) -> set[str]:
"""Extract all tool_call IDs from messages."""
call_ids = set()
for msg in messages:
if isinstance(msg, OpenAIAssistantMessageParam):
tool_calls = getattr(msg, "tool_calls", None)
if tool_calls:
for tool_call in tool_calls:
# tool_call is a Pydantic model, use attribute access
call_ids.add(tool_call.id)
return call_ids
async def convert_response_text_to_chat_response_format(
text: OpenAIResponseText,
) -> OpenAIResponseFormatParam:
@ -196,7 +243,8 @@ async def convert_response_text_to_chat_response_format(
raise ValueError(f"Unsupported text format: {text.format}")
async def get_message_type_by_role(role: str):
async def get_message_type_by_role(role: str) -> type[OpenAIMessageParam] | None:
"""Get the appropriate OpenAI message parameter type for a given role."""
role_to_type = {
"user": OpenAIUserMessageParam,
"system": OpenAISystemMessageParam,
@ -263,3 +311,55 @@ def is_function_tool_call(
if t.type == "function" and t.name == tool_call.function.name:
return True
return False
async def run_guardrails(safety_api: Safety, messages: str, guardrail_ids: list[str]) -> str | None:
"""Run guardrails against messages and return violation message if blocked."""
if not messages:
return None
# Look up shields to get their provider_resource_id (actual model ID)
model_ids = []
shields_list = await safety_api.routing_table.list_shields()
for guardrail_id in guardrail_ids:
matching_shields = [shield for shield in shields_list.data if shield.identifier == guardrail_id]
if matching_shields:
model_id = matching_shields[0].provider_resource_id
model_ids.append(model_id)
else:
raise ValueError(f"No shield found with identifier '{guardrail_id}'")
guardrail_tasks = [safety_api.run_moderation(messages, model=model_id) for model_id in model_ids]
responses = await asyncio.gather(*guardrail_tasks)
for response in responses:
for result in response.results:
if result.flagged:
message = result.user_message or "Content blocked by safety guardrails"
flagged_categories = [cat for cat, flagged in result.categories.items() if flagged]
violation_type = result.metadata.get("violation_type", []) if result.metadata else []
if flagged_categories:
message += f" (flagged for: {', '.join(flagged_categories)})"
if violation_type:
message += f" (violation type: {', '.join(violation_type)})"
return message
def extract_guardrail_ids(guardrails: list | None) -> list[str]:
"""Extract guardrail IDs from guardrails parameter, handling both string IDs and ResponseGuardrailSpec objects."""
if not guardrails:
return []
guardrail_ids = []
for guardrail in guardrails:
if isinstance(guardrail, str):
guardrail_ids.append(guardrail)
elif isinstance(guardrail, ResponseGuardrailSpec):
guardrail_ids.append(guardrail.type)
else:
raise ValueError(f"Unknown guardrail format: {guardrail}, expected str or ResponseGuardrailSpec")
return guardrail_ids

View file

@ -8,8 +8,8 @@ import asyncio
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import Safety, SafetyViolation, ViolationLevel
from llama_stack.core.telemetry import tracing
from llama_stack.log import get_logger
from llama_stack.providers.utils.telemetry import tracing
log = get_logger(name=__name__, category="agents::meta_reference")

View file

@ -22,7 +22,10 @@ from llama_stack.apis.files import Files, OpenAIFilePurpose
from llama_stack.apis.inference import (
Inference,
OpenAIAssistantMessageParam,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletionRequestWithExtraBody,
OpenAIDeveloperMessageParam,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIMessageParam,
OpenAISystemMessageParam,
OpenAIToolMessageParam,
@ -178,9 +181,9 @@ class ReferenceBatchesImpl(Batches):
# TODO: set expiration time for garbage collection
if endpoint not in ["/v1/chat/completions", "/v1/completions"]:
if endpoint not in ["/v1/chat/completions", "/v1/completions", "/v1/embeddings"]:
raise ValueError(
f"Invalid endpoint: {endpoint}. Supported values: /v1/chat/completions, /v1/completions. Code: invalid_value. Param: endpoint",
f"Invalid endpoint: {endpoint}. Supported values: /v1/chat/completions, /v1/completions, /v1/embeddings. Code: invalid_value. Param: endpoint",
)
if completion_window != "24h":
@ -425,18 +428,23 @@ class ReferenceBatchesImpl(Batches):
valid = False
if batch.endpoint == "/v1/chat/completions":
required_params = [
required_params: list[tuple[str, Any, str]] = [
("model", str, "a string"),
# messages is specific to /v1/chat/completions
# we could skip validating messages here and let inference fail. however,
# that would be a very expensive way to find out messages is wrong.
("messages", list, "an array"), # TODO: allow messages to be a string?
]
else: # /v1/completions
elif batch.endpoint == "/v1/completions":
required_params = [
("model", str, "a string"),
("prompt", str, "a string"), # TODO: allow prompt to be a list of strings??
]
else: # /v1/embeddings
required_params = [
("model", str, "a string"),
("input", (str, list), "a string or array of strings"),
]
for param, expected_type, type_string in required_params:
if param not in body:
@ -601,7 +609,8 @@ class ReferenceBatchesImpl(Batches):
# TODO(SECURITY): review body for security issues
if request.url == "/v1/chat/completions":
request.body["messages"] = [convert_to_openai_message_param(msg) for msg in request.body["messages"]]
chat_response = await self.inference_api.openai_chat_completion(**request.body)
chat_params = OpenAIChatCompletionRequestWithExtraBody(**request.body)
chat_response = await self.inference_api.openai_chat_completion(chat_params)
# this is for mypy, we don't allow streaming so we'll get the right type
assert hasattr(chat_response, "model_dump_json"), "Chat response must have model_dump_json method"
@ -614,8 +623,9 @@ class ReferenceBatchesImpl(Batches):
"body": chat_response.model_dump_json(),
},
}
else: # /v1/completions
completion_response = await self.inference_api.openai_completion(**request.body)
elif request.url == "/v1/completions":
completion_params = OpenAICompletionRequestWithExtraBody(**request.body)
completion_response = await self.inference_api.openai_completion(completion_params)
# this is for mypy, we don't allow streaming so we'll get the right type
assert hasattr(completion_response, "model_dump_json"), (
@ -630,6 +640,22 @@ class ReferenceBatchesImpl(Batches):
"body": completion_response.model_dump_json(),
},
}
else: # /v1/embeddings
embeddings_response = await self.inference_api.openai_embeddings(
OpenAIEmbeddingsRequestWithExtraBody(**request.body)
)
assert hasattr(embeddings_response, "model_dump_json"), (
"Embeddings response must have model_dump_json method"
)
return {
"id": request_id,
"custom_id": request.custom_id,
"response": {
"status_code": 200,
"request_id": request_id, # TODO: should this be different?
"body": embeddings_response.model_dump_json(),
},
}
except Exception as e:
logger.info(f"Error processing request {request.custom_id} in batch {batch_id}: {e}")
return {

View file

@ -6,13 +6,13 @@
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
class ReferenceBatchesImplConfig(BaseModel):
"""Configuration for the Reference Batches implementation."""
kvstore: KVStoreConfig = Field(
kvstore: KVStoreReference = Field(
description="Configuration for the key-value store backend.",
)
@ -33,8 +33,8 @@ class ReferenceBatchesImplConfig(BaseModel):
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="batches.db",
),
"kvstore": KVStoreReference(
backend="kv_default",
namespace="batches",
).model_dump(exclude_none=True),
}

View file

@ -7,20 +7,17 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
class LocalFSDatasetIOConfig(BaseModel):
kvstore: KVStoreConfig
kvstore: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="localfs_datasetio.db",
)
"kvstore": KVStoreReference(
backend="kv_default",
namespace="datasetio::localfs",
).model_dump(exclude_none=True)
}

View file

@ -7,20 +7,17 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
class MetaReferenceEvalConfig(BaseModel):
kvstore: KVStoreConfig
kvstore: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="meta_reference_eval.db",
)
"kvstore": KVStoreReference(
backend="kv_default",
namespace="eval",
).model_dump(exclude_none=True)
}

View file

@ -12,7 +12,14 @@ from llama_stack.apis.agents import Agents, StepType
from llama_stack.apis.benchmarks import Benchmark
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.inference import Inference, OpenAISystemMessageParam, OpenAIUserMessageParam, UserMessage
from llama_stack.apis.inference import (
Inference,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletionRequestWithExtraBody,
OpenAISystemMessageParam,
OpenAIUserMessageParam,
UserMessage,
)
from llama_stack.apis.scoring import Scoring
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
@ -168,11 +175,12 @@ class MetaReferenceEvalImpl(
sampling_params["stop"] = candidate.sampling_params.stop
input_content = json.loads(x[ColumnName.completion_input.value])
response = await self.inference_api.openai_completion(
params = OpenAICompletionRequestWithExtraBody(
model=candidate.model,
prompt=input_content,
**sampling_params,
)
response = await self.inference_api.openai_completion(params)
generations.append({ColumnName.generated_answer.value: response.choices[0].text})
elif ColumnName.chat_completion_input.value in x:
chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
@ -187,11 +195,12 @@ class MetaReferenceEvalImpl(
messages += [OpenAISystemMessageParam(**x) for x in chat_completion_input_json if x["role"] == "system"]
messages += input_messages
response = await self.inference_api.openai_chat_completion(
params = OpenAIChatCompletionRequestWithExtraBody(
model=candidate.model,
messages=messages,
**sampling_params,
)
response = await self.inference_api.openai_chat_completion(params)
generations.append({ColumnName.generated_answer.value: response.choices[0].message.content})
else:
raise ValueError("Invalid input row")

View file

@ -8,14 +8,14 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
from llama_stack.core.storage.datatypes import SqlStoreReference
class LocalfsFilesImplConfig(BaseModel):
storage_dir: str = Field(
description="Directory to store uploaded files",
)
metadata_store: SqlStoreConfig = Field(
metadata_store: SqlStoreReference = Field(
description="SQL store configuration for file metadata",
)
ttl_secs: int = 365 * 24 * 60 * 60 # 1 year
@ -24,8 +24,8 @@ class LocalfsFilesImplConfig(BaseModel):
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"storage_dir": "${env.FILES_STORAGE_DIR:=" + __distro_dir__ + "/files}",
"metadata_store": SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="files_metadata.db",
),
"metadata_store": SqlStoreReference(
backend="sql_default",
table_name="files_metadata",
).model_dump(exclude_none=True),
}

View file

@ -22,6 +22,7 @@ from llama_stack.apis.files import (
OpenAIFilePurpose,
)
from llama_stack.core.datatypes import AccessRule
from llama_stack.core.id_generation import generate_object_id
from llama_stack.log import get_logger
from llama_stack.providers.utils.files.form_data import parse_expires_after
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
@ -65,7 +66,7 @@ class LocalfsFilesImpl(Files):
def _generate_file_id(self) -> str:
"""Generate a unique file ID for OpenAI API."""
return f"file-{uuid.uuid4().hex}"
return generate_object_id("file", lambda: f"file-{uuid.uuid4().hex}")
def _get_file_path(self, file_id: str) -> Path:
"""Get the filesystem path for a file ID."""
@ -95,7 +96,9 @@ class LocalfsFilesImpl(Files):
raise RuntimeError("Files provider not initialized")
if expires_after is not None:
raise NotImplementedError("File expiration is not supported by this provider")
logger.warning(
f"File expiration is not supported by this provider, ignoring expires_after: {expires_after}"
)
file_id = self._generate_file_id()
file_path = self._get_file_path(file_id)

View file

@ -18,7 +18,7 @@ def model_checkpoint_dir(model_id) -> str:
assert checkpoint_dir.exists(), (
f"Could not find checkpoints in: {model_local_dir(model_id)}. "
f"If you try to use the native llama model, Please download model using `llama download --model-id {model_id}`"
f"Otherwise, please save you model checkpoint under {model_local_dir(model_id)}"
f"If you try to use the native llama model, please download the model using `llama-model download --source meta --model-id {model_id}` (see https://github.com/meta-llama/llama-models). "
f"Otherwise, please save your model checkpoint under {model_local_dir(model_id)}"
)
return str(checkpoint_dir)

View file

@ -6,16 +6,16 @@
import asyncio
from collections.abc import AsyncIterator
from typing import Any
from llama_stack.apis.inference import (
InferenceProvider,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletionRequestWithExtraBody,
)
from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIMessageParam,
OpenAIResponseFormatParam,
OpenAICompletion,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.log import get_logger
@ -65,7 +65,10 @@ class MetaReferenceInferenceImpl(
if self.config.create_distributed_process_group:
self.generator.stop()
async def openai_completion(self, *args, **kwargs):
async def openai_completion(
self,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
raise NotImplementedError("OpenAI completion not supported by meta reference provider")
async def should_refresh_models(self) -> bool:
@ -150,28 +153,6 @@ class MetaReferenceInferenceImpl(
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
raise NotImplementedError("OpenAI chat completion not supported by meta-reference inference provider")

View file

@ -5,17 +5,16 @@
# the root directory of this source tree.
from collections.abc import AsyncIterator
from typing import Any
from llama_stack.apis.inference import (
InferenceProvider,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletionRequestWithExtraBody,
)
from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.apis.models import ModelType
from llama_stack.log import get_logger
@ -55,11 +54,11 @@ class SentenceTransformersInferenceImpl(
async def list_models(self) -> list[Model] | None:
return [
Model(
identifier="all-MiniLM-L6-v2",
provider_resource_id="all-MiniLM-L6-v2",
identifier="nomic-ai/nomic-embed-text-v1.5",
provider_resource_id="nomic-ai/nomic-embed-text-v1.5",
provider_id=self.__provider_id__,
metadata={
"embedding_dimension": 384,
"embedding_dimension": 768,
},
model_type=ModelType.embedding,
),
@ -73,56 +72,12 @@ class SentenceTransformersInferenceImpl(
async def openai_completion(
self,
# Standard OpenAI completion parameters
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
# vLLM-specific parameters
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
# for fill-in-the-middle type completion
suffix: str | None = None,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
raise NotImplementedError("OpenAI completion not supported by sentence transformers provider")
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
raise NotImplementedError("OpenAI chat completion not supported by sentence transformers provider")

View file

@ -104,9 +104,10 @@ class LoraFinetuningSingleDevice:
if not any(p.exists() for p in paths):
checkpoint_dir = checkpoint_dir / "original"
hf_repo = model.huggingface_repo or f"meta-llama/{model.descriptor()}"
assert checkpoint_dir.exists(), (
f"Could not find checkpoints in: {model_local_dir(model.descriptor())}. "
f"Please download model using `llama download --model-id {model.descriptor()}`"
f"Please download the model using `huggingface-cli download {hf_repo} --local-dir ~/.llama/{model.descriptor()}`"
)
return str(checkpoint_dir)

View file

@ -10,7 +10,7 @@ from typing import TYPE_CHECKING, Any
if TYPE_CHECKING:
from codeshield.cs import CodeShieldScanResult
from llama_stack.apis.inference import Message
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
@ -53,7 +53,7 @@ class MetaReferenceCodeScannerSafetyImpl(Safety):
async def run_shield(
self,
shield_id: str,
messages: list[Message],
messages: list[OpenAIMessageParam],
params: dict[str, Any] = None,
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
@ -101,7 +101,10 @@ class MetaReferenceCodeScannerSafetyImpl(Safety):
metadata=metadata,
)
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
if model is None:
raise ValueError("Code scanner moderation requires a model identifier.")
inputs = input if isinstance(input, list) else [input]
results = []

View file

@ -10,7 +10,12 @@ from string import Template
from typing import Any
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
from llama_stack.apis.inference import Inference, Message, UserMessage
from llama_stack.apis.inference import (
Inference,
OpenAIChatCompletionRequestWithExtraBody,
OpenAIMessageParam,
OpenAIUserMessageParam,
)
from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
@ -159,7 +164,7 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
async def run_shield(
self,
shield_id: str,
messages: list[Message],
messages: list[OpenAIMessageParam],
params: dict[str, Any] = None,
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
@ -169,8 +174,8 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
messages = messages.copy()
# some shields like llama-guard require the first message to be a user message
# since this might be a tool call, first role might not be user
if len(messages) > 0 and messages[0].role != Role.user.value:
messages[0] = UserMessage(content=messages[0].content)
if len(messages) > 0 and messages[0].role != "user":
messages[0] = OpenAIUserMessageParam(content=messages[0].content)
# Use the inference API's model resolution instead of hardcoded mappings
# This allows the shield to work with any registered model
@ -195,14 +200,17 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
return await impl.run(messages)
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
if model is None:
raise ValueError("Llama Guard moderation requires a model identifier.")
if isinstance(input, list):
messages = input.copy()
else:
messages = [input]
# convert to user messages format with role
messages = [UserMessage(content=m) for m in messages]
messages = [OpenAIUserMessageParam(content=m) for m in messages]
# Determine safety categories based on the model type
# For known Llama Guard models, use specific categories
@ -271,7 +279,7 @@ class LlamaGuardShield:
return final_categories
def validate_messages(self, messages: list[Message]) -> None:
def validate_messages(self, messages: list[OpenAIMessageParam]) -> list[OpenAIMessageParam]:
if len(messages) == 0:
raise ValueError("Messages must not be empty")
if messages[0].role != Role.user.value:
@ -282,7 +290,7 @@ class LlamaGuardShield:
return messages
async def run(self, messages: list[Message]) -> RunShieldResponse:
async def run(self, messages: list[OpenAIMessageParam]) -> RunShieldResponse:
messages = self.validate_messages(messages)
if self.model == CoreModelId.llama_guard_3_11b_vision.value:
@ -290,20 +298,21 @@ class LlamaGuardShield:
else:
shield_input_message = self.build_text_shield_input(messages)
response = await self.inference_api.openai_chat_completion(
params = OpenAIChatCompletionRequestWithExtraBody(
model=self.model,
messages=[shield_input_message],
stream=False,
temperature=0.0, # default is 1, which is too high for safety
)
response = await self.inference_api.openai_chat_completion(params)
content = response.choices[0].message.content
content = content.strip()
return self.get_shield_response(content)
def build_text_shield_input(self, messages: list[Message]) -> UserMessage:
return UserMessage(content=self.build_prompt(messages))
def build_text_shield_input(self, messages: list[OpenAIMessageParam]) -> OpenAIUserMessageParam:
return OpenAIUserMessageParam(content=self.build_prompt(messages))
def build_vision_shield_input(self, messages: list[Message]) -> UserMessage:
def build_vision_shield_input(self, messages: list[OpenAIMessageParam]) -> OpenAIUserMessageParam:
conversation = []
most_recent_img = None
@ -326,7 +335,7 @@ class LlamaGuardShield:
else:
raise ValueError(f"Unknown content type: {c}")
conversation.append(UserMessage(content=content))
conversation.append(OpenAIUserMessageParam(content=content))
else:
raise ValueError(f"Unknown content type: {m.content}")
@ -335,9 +344,9 @@ class LlamaGuardShield:
prompt.append(most_recent_img)
prompt.append(self.build_prompt(conversation[::-1]))
return UserMessage(content=prompt)
return OpenAIUserMessageParam(content=prompt)
def build_prompt(self, messages: list[Message]) -> str:
def build_prompt(self, messages: list[OpenAIMessageParam]) -> str:
categories = self.get_safety_categories()
categories_str = "\n".join(categories)
conversations_str = "\n\n".join(
@ -370,18 +379,20 @@ class LlamaGuardShield:
raise ValueError(f"Unexpected response: {response}")
async def run_moderation(self, messages: list[Message]) -> ModerationObject:
async def run_moderation(self, messages: list[OpenAIMessageParam]) -> ModerationObject:
if not messages:
return self.create_moderation_object(self.model)
# TODO: Add Image based support for OpenAI Moderations
shield_input_message = self.build_text_shield_input(messages)
response = await self.inference_api.openai_chat_completion(
params = OpenAIChatCompletionRequestWithExtraBody(
model=self.model,
messages=[shield_input_message],
stream=False,
temperature=0.0, # default is 1, which is too high for safety
)
response = await self.inference_api.openai_chat_completion(params)
content = response.choices[0].message.content
content = content.strip()
return self.get_moderation_object(content)

View file

@ -9,7 +9,7 @@ from typing import Any
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from llama_stack.apis.inference import Message
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
@ -22,9 +22,7 @@ from llama_stack.apis.shields import Shield
from llama_stack.core.utils.model_utils import model_local_dir
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
from .config import PromptGuardConfig, PromptGuardType
@ -56,7 +54,7 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
async def run_shield(
self,
shield_id: str,
messages: list[Message],
messages: list[OpenAIMessageParam],
params: dict[str, Any],
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
@ -65,7 +63,7 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
return await self.shield.run(messages)
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
raise NotImplementedError("run_moderation is not implemented for Prompt Guard")
@ -93,7 +91,7 @@ class PromptGuardShield:
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
self.model = AutoModelForSequenceClassification.from_pretrained(model_dir, device_map=self.device)
async def run(self, messages: list[Message]) -> RunShieldResponse:
async def run(self, messages: list[OpenAIMessageParam]) -> RunShieldResponse:
message = messages[-1]
text = interleaved_content_as_str(message.content)

View file

@ -6,7 +6,7 @@
import re
from typing import Any
from llama_stack.apis.inference import Inference
from llama_stack.apis.inference import Inference, OpenAIChatCompletionRequestWithExtraBody
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
@ -55,7 +55,7 @@ class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
generated_answer=generated_answer,
)
judge_response = await self.inference_api.openai_chat_completion(
params = OpenAIChatCompletionRequestWithExtraBody(
model=fn_def.params.judge_model,
messages=[
{
@ -64,6 +64,7 @@ class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
}
],
)
judge_response = await self.inference_api.openai_chat_completion(params)
content = judge_response.choices[0].message.content
rating_regexes = fn_def.params.judge_score_regexes

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,21 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.core.datatypes import Api
from .config import TelemetryConfig, TelemetrySink
__all__ = ["TelemetryConfig", "TelemetrySink"]
async def get_provider_impl(config: TelemetryConfig, deps: dict[Api, Any]):
from .telemetry import TelemetryAdapter
impl = TelemetryAdapter(config, deps)
await impl.initialize()
return impl

View file

@ -1,55 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import StrEnum
from typing import Any
from pydantic import BaseModel, Field, field_validator
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
class TelemetrySink(StrEnum):
OTEL_TRACE = "otel_trace"
OTEL_METRIC = "otel_metric"
SQLITE = "sqlite"
CONSOLE = "console"
class TelemetryConfig(BaseModel):
otel_exporter_otlp_endpoint: str | None = Field(
default=None,
description="The OpenTelemetry collector endpoint URL (base URL for traces, metrics, and logs). If not set, the SDK will use OTEL_EXPORTER_OTLP_ENDPOINT environment variable.",
)
service_name: str = Field(
# service name is always the same, use zero-width space to avoid clutter
default="\u200b",
description="The service name to use for telemetry",
)
sinks: list[TelemetrySink] = Field(
default=[TelemetrySink.SQLITE],
description="List of telemetry sinks to enable (possible values: otel_trace, otel_metric, sqlite, console)",
)
sqlite_db_path: str = Field(
default_factory=lambda: (RUNTIME_BASE_DIR / "trace_store.db").as_posix(),
description="The path to the SQLite database to use for storing traces",
)
@field_validator("sinks", mode="before")
@classmethod
def validate_sinks(cls, v):
if isinstance(v, str):
return [TelemetrySink(sink.strip()) for sink in v.split(",")]
return v
@classmethod
def sample_run_config(cls, __distro_dir__: str, db_name: str = "trace_store.db") -> dict[str, Any]:
return {
"service_name": "${env.OTEL_SERVICE_NAME:=\u200b}",
"sinks": "${env.TELEMETRY_SINKS:=sqlite}",
"sqlite_db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
"otel_exporter_otlp_endpoint": "${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}",
}

View file

@ -1,75 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from datetime import UTC, datetime
from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.trace.export import SpanProcessor
from opentelemetry.trace.status import StatusCode
from llama_stack.log import get_logger
logger = get_logger(name="console_span_processor", category="telemetry")
class ConsoleSpanProcessor(SpanProcessor):
def __init__(self, print_attributes: bool = False):
self.print_attributes = print_attributes
def on_start(self, span: ReadableSpan, parent_context=None) -> None:
if span.attributes and span.attributes.get("__autotraced__"):
return
timestamp = datetime.fromtimestamp(span.start_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
logger.info(f"[dim]{timestamp}[/dim] [bold magenta][START][/bold magenta] [dim]{span.name}[/dim]")
def on_end(self, span: ReadableSpan) -> None:
timestamp = datetime.fromtimestamp(span.end_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
span_context = f"[dim]{timestamp}[/dim] [bold magenta][END][/bold magenta] [dim]{span.name}[/dim]"
if span.status.status_code == StatusCode.ERROR:
span_context += " [bold red][ERROR][/bold red]"
elif span.status.status_code != StatusCode.UNSET:
span_context += f" [{span.status.status_code}]"
duration_ms = (span.end_time - span.start_time) / 1e6
span_context += f" ({duration_ms:.2f}ms)"
logger.info(span_context)
if self.print_attributes and span.attributes:
for key, value in span.attributes.items():
if key.startswith("__"):
continue
str_value = str(value)
if len(str_value) > 1000:
str_value = str_value[:997] + "..."
logger.info(f" [dim]{key}[/dim]: {str_value}")
for event in span.events:
event_time = datetime.fromtimestamp(event.timestamp / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
severity = event.attributes.get("severity", "info")
message = event.attributes.get("message", event.name)
if isinstance(message, dict) or isinstance(message, list):
message = json.dumps(message, indent=2)
severity_color = {
"error": "red",
"warn": "yellow",
"info": "white",
"debug": "dim",
}.get(severity, "white")
logger.info(f" {event_time} [bold {severity_color}][{severity.upper()}][/bold {severity_color}] {message}")
if event.attributes:
for key, value in event.attributes.items():
if key.startswith("__") or key in ["message", "severity"]:
continue
logger.info(f"[dim]{key}[/dim]: {value}")
def shutdown(self) -> None:
"""Shutdown the processor."""
pass
def force_flush(self, timeout_millis: float | None = None) -> bool:
"""Force flush any pending spans."""
return True

View file

@ -1,190 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import os
import sqlite3
import threading
from datetime import UTC, datetime
from opentelemetry.sdk.trace import SpanProcessor
from opentelemetry.trace import Span
from opentelemetry.trace.span import format_span_id, format_trace_id
from llama_stack.providers.utils.telemetry.tracing import LOCAL_ROOT_SPAN_MARKER
class SQLiteSpanProcessor(SpanProcessor):
def __init__(self, conn_string):
"""Initialize the SQLite span processor with a connection string."""
self.conn_string = conn_string
self._local = threading.local() # Thread-local storage for connections
self.setup_database()
def _get_connection(self):
"""Get a thread-local database connection."""
if not hasattr(self._local, "conn"):
try:
self._local.conn = sqlite3.connect(self.conn_string)
except Exception as e:
print(f"Error connecting to SQLite database: {e}")
raise
return self._local.conn
def setup_database(self):
"""Create the necessary tables if they don't exist."""
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(self.conn_string), exist_ok=True)
conn = self._get_connection()
cursor = conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS traces (
trace_id TEXT PRIMARY KEY,
service_name TEXT,
root_span_id TEXT,
start_time TIMESTAMP,
end_time TIMESTAMP,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
"""
)
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS spans (
span_id TEXT PRIMARY KEY,
trace_id TEXT REFERENCES traces(trace_id),
parent_span_id TEXT,
name TEXT,
start_time TIMESTAMP,
end_time TIMESTAMP,
attributes TEXT,
status TEXT,
kind TEXT
)
"""
)
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS span_events (
id INTEGER PRIMARY KEY AUTOINCREMENT,
span_id TEXT REFERENCES spans(span_id),
name TEXT,
timestamp TIMESTAMP,
attributes TEXT
)
"""
)
cursor.execute(
"""
CREATE INDEX IF NOT EXISTS idx_traces_created_at
ON traces(created_at)
"""
)
conn.commit()
cursor.close()
def on_start(self, span: Span, parent_context=None):
"""Called when a span starts."""
pass
def on_end(self, span: Span):
"""Called when a span ends. Export the span data to SQLite."""
try:
conn = self._get_connection()
cursor = conn.cursor()
trace_id = format_trace_id(span.get_span_context().trace_id)
span_id = format_span_id(span.get_span_context().span_id)
service_name = span.resource.attributes.get("service.name", "unknown")
parent_span_id = None
parent_context = span.parent
if parent_context:
parent_span_id = format_span_id(parent_context.span_id)
# Insert into traces
cursor.execute(
"""
INSERT INTO traces (
trace_id, service_name, root_span_id, start_time, end_time
) VALUES (?, ?, ?, ?, ?)
ON CONFLICT(trace_id) DO UPDATE SET
root_span_id = COALESCE(root_span_id, excluded.root_span_id),
start_time = MIN(excluded.start_time, start_time),
end_time = MAX(excluded.end_time, end_time)
""",
(
trace_id,
service_name,
(span_id if span.attributes.get(LOCAL_ROOT_SPAN_MARKER) else None),
datetime.fromtimestamp(span.start_time / 1e9, UTC).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9, UTC).isoformat(),
),
)
# Insert into spans
cursor.execute(
"""
INSERT INTO spans (
span_id, trace_id, parent_span_id, name,
start_time, end_time, attributes, status,
kind
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
(
span_id,
trace_id,
parent_span_id,
span.name,
datetime.fromtimestamp(span.start_time / 1e9, UTC).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9, UTC).isoformat(),
json.dumps(dict(span.attributes)),
span.status.status_code.name,
span.kind.name,
),
)
for event in span.events:
cursor.execute(
"""
INSERT INTO span_events (
span_id, name, timestamp, attributes
) VALUES (?, ?, ?, ?)
""",
(
span_id,
event.name,
datetime.fromtimestamp(event.timestamp / 1e9, UTC).isoformat(),
json.dumps(dict(event.attributes)),
),
)
conn.commit()
cursor.close()
except Exception as e:
print(f"Error exporting span to SQLite: {e}")
def shutdown(self):
"""Cleanup any resources."""
# We can't access other threads' connections, so we just close our own
if hasattr(self._local, "conn"):
try:
self._local.conn.close()
except Exception as e:
print(f"Error closing SQLite connection: {e}")
finally:
del self._local.conn
def force_flush(self, timeout_millis=30000):
"""Force export of spans."""
pass

View file

@ -1,364 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import datetime
import threading
from typing import Any
from opentelemetry import metrics, trace
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.semconv.resource import ResourceAttributes
from opentelemetry.trace.propagation.tracecontext import TraceContextTextMapPropagator
from llama_stack.apis.telemetry import (
Event,
MetricEvent,
MetricLabelMatcher,
MetricQueryType,
QueryCondition,
QueryMetricsResponse,
QuerySpanTreeResponse,
QueryTracesResponse,
Span,
SpanEndPayload,
SpanStartPayload,
SpanStatus,
StructuredLogEvent,
Telemetry,
Trace,
UnstructuredLogEvent,
)
from llama_stack.core.datatypes import Api
from llama_stack.log import get_logger
from llama_stack.providers.inline.telemetry.meta_reference.console_span_processor import (
ConsoleSpanProcessor,
)
from llama_stack.providers.inline.telemetry.meta_reference.sqlite_span_processor import (
SQLiteSpanProcessor,
)
from llama_stack.providers.utils.telemetry.dataset_mixin import TelemetryDatasetMixin
from llama_stack.providers.utils.telemetry.sqlite_trace_store import SQLiteTraceStore
from llama_stack.providers.utils.telemetry.tracing import ROOT_SPAN_MARKERS
from .config import TelemetryConfig, TelemetrySink
_GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
"active_spans": {},
"counters": {},
"gauges": {},
"up_down_counters": {},
}
_global_lock = threading.Lock()
_TRACER_PROVIDER = None
logger = get_logger(name=__name__, category="telemetry")
def is_tracing_enabled(tracer):
with tracer.start_as_current_span("check_tracing") as span:
return span.is_recording()
class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
def __init__(self, config: TelemetryConfig, deps: dict[Api, Any]) -> None:
self.config = config
self.datasetio_api = deps.get(Api.datasetio)
self.meter = None
resource = Resource.create(
{
ResourceAttributes.SERVICE_NAME: self.config.service_name,
}
)
global _TRACER_PROVIDER
# Initialize the correct span processor based on the provider state.
# This is needed since once the span processor is set, it cannot be unset.
# Recreating the telemetry adapter multiple times will result in duplicate span processors.
# Since the library client can be recreated multiple times in a notebook,
# the kernel will hold on to the span processor and cause duplicate spans to be written.
if _TRACER_PROVIDER is None:
provider = TracerProvider(resource=resource)
trace.set_tracer_provider(provider)
_TRACER_PROVIDER = provider
# Use single OTLP endpoint for all telemetry signals
if TelemetrySink.OTEL_TRACE in self.config.sinks or TelemetrySink.OTEL_METRIC in self.config.sinks:
if self.config.otel_exporter_otlp_endpoint is None:
raise ValueError(
"otel_exporter_otlp_endpoint is required when OTEL_TRACE or OTEL_METRIC is enabled"
)
# Let OpenTelemetry SDK handle endpoint construction automatically
# The SDK will read OTEL_EXPORTER_OTLP_ENDPOINT and construct appropriate URLs
# https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
if TelemetrySink.OTEL_TRACE in self.config.sinks:
span_exporter = OTLPSpanExporter()
span_processor = BatchSpanProcessor(span_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
if TelemetrySink.OTEL_METRIC in self.config.sinks:
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
metric_provider = MeterProvider(resource=resource, metric_readers=[metric_reader])
metrics.set_meter_provider(metric_provider)
if TelemetrySink.SQLITE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(SQLiteSpanProcessor(self.config.sqlite_db_path))
if TelemetrySink.CONSOLE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor(print_attributes=True))
if TelemetrySink.OTEL_METRIC in self.config.sinks:
self.meter = metrics.get_meter(__name__)
if TelemetrySink.SQLITE in self.config.sinks:
self.trace_store = SQLiteTraceStore(self.config.sqlite_db_path)
self._lock = _global_lock
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
trace.get_tracer_provider().force_flush()
async def log_event(self, event: Event, ttl_seconds: int = 604800) -> None:
if isinstance(event, UnstructuredLogEvent):
self._log_unstructured(event, ttl_seconds)
elif isinstance(event, MetricEvent):
self._log_metric(event)
elif isinstance(event, StructuredLogEvent):
self._log_structured(event, ttl_seconds)
else:
raise ValueError(f"Unknown event type: {event}")
async def query_metrics(
self,
metric_name: str,
start_time: int,
end_time: int | None = None,
granularity: str | None = None,
query_type: MetricQueryType = MetricQueryType.RANGE,
label_matchers: list[MetricLabelMatcher] | None = None,
) -> QueryMetricsResponse:
"""Query metrics from the telemetry store.
Args:
metric_name: The name of the metric to query (e.g., "prompt_tokens")
start_time: Start time as Unix timestamp
end_time: End time as Unix timestamp (defaults to now if None)
granularity: Time granularity for aggregation
query_type: Type of query (RANGE or INSTANT)
label_matchers: Label filters to apply
Returns:
QueryMetricsResponse with metric time series data
"""
# Convert timestamps to datetime objects
start_dt = datetime.datetime.fromtimestamp(start_time, datetime.UTC)
end_dt = datetime.datetime.fromtimestamp(end_time, datetime.UTC) if end_time else None
# Use SQLite trace store if available
if hasattr(self, "trace_store") and self.trace_store:
return await self.trace_store.query_metrics(
metric_name=metric_name,
start_time=start_dt,
end_time=end_dt,
granularity=granularity,
query_type=query_type,
label_matchers=label_matchers,
)
else:
raise ValueError(
f"In order to query_metrics, you must have {TelemetrySink.SQLITE} set in your telemetry sinks"
)
def _log_unstructured(self, event: UnstructuredLogEvent, ttl_seconds: int) -> None:
with self._lock:
# Use global storage instead of instance storage
span_id = int(event.span_id, 16)
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
if span:
timestamp_ns = int(event.timestamp.timestamp() * 1e9)
span.add_event(
name=event.type.value,
attributes={
"message": event.message,
"severity": event.severity.value,
"__ttl__": ttl_seconds,
**(event.attributes or {}),
},
timestamp=timestamp_ns,
)
else:
print(f"Warning: No active span found for span_id {span_id}. Dropping event: {event}")
def _get_or_create_counter(self, name: str, unit: str) -> metrics.Counter:
assert self.meter is not None
if name not in _GLOBAL_STORAGE["counters"]:
_GLOBAL_STORAGE["counters"][name] = self.meter.create_counter(
name=name,
unit=unit,
description=f"Counter for {name}",
)
return _GLOBAL_STORAGE["counters"][name]
def _get_or_create_gauge(self, name: str, unit: str) -> metrics.ObservableGauge:
assert self.meter is not None
if name not in _GLOBAL_STORAGE["gauges"]:
_GLOBAL_STORAGE["gauges"][name] = self.meter.create_gauge(
name=name,
unit=unit,
description=f"Gauge for {name}",
)
return _GLOBAL_STORAGE["gauges"][name]
def _log_metric(self, event: MetricEvent) -> None:
# Add metric as an event to the current span
try:
with self._lock:
# Only try to add to span if we have a valid span_id
if event.span_id:
try:
span_id = int(event.span_id, 16)
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
if span:
timestamp_ns = int(event.timestamp.timestamp() * 1e9)
span.add_event(
name=f"metric.{event.metric}",
attributes={
"value": event.value,
"unit": event.unit,
**(event.attributes or {}),
},
timestamp=timestamp_ns,
)
except (ValueError, KeyError):
# Invalid span_id or span not found, but we already logged to console above
pass
except Exception:
# Lock acquisition failed
logger.debug("Failed to acquire lock to add metric to span")
# Log to OpenTelemetry meter if available
if self.meter is None:
return
if isinstance(event.value, int):
counter = self._get_or_create_counter(event.metric, event.unit)
counter.add(event.value, attributes=event.attributes)
elif isinstance(event.value, float):
up_down_counter = self._get_or_create_up_down_counter(event.metric, event.unit)
up_down_counter.add(event.value, attributes=event.attributes)
def _get_or_create_up_down_counter(self, name: str, unit: str) -> metrics.UpDownCounter:
assert self.meter is not None
if name not in _GLOBAL_STORAGE["up_down_counters"]:
_GLOBAL_STORAGE["up_down_counters"][name] = self.meter.create_up_down_counter(
name=name,
unit=unit,
description=f"UpDownCounter for {name}",
)
return _GLOBAL_STORAGE["up_down_counters"][name]
def _log_structured(self, event: StructuredLogEvent, ttl_seconds: int) -> None:
with self._lock:
span_id = int(event.span_id, 16)
tracer = trace.get_tracer(__name__)
if event.attributes is None:
event.attributes = {}
event.attributes["__ttl__"] = ttl_seconds
# Extract these W3C trace context attributes so they are not written to
# underlying storage, as we just need them to propagate the trace context.
traceparent = event.attributes.pop("traceparent", None)
tracestate = event.attributes.pop("tracestate", None)
if traceparent:
# If we have a traceparent header value, we're not the root span.
for root_attribute in ROOT_SPAN_MARKERS:
event.attributes.pop(root_attribute, None)
if isinstance(event.payload, SpanStartPayload):
# Check if span already exists to prevent duplicates
if span_id in _GLOBAL_STORAGE["active_spans"]:
return
context = None
if event.payload.parent_span_id:
parent_span_id = int(event.payload.parent_span_id, 16)
parent_span = _GLOBAL_STORAGE["active_spans"].get(parent_span_id)
context = trace.set_span_in_context(parent_span)
elif traceparent:
carrier = {
"traceparent": traceparent,
"tracestate": tracestate,
}
context = TraceContextTextMapPropagator().extract(carrier=carrier)
span = tracer.start_span(
name=event.payload.name,
context=context,
attributes=event.attributes or {},
)
_GLOBAL_STORAGE["active_spans"][span_id] = span
elif isinstance(event.payload, SpanEndPayload):
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
if span:
if event.attributes:
span.set_attributes(event.attributes)
status = (
trace.Status(status_code=trace.StatusCode.OK)
if event.payload.status == SpanStatus.OK
else trace.Status(status_code=trace.StatusCode.ERROR)
)
span.set_status(status)
span.end()
_GLOBAL_STORAGE["active_spans"].pop(span_id, None)
else:
raise ValueError(f"Unknown structured log event: {event}")
async def query_traces(
self,
attribute_filters: list[QueryCondition] | None = None,
limit: int | None = 100,
offset: int | None = 0,
order_by: list[str] | None = None,
) -> QueryTracesResponse:
return QueryTracesResponse(
data=await self.trace_store.query_traces(
attribute_filters=attribute_filters,
limit=limit,
offset=offset,
order_by=order_by,
)
)
async def get_trace(self, trace_id: str) -> Trace:
return await self.trace_store.get_trace(trace_id)
async def get_span(self, trace_id: str, span_id: str) -> Span:
return await self.trace_store.get_span(trace_id, span_id)
async def get_span_tree(
self,
span_id: str,
attributes_to_return: list[str] | None = None,
max_depth: int | None = None,
) -> QuerySpanTreeResponse:
return QuerySpanTreeResponse(
data=await self.trace_store.get_span_tree(
span_id=span_id,
attributes_to_return=attributes_to_return,
max_depth=max_depth,
)
)

View file

@ -8,7 +8,7 @@
from jinja2 import Template
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import OpenAIUserMessageParam
from llama_stack.apis.inference import OpenAIChatCompletionRequestWithExtraBody, OpenAIUserMessageParam
from llama_stack.apis.tools.rag_tool import (
DefaultRAGQueryGeneratorConfig,
LLMRAGQueryGeneratorConfig,
@ -65,11 +65,12 @@ async def llm_rag_query_generator(
model = config.model
message = OpenAIUserMessageParam(content=rendered_content)
response = await inference_api.openai_chat_completion(
params = OpenAIChatCompletionRequestWithExtraBody(
model=model,
messages=[message],
stream=False,
)
response = await inference_api.openai_chat_completion(params)
query = response.choices[0].message.content

View file

@ -272,7 +272,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
return RAGQueryResult(
content=picked,
metadata={
"document_ids": [c.metadata["document_id"] for c in chunks[: len(picked)]],
"document_ids": [c.document_id for c in chunks[: len(picked)]],
"chunks": [c.content for c in chunks[: len(picked)]],
"scores": scores[: len(picked)],
"vector_db_ids": [c.metadata["vector_db_id"] for c in chunks[: len(picked)]],

View file

@ -12,9 +12,7 @@ from .config import ChromaVectorIOConfig
async def get_provider_impl(config: ChromaVectorIOConfig, deps: dict[Api, Any]):
from llama_stack.providers.remote.vector_io.chroma.chroma import (
ChromaVectorIOAdapter,
)
from llama_stack.providers.remote.vector_io.chroma.chroma import ChromaVectorIOAdapter
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()

View file

@ -8,14 +8,14 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class ChromaVectorIOConfig(BaseModel):
db_path: str
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
persistence: KVStoreReference = Field(description="Config for KV store backend")
@classmethod
def sample_run_config(
@ -23,8 +23,8 @@ class ChromaVectorIOConfig(BaseModel):
) -> dict[str, Any]:
return {
"db_path": db_path,
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="chroma_inline_registry.db",
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::chroma",
).model_dump(exclude_none=True),
}

View file

@ -16,6 +16,6 @@ async def get_provider_impl(config: FaissVectorIOConfig, deps: dict[Api, Any]):
assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = FaissVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
impl = FaissVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -8,22 +8,19 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class FaissVectorIOConfig(BaseModel):
kvstore: KVStoreConfig
persistence: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="faiss_store.db",
)
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::faiss",
).model_dump(exclude_none=True)
}

View file

@ -17,33 +17,21 @@ from numpy.typing import NDArray
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import (
HealthResponse,
HealthStatus,
VectorDBsProtocolPrivate,
)
from llama_stack.providers.datatypes import HealthResponse, HealthStatus, VectorStoresProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex
from .config import FaissVectorIOConfig
logger = get_logger(name=__name__, category="vector_io")
VERSION = "v3"
VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::"
VECTOR_DBS_PREFIX = f"vector_stores:{VERSION}::"
FAISS_INDEX_PREFIX = f"faiss_index:{VERSION}::"
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:{VERSION}::"
@ -154,12 +142,7 @@ class FaissIndex(EmbeddingIndex):
await self._save_index()
async def query_vector(
self,
embedding: NDArray,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
distances, indices = await asyncio.to_thread(self.index.search, embedding.reshape(1, -1).astype(np.float32), k)
chunks = []
scores = []
@ -174,12 +157,7 @@ class FaissIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=chunks, scores=scores)
async def query_keyword(
self,
query_string: str,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
raise NotImplementedError(
"Keyword search is not supported - underlying DB FAISS does not support this search mode"
)
@ -198,28 +176,28 @@ class FaissIndex(EmbeddingIndex):
)
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None:
super().__init__(files_api=files_api, kvstore=None)
self.config = config
self.inference_api = inference_api
self.cache: dict[str, VectorDBWithIndex] = {}
self.cache: dict[str, VectorStoreWithIndex] = {}
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
# Load existing banks from kvstore
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)
stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key)
for vector_db_data in stored_vector_dbs:
vector_db = VectorDB.model_validate_json(vector_db_data)
index = VectorDBWithIndex(
vector_db,
await FaissIndex.create(vector_db.embedding_dimension, self.kvstore, vector_db.identifier),
for vector_store_data in stored_vector_stores:
vector_store = VectorStore.model_validate_json(vector_store_data)
index = VectorStoreWithIndex(
vector_store,
await FaissIndex.create(vector_store.embedding_dimension, self.kvstore, vector_store.identifier),
self.inference_api,
)
self.cache[vector_db.identifier] = index
self.cache[vector_store.identifier] = index
# Load existing OpenAI vector stores into the in-memory cache
await self.initialize_openai_vector_stores()
@ -244,45 +222,33 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
except Exception as e:
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
async def register_vector_db(
self,
vector_db: VectorDB,
) -> None:
async def register_vector_store(self, vector_store: VectorStore) -> None:
assert self.kvstore is not None
key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}"
await self.kvstore.set(
key=key,
value=vector_db.model_dump_json(),
)
key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}"
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
# Store in cache
self.cache[vector_db.identifier] = VectorDBWithIndex(
vector_db=vector_db,
index=await FaissIndex.create(vector_db.embedding_dimension, self.kvstore, vector_db.identifier),
self.cache[vector_store.identifier] = VectorStoreWithIndex(
vector_store=vector_store,
index=await FaissIndex.create(vector_store.embedding_dimension, self.kvstore, vector_store.identifier),
inference_api=self.inference_api,
)
async def list_vector_dbs(self) -> list[VectorDB]:
return [i.vector_db for i in self.cache.values()]
async def list_vector_stores(self) -> list[VectorStore]:
return [i.vector_store for i in self.cache.values()]
async def unregister_vector_db(self, vector_db_id: str) -> None:
async def unregister_vector_store(self, vector_store_id: str) -> None:
assert self.kvstore is not None
if vector_db_id not in self.cache:
logger.warning(f"Vector DB {vector_db_id} not found")
if vector_store_id not in self.cache:
return
await self.cache[vector_db_id].index.delete()
del self.cache[vector_db_id]
await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_db_id}")
await self.cache[vector_store_id].index.delete()
del self.cache[vector_store_id]
await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_store_id}")
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = self.cache.get(vector_db_id)
if index is None:
raise ValueError(f"Vector DB {vector_db_id} not found. found: {self.cache.keys()}")
@ -290,10 +256,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
await index.insert_chunks(chunks)
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = self.cache.get(vector_db_id)
if index is None:

View file

@ -14,6 +14,6 @@ from .config import MilvusVectorIOConfig
async def get_provider_impl(config: MilvusVectorIOConfig, deps: dict[Api, Any]):
from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusVectorIOAdapter
impl = MilvusVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
impl = MilvusVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -8,25 +8,22 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class MilvusVectorIOConfig(BaseModel):
db_path: str
kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
persistence: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)")
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"db_path": "${env.MILVUS_DB_PATH:=" + __distro_dir__ + "}/" + "milvus.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="milvus_registry.db",
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::milvus",
).model_dump(exclude_none=True),
}

View file

@ -15,7 +15,6 @@ async def get_provider_impl(config: QdrantVectorIOConfig, deps: dict[Api, Any]):
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
assert isinstance(config, QdrantVectorIOConfig), f"Unexpected config type: {type(config)}"
files_api = deps.get(Api.files)
impl = QdrantVectorIOAdapter(config, deps[Api.inference], files_api)
impl = QdrantVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -9,23 +9,21 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class QdrantVectorIOConfig(BaseModel):
path: str
kvstore: KVStoreConfig
persistence: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__, db_name="qdrant_registry.db"
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::qdrant",
).model_dump(exclude_none=True),
}

View file

@ -15,6 +15,6 @@ async def get_provider_impl(config: SQLiteVectorIOConfig, deps: dict[Api, Any]):
from .sqlite_vec import SQLiteVecVectorIOAdapter
assert isinstance(config, SQLiteVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -8,22 +8,19 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
class SQLiteVectorIOConfig(BaseModel):
db_path: str = Field(description="Path to the SQLite database file")
kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
persistence: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)")
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + "sqlite_vec.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="sqlite_vec_registry.db",
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::sqlite_vec",
).model_dump(exclude_none=True),
}

View file

@ -17,14 +17,10 @@ from numpy.typing import NDArray
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
@ -32,7 +28,7 @@ from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_RRF,
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
VectorStoreWithIndex,
)
from llama_stack.providers.utils.vector_io.vector_utils import WeightedInMemoryAggregator
@ -45,7 +41,7 @@ HYBRID_SEARCH = "hybrid"
SEARCH_MODES = {VECTOR_SEARCH, KEYWORD_SEARCH, HYBRID_SEARCH}
VERSION = "v3"
VECTOR_DBS_PREFIX = f"vector_dbs:sqlite_vec:{VERSION}::"
VECTOR_DBS_PREFIX = f"vector_stores:sqlite_vec:{VERSION}::"
VECTOR_INDEX_PREFIX = f"vector_index:sqlite_vec:{VERSION}::"
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:sqlite_vec:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:sqlite_vec:{VERSION}::"
@ -174,32 +170,18 @@ class SQLiteVecIndex(EmbeddingIndex):
# Insert vector embeddings
embedding_data = [
(
(
chunk.chunk_id,
serialize_vector(emb.tolist()),
)
)
((chunk.chunk_id, serialize_vector(emb.tolist())))
for chunk, emb in zip(batch_chunks, batch_embeddings, strict=True)
]
cur.executemany(
f"INSERT INTO [{self.vector_table}] (id, embedding) VALUES (?, ?);",
embedding_data,
)
cur.executemany(f"INSERT INTO [{self.vector_table}] (id, embedding) VALUES (?, ?);", embedding_data)
# Insert FTS content
fts_data = [(chunk.chunk_id, chunk.content) for chunk in batch_chunks]
# DELETE existing entries with same IDs (FTS5 doesn't support ON CONFLICT)
cur.executemany(
f"DELETE FROM [{self.fts_table}] WHERE id = ?;",
[(row[0],) for row in fts_data],
)
cur.executemany(f"DELETE FROM [{self.fts_table}] WHERE id = ?;", [(row[0],) for row in fts_data])
# INSERT new entries
cur.executemany(
f"INSERT INTO [{self.fts_table}] (id, content) VALUES (?, ?);",
fts_data,
)
cur.executemany(f"INSERT INTO [{self.fts_table}] (id, content) VALUES (?, ?);", fts_data)
connection.commit()
@ -215,12 +197,7 @@ class SQLiteVecIndex(EmbeddingIndex):
# Run batch insertion in a background thread
await asyncio.to_thread(_execute_all_batch_inserts)
async def query_vector(
self,
embedding: NDArray,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
"""
Performs vector-based search using a virtual table for vector similarity.
"""
@ -260,12 +237,7 @@ class SQLiteVecIndex(EmbeddingIndex):
scores.append(score)
return QueryChunksResponse(chunks=chunks, scores=scores)
async def query_keyword(
self,
query_string: str,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
"""
Performs keyword-based search using SQLite FTS5 for relevance-ranked full-text search.
"""
@ -402,33 +374,32 @@ class SQLiteVecIndex(EmbeddingIndex):
await asyncio.to_thread(_delete_chunks)
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
"""
A VectorIO implementation using SQLite + sqlite_vec.
This class handles vector database registration (with metadata stored in a table named `vector_dbs`)
and creates a cache of VectorDBWithIndex instances (each wrapping a SQLiteVecIndex).
This class handles vector database registration (with metadata stored in a table named `vector_stores`)
and creates a cache of VectorStoreWithIndex instances (each wrapping a SQLiteVecIndex).
"""
def __init__(self, config, inference_api: Inference, files_api: Files | None) -> None:
super().__init__(files_api=files_api, kvstore=None)
self.config = config
self.inference_api = inference_api
self.cache: dict[str, VectorDBWithIndex] = {}
self.cache: dict[str, VectorStoreWithIndex] = {}
self.vector_store_table = None
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)
for db_json in stored_vector_dbs:
vector_db = VectorDB.model_validate_json(db_json)
stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key)
for db_json in stored_vector_stores:
vector_store = VectorStore.model_validate_json(db_json)
index = await SQLiteVecIndex.create(
vector_db.embedding_dimension,
self.config.db_path,
vector_db.identifier,
vector_store.embedding_dimension, self.config.db_path, vector_store.identifier
)
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
self.cache[vector_store.identifier] = VectorStoreWithIndex(vector_store, index, self.inference_api)
# Load existing OpenAI vector stores into the in-memory cache
await self.initialize_openai_vector_stores()
@ -437,67 +408,64 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
# Clean up mixin resources (file batch tasks)
await super().shutdown()
async def list_vector_dbs(self) -> list[VectorDB]:
return [v.vector_db for v in self.cache.values()]
async def list_vector_stores(self) -> list[VectorStore]:
return [v.vector_store for v in self.cache.values()]
async def register_vector_db(self, vector_db: VectorDB) -> None:
async def register_vector_store(self, vector_store: VectorStore) -> None:
index = await SQLiteVecIndex.create(
vector_db.embedding_dimension,
self.config.db_path,
vector_db.identifier,
vector_store.embedding_dimension, self.config.db_path, vector_store.identifier
)
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
self.cache[vector_store.identifier] = VectorStoreWithIndex(vector_store, index, self.inference_api)
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None:
if vector_db_id in self.cache:
return self.cache[vector_db_id]
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None:
if vector_store_id in self.cache:
return self.cache[vector_store_id]
if self.vector_db_store is None:
raise VectorStoreNotFoundError(vector_db_id)
if self.vector_store_table is None:
raise VectorStoreNotFoundError(vector_store_id)
vector_db = self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db:
raise VectorStoreNotFoundError(vector_db_id)
vector_store = self.vector_store_table.get_vector_store(vector_store_id)
if not vector_store:
raise VectorStoreNotFoundError(vector_store_id)
index = VectorDBWithIndex(
vector_db=vector_db,
index = VectorStoreWithIndex(
vector_store=vector_store,
index=SQLiteVecIndex(
dimension=vector_db.embedding_dimension,
dimension=vector_store.embedding_dimension,
db_path=self.config.db_path,
bank_id=vector_db.identifier,
bank_id=vector_store.identifier,
kvstore=self.kvstore,
),
inference_api=self.inference_api,
)
self.cache[vector_db_id] = index
self.cache[vector_store_id] = index
return index
async def unregister_vector_db(self, vector_db_id: str) -> None:
if vector_db_id not in self.cache:
logger.warning(f"Vector DB {vector_db_id} not found")
async def unregister_vector_store(self, vector_store_id: str) -> None:
if vector_store_id not in self.cache:
return
await self.cache[vector_db_id].index.delete()
del self.cache[vector_db_id]
await self.cache[vector_store_id].index.delete()
del self.cache[vector_store_id]
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_db_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
# The VectorDBWithIndex helper is expected to compute embeddings via the inference_api
# The VectorStoreWithIndex helper is expected to compute embeddings via the inference_api
# and then call our index's add_chunks.
await index.insert_chunks(chunks)
async def query_chunks(
self, vector_db_id: str, query: Any, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_db_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a sqlite_vec index."""
index = await self._get_and_cache_vector_db_index(store_id)
index = await self._get_and_cache_vector_store_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)

View file

@ -32,12 +32,9 @@ def available_providers() -> list[ProviderSpec]:
Api.inference,
Api.safety,
Api.vector_io,
Api.vector_dbs,
Api.tool_runtime,
Api.tool_groups,
],
optional_api_dependencies=[
Api.telemetry,
Api.conversations,
],
description="Meta's reference implementation of an agent system that can use tools, access vector databases, and perform complex reasoning tasks.",
),

View file

@ -43,6 +43,12 @@ def available_providers() -> list[ProviderSpec]:
pip_packages=[
"torch torchvision torchao>=0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu",
"sentence-transformers --no-deps",
# required by some SentenceTransformers architectures for tensor rearrange/merge ops
"einops",
# fast HF tokenization backend used by SentenceTransformers models
"tokenizers",
# safe and fast file format for storing and loading tensors
"safetensors",
],
module="llama_stack.providers.inline.inference.sentence_transformers",
config_class="llama_stack.providers.inline.inference.sentence_transformers.config.SentenceTransformersInferenceConfig",
@ -275,7 +281,7 @@ Available Models:
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.watsonx",
config_class="llama_stack.providers.remote.inference.watsonx.WatsonXConfig",
provider_data_validator="llama_stack.providers.remote.inference.watsonx.WatsonXProviderDataValidator",
provider_data_validator="llama_stack.providers.remote.inference.watsonx.config.WatsonXProviderDataValidator",
description="IBM WatsonX inference provider for accessing AI models on IBM's WatsonX platform.",
),
RemoteProviderSpec(

View file

@ -1,29 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import (
Api,
InlineProviderSpec,
ProviderSpec,
)
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.telemetry,
provider_type="inline::meta-reference",
pip_packages=[
"opentelemetry-sdk",
"opentelemetry-exporter-otlp-proto-http",
],
optional_api_dependencies=[Api.datasetio],
module="llama_stack.providers.inline.telemetry.meta_reference",
config_class="llama_stack.providers.inline.telemetry.meta_reference.config.TelemetryConfig",
description="Meta's reference implementation of telemetry and observability using OpenTelemetry.",
),
]

View file

@ -26,7 +26,7 @@ def available_providers() -> list[ProviderSpec]:
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
deprecation_warning="Please use the `inline::faiss` provider instead.",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="Meta's reference implementation of a vector database.",
),
InlineProviderSpec(
@ -36,7 +36,7 @@ def available_providers() -> list[ProviderSpec]:
module="llama_stack.providers.inline.vector_io.faiss",
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
[Faiss](https://github.com/facebookresearch/faiss) is an inline vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
@ -89,7 +89,7 @@ more details about Faiss in general.
module="llama_stack.providers.inline.vector_io.sqlite_vec",
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
[SQLite-Vec](https://github.com/asg017/sqlite-vec) is an inline vector database provider for Llama Stack. It
allows you to store and query vectors directly within an SQLite database.
@ -297,7 +297,7 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
deprecation_warning="Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
Please refer to the sqlite-vec provider documentation.
""",
@ -310,7 +310,7 @@ Please refer to the sqlite-vec provider documentation.
module="llama_stack.providers.remote.vector_io.chroma",
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
[Chroma](https://www.trychroma.com/) is an inline and remote vector
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
@ -352,7 +352,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
module="llama_stack.providers.inline.vector_io.chroma",
config_class="llama_stack.providers.inline.vector_io.chroma.ChromaVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
[Chroma](https://www.trychroma.com/) is an inline and remote vector
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
@ -396,7 +396,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
module="llama_stack.providers.remote.vector_io.pgvector",
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
[PGVector](https://github.com/pgvector/pgvector) is a remote vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
@ -508,7 +508,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig",
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
[Weaviate](https://weaviate.io/) is a vector database provider for Llama Stack.
It allows you to store and query vectors directly within a Weaviate database.
@ -548,7 +548,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
module="llama_stack.providers.inline.vector_io.qdrant",
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description=r"""
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
@ -601,7 +601,7 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta
module="llama_stack.providers.remote.vector_io.qdrant",
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
Please refer to the inline provider documentation.
""",
@ -614,7 +614,7 @@ Please refer to the inline provider documentation.
module="llama_stack.providers.remote.vector_io.milvus",
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
[Milvus](https://milvus.io/) is an inline and remote vector database provider for Llama Stack. It
allows you to store and query vectors directly within a Milvus database.
@ -820,7 +820,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
module="llama_stack.providers.inline.vector_io.milvus",
config_class="llama_stack.providers.inline.vector_io.milvus.MilvusVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
optional_api_dependencies=[Api.files, Api.models],
description="""
Please refer to the remote provider documentation.
""",

View file

@ -7,20 +7,17 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.core.storage.datatypes import KVStoreReference
class HuggingfaceDatasetIOConfig(BaseModel):
kvstore: KVStoreConfig
kvstore: KVStoreReference
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="huggingface_datasetio.db",
)
"kvstore": KVStoreReference(
backend="kv_default",
namespace="datasetio::huggingface",
).model_dump(exclude_none=True)
}

View file

@ -20,7 +20,7 @@ This provider enables dataset management using NVIDIA's NeMo Customizer service.
Build the NVIDIA environment:
```bash
llama stack build --distro nvidia --image-type venv
uv run llama stack list-deps nvidia | xargs -L1 uv pip install
```
### Basic Usage using the LlamaStack Python Client

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
from llama_stack.core.storage.datatypes import SqlStoreReference
class S3FilesImplConfig(BaseModel):
@ -24,7 +24,7 @@ class S3FilesImplConfig(BaseModel):
auto_create_bucket: bool = Field(
default=False, description="Automatically create the S3 bucket if it doesn't exist"
)
metadata_store: SqlStoreConfig = Field(description="SQL store configuration for file metadata")
metadata_store: SqlStoreReference = Field(description="SQL store configuration for file metadata")
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
@ -35,8 +35,8 @@ class S3FilesImplConfig(BaseModel):
"aws_secret_access_key": "${env.AWS_SECRET_ACCESS_KEY:=}",
"endpoint_url": "${env.S3_ENDPOINT_URL:=}",
"auto_create_bucket": "${env.S3_AUTO_CREATE_BUCKET:=false}",
"metadata_store": SqliteSqlStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="s3_files_metadata.db",
),
"metadata_store": SqlStoreReference(
backend="sql_default",
table_name="s3_files_metadata",
).model_dump(exclude_none=True),
}

View file

@ -23,6 +23,7 @@ from llama_stack.apis.files import (
OpenAIFilePurpose,
)
from llama_stack.core.datatypes import AccessRule
from llama_stack.core.id_generation import generate_object_id
from llama_stack.providers.utils.files.form_data import parse_expires_after
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
from llama_stack.providers.utils.sqlstore.authorized_sqlstore import AuthorizedSqlStore
@ -198,7 +199,7 @@ class S3FilesImpl(Files):
purpose: Annotated[OpenAIFilePurpose, Form()],
expires_after: Annotated[ExpiresAfter | None, Depends(parse_expires_after)] = None,
) -> OpenAIFileObject:
file_id = f"file-{uuid.uuid4().hex}"
file_id = generate_object_id("file", lambda: f"file-{uuid.uuid4().hex}")
filename = getattr(file, "filename", None) or "uploaded_file"

View file

@ -29,9 +29,6 @@ class AnthropicInferenceAdapter(OpenAIMixin):
# "voyage-multimodal-3": {"embedding_dimension": 1024, "context_length": 32000},
# }
def get_api_key(self) -> str:
return self.config.api_key or ""
def get_base_url(self):
return "https://api.anthropic.com/v1"

View file

@ -21,11 +21,6 @@ class AnthropicProviderDataValidator(BaseModel):
@json_schema_type
class AnthropicConfig(RemoteInferenceProviderConfig):
api_key: str | None = Field(
default=None,
description="API key for Anthropic models",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.ANTHROPIC_API_KEY:=}", **kwargs) -> dict[str, Any]:
return {

View file

@ -16,9 +16,6 @@ class AzureInferenceAdapter(OpenAIMixin):
provider_data_api_key_field: str = "azure_api_key"
def get_api_key(self) -> str:
return self.config.api_key.get_secret_value()
def get_base_url(self) -> str:
"""
Get the Azure API base URL.

View file

@ -32,9 +32,6 @@ class AzureProviderDataValidator(BaseModel):
@json_schema_type
class AzureConfig(RemoteInferenceProviderConfig):
api_key: SecretStr = Field(
description="Azure API key for Azure",
)
api_base: HttpUrl = Field(
description="Azure API base for Azure (e.g., https://your-resource-name.openai.azure.com)",
)

View file

@ -6,21 +6,21 @@
import json
from collections.abc import AsyncIterator
from typing import Any
from botocore.client import BaseClient
from llama_stack.apis.inference import (
ChatCompletionRequest,
Inference,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
@ -125,66 +125,18 @@ class BedrockInferenceAdapter(
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
# Standard OpenAI completion parameters
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
# vLLM-specific parameters
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
# for fill-in-the-middle type completion
suffix: str | None = None,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
raise NotImplementedError("OpenAI completion not supported by the Bedrock provider")
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
raise NotImplementedError("OpenAI chat completion not supported by the Bedrock provider")

View file

@ -25,8 +25,9 @@ class DatabricksImplConfig(RemoteInferenceProviderConfig):
default=None,
description="The URL for the Databricks model serving endpoint",
)
api_token: SecretStr = Field(
default=SecretStr(None), # type: ignore[arg-type]
auth_credential: SecretStr | None = Field(
default=None,
alias="api_token",
description="The Databricks API token",
)

View file

@ -5,11 +5,10 @@
# the root directory of this source tree.
from collections.abc import Iterable
from typing import Any
from databricks.sdk import WorkspaceClient
from llama_stack.apis.inference import OpenAICompletion
from llama_stack.apis.inference import OpenAICompletion, OpenAICompletionRequestWithExtraBody
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -29,9 +28,6 @@ class DatabricksInferenceAdapter(OpenAIMixin):
"databricks-bge-large-en": {"embedding_dimension": 1024, "context_length": 512},
}
def get_api_key(self) -> str:
return self.config.api_token.get_secret_value()
def get_base_url(self) -> str:
return f"{self.config.url}/serving-endpoints"
@ -45,25 +41,6 @@ class DatabricksInferenceAdapter(OpenAIMixin):
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
raise NotImplementedError()

View file

@ -6,7 +6,7 @@
from typing import Any
from pydantic import Field, SecretStr
from pydantic import Field
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@ -18,10 +18,6 @@ class FireworksImplConfig(RemoteInferenceProviderConfig):
default="https://api.fireworks.ai/inference/v1",
description="The URL for the Fireworks server",
)
api_key: SecretStr | None = Field(
default=None,
description="The Fireworks.ai API Key",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY:=}", **kwargs) -> dict[str, Any]:

View file

@ -23,8 +23,5 @@ class FireworksInferenceAdapter(OpenAIMixin):
provider_data_api_key_field: str = "fireworks_api_key"
def get_api_key(self) -> str:
return self.config.api_key.get_secret_value() if self.config.api_key else None # type: ignore[return-value]
def get_base_url(self) -> str:
return "https://api.fireworks.ai/inference/v1"

View file

@ -21,11 +21,6 @@ class GeminiProviderDataValidator(BaseModel):
@json_schema_type
class GeminiConfig(RemoteInferenceProviderConfig):
api_key: str | None = Field(
default=None,
description="API key for Gemini models",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.GEMINI_API_KEY:=}", **kwargs) -> dict[str, Any]:
return {

View file

@ -4,6 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from openai import NOT_GIVEN
from llama_stack.apis.inference import (
OpenAIEmbeddingData,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import GeminiConfig
@ -14,11 +22,61 @@ class GeminiInferenceAdapter(OpenAIMixin):
provider_data_api_key_field: str = "gemini_api_key"
embedding_model_metadata: dict[str, dict[str, int]] = {
"text-embedding-004": {"embedding_dimension": 768, "context_length": 2048},
"models/text-embedding-004": {"embedding_dimension": 768, "context_length": 2048},
"models/gemini-embedding-001": {"embedding_dimension": 3072, "context_length": 2048},
}
def get_api_key(self) -> str:
return self.config.api_key or ""
def get_base_url(self):
return "https://generativelanguage.googleapis.com/v1beta/openai/"
async def openai_embeddings(
self,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
"""
Override embeddings method to handle Gemini's missing usage statistics.
Gemini's embedding API doesn't return usage information, so we provide default values.
"""
# Prepare request parameters
request_params = {
"model": await self._get_provider_model_id(params.model),
"input": params.input,
"encoding_format": params.encoding_format if params.encoding_format is not None else NOT_GIVEN,
"dimensions": params.dimensions if params.dimensions is not None else NOT_GIVEN,
"user": params.user if params.user is not None else NOT_GIVEN,
}
# Add extra_body if present
extra_body = params.model_extra
if extra_body:
request_params["extra_body"] = extra_body
# Call OpenAI embeddings API with properly typed parameters
response = await self.client.embeddings.create(**request_params)
data = []
for i, embedding_data in enumerate(response.data):
data.append(
OpenAIEmbeddingData(
embedding=embedding_data.embedding,
index=i,
)
)
# Gemini doesn't return usage statistics - use default values
if hasattr(response, "usage") and response.usage:
usage = OpenAIEmbeddingUsage(
prompt_tokens=response.usage.prompt_tokens,
total_tokens=response.usage.total_tokens,
)
else:
usage = OpenAIEmbeddingUsage(
prompt_tokens=0,
total_tokens=0,
)
return OpenAIEmbeddingsResponse(
data=data,
model=params.model,
usage=usage,
)

View file

@ -21,12 +21,6 @@ class GroqProviderDataValidator(BaseModel):
@json_schema_type
class GroqConfig(RemoteInferenceProviderConfig):
api_key: str | None = Field(
# The Groq client library loads the GROQ_API_KEY environment variable by default
default=None,
description="The Groq API key",
)
url: str = Field(
default="https://api.groq.com",
description="The URL for the Groq AI server",

View file

@ -14,8 +14,5 @@ class GroqInferenceAdapter(OpenAIMixin):
provider_data_api_key_field: str = "groq_api_key"
def get_api_key(self) -> str:
return self.config.api_key or ""
def get_base_url(self) -> str:
return f"{self.config.url}/openai/v1"

View file

@ -21,11 +21,6 @@ class LlamaProviderDataValidator(BaseModel):
@json_schema_type
class LlamaCompatConfig(RemoteInferenceProviderConfig):
api_key: str | None = Field(
default=None,
description="The Llama API key",
)
openai_compat_api_base: str = Field(
default="https://api.llama.com/compat/v1/",
description="The URL for the Llama API server",

View file

@ -3,9 +3,13 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.inference.inference import OpenAICompletion, OpenAIEmbeddingsResponse
from llama_stack.apis.inference.inference import (
OpenAICompletion,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.log import get_logger
from llama_stack.providers.remote.inference.llama_openai_compat.config import LlamaCompatConfig
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -21,9 +25,6 @@ class LlamaCompatInferenceAdapter(OpenAIMixin):
Llama API Inference Adapter for Llama Stack.
"""
def get_api_key(self) -> str:
return self.config.api_key or ""
def get_base_url(self) -> str:
"""
Get the base URL for OpenAI mixin.
@ -34,35 +35,12 @@ class LlamaCompatInferenceAdapter(OpenAIMixin):
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -18,7 +18,7 @@ This provider enables running inference using NVIDIA NIM.
Build the NVIDIA environment:
```bash
llama stack build --distro nvidia --image-type venv
uv run llama stack list-deps nvidia | xargs -L1 uv pip install
```
### Basic Usage using the LlamaStack Python Client
@ -45,7 +45,7 @@ The following example shows how to create a chat completion for an NVIDIA NIM.
```python
response = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
model="nvidia/meta/llama-3.1-8b-instruct",
messages=[
{
"role": "system",
@ -67,37 +67,40 @@ print(f"Response: {response.choices[0].message.content}")
The following example shows how to do tool calling for an NVIDIA NIM.
```python
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
tool_definition = ToolDefinition(
tool_name="get_weather",
description="Get current weather information for a location",
parameters={
"location": ToolParamDefinition(
param_type="string",
description="The city and state, e.g. San Francisco, CA",
required=True,
),
"unit": ToolParamDefinition(
param_type="string",
description="Temperature unit (celsius or fahrenheit)",
required=False,
default="celsius",
),
tool_definition = {
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather information for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"description": "Temperature unit (celsius or fahrenheit)",
"default": "celsius",
},
},
"required": ["location"],
},
},
)
}
tool_response = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
model="nvidia/meta/llama-3.1-8b-instruct",
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
tools=[tool_definition],
)
print(f"Tool Response: {tool_response.choices[0].message.content}")
print(f"Response content: {tool_response.choices[0].message.content}")
if tool_response.choices[0].message.tool_calls:
for tool_call in tool_response.choices[0].message.tool_calls:
print(f"Tool Called: {tool_call.tool_name}")
print(f"Arguments: {tool_call.arguments}")
print(f"Tool Called: {tool_call.function.name}")
print(f"Arguments: {tool_call.function.arguments}")
```
### Structured Output Example
@ -105,33 +108,26 @@ if tool_response.choices[0].message.tool_calls:
The following example shows how to do structured output for an NVIDIA NIM.
```python
from llama_stack.apis.inference import JsonSchemaResponseFormat, ResponseFormatType
person_schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"age": {"type": "number"},
"occupation": {"type": "string"},
},
"required": ["name", "age", "occupation"],
}
response_format = JsonSchemaResponseFormat(
type=ResponseFormatType.json_schema, json_schema=person_schema
)
structured_response = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
model="nvidia/meta/llama-3.1-8b-instruct",
messages=[
{
"role": "user",
"content": "Create a profile for a fictional person named Alice who is 30 years old and is a software engineer. ",
}
],
response_format=response_format,
extra_body={"nvext": {"guided_json": person_schema}},
)
print(f"Structured Response: {structured_response.choices[0].message.content}")
```
@ -139,16 +135,13 @@ print(f"Structured Response: {structured_response.choices[0].message.content}")
The following example shows how to create embeddings for an NVIDIA NIM.
> [!NOTE]
> NVIDIA asymmetric embedding models (e.g., `nvidia/llama-3.2-nv-embedqa-1b-v2`) require an `input_type` parameter not present in the standard OpenAI embeddings API. The NVIDIA Inference Adapter automatically sets `input_type="query"` when using the OpenAI-compatible embeddings endpoint for NVIDIA. For passage embeddings, use the `embeddings` API with `task_type="document"`.
```python
response = client.inference.embeddings(
model_id="nvidia/llama-3.2-nv-embedqa-1b-v2",
contents=["What is the capital of France?"],
task_type="query",
response = client.embeddings.create(
model="nvidia/nvidia/llama-3.2-nv-embedqa-1b-v2",
input=["What is the capital of France?"],
extra_body={"input_type": "query"},
)
print(f"Embeddings: {response.embeddings}")
print(f"Embeddings: {response.data}")
```
### Vision Language Models Example
@ -166,15 +159,15 @@ image_path = {path_to_the_image}
demo_image_b64 = load_image_as_base64(image_path)
vlm_response = client.chat.completions.create(
model="nvidia/vila",
model="nvidia/meta/llama-3.2-11b-vision-instruct",
messages=[
{
"role": "user",
"content": [
{
"type": "image",
"image": {
"data": demo_image_b64,
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{demo_image_b64}",
},
},
{

View file

@ -10,7 +10,7 @@ from .config import NVIDIAConfig
async def get_adapter_impl(config: NVIDIAConfig, _deps) -> Inference:
# import dynamically so `llama stack build` does not fail due to missing dependencies
# import dynamically so `llama stack list-deps` does not fail due to missing dependencies
from .nvidia import NVIDIAInferenceAdapter
if not isinstance(config, NVIDIAConfig):

View file

@ -5,13 +5,6 @@
# the root directory of this source tree.
from openai import NOT_GIVEN
from llama_stack.apis.inference import (
OpenAIEmbeddingData,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
)
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -28,15 +21,6 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
"""
NVIDIA Inference Adapter for Llama Stack.
Note: The inheritance order is important here. OpenAIMixin must come before
ModelRegistryHelper to ensure that OpenAIMixin.check_model_availability()
is used instead of ModelRegistryHelper.check_model_availability(). It also
must come before Inference to ensure that OpenAIMixin methods are available
in the Inference interface.
- OpenAIMixin.check_model_availability() queries the NVIDIA API to check if a model exists
- ModelRegistryHelper.check_model_availability() just returns False and shows a warning
"""
# source: https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
@ -51,7 +35,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
logger.info(f"Initializing NVIDIAInferenceAdapter({self.config.url})...")
if _is_nvidia_hosted(self.config):
if not self.config.api_key:
if not self.config.auth_credential:
raise RuntimeError(
"API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM."
)
@ -62,7 +46,13 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
:return: The NVIDIA API key
"""
return self.config.api_key.get_secret_value() if self.config.api_key else "NO KEY"
if self.config.auth_credential:
return self.config.auth_credential.get_secret_value()
if not _is_nvidia_hosted(self.config):
return "NO KEY REQUIRED"
return None
def get_base_url(self) -> str:
"""
@ -71,54 +61,3 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
:return: The NVIDIA API base URL
"""
return f"{self.config.url}/v1" if self.config.append_api_version else self.config.url
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
"""
OpenAI-compatible embeddings for NVIDIA NIM.
Note: NVIDIA NIM asymmetric embedding models require an "input_type" field not present in the standard OpenAI embeddings API.
We default this to "query" to ensure requests succeed when using the
OpenAI-compatible endpoint. For passage embeddings, use the embeddings API with
`task_type='document'`.
"""
extra_body: dict[str, object] = {"input_type": "query"}
logger.warning(
"NVIDIA OpenAI-compatible embeddings: defaulting to input_type='query'. "
"For passage embeddings, use the embeddings API with task_type='document'."
)
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(model),
input=input,
encoding_format=encoding_format if encoding_format is not None else NOT_GIVEN,
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
user=user if user is not None else NOT_GIVEN,
extra_body=extra_body,
)
data = []
for i, embedding_data in enumerate(response.data):
data.append(
OpenAIEmbeddingData(
embedding=embedding_data.embedding,
index=i,
)
)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response.usage.prompt_tokens,
total_tokens=response.usage.total_tokens,
)
return OpenAIEmbeddingsResponse(
data=data,
model=response.model,
usage=usage,
)

View file

@ -6,12 +6,16 @@
from typing import Any
from pydantic import Field, SecretStr
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
DEFAULT_OLLAMA_URL = "http://localhost:11434"
class OllamaImplConfig(RemoteInferenceProviderConfig):
auth_credential: SecretStr | None = Field(default=None, exclude=True)
url: str = DEFAULT_OLLAMA_URL
@classmethod

View file

@ -59,7 +59,7 @@ class OllamaInferenceAdapter(OpenAIMixin):
return self._clients[loop]
def get_api_key(self):
return "NO_KEY"
return "NO KEY REQUIRED"
def get_base_url(self):
return self.config.url.rstrip("/") + "/v1"

View file

@ -21,10 +21,6 @@ class OpenAIProviderDataValidator(BaseModel):
@json_schema_type
class OpenAIConfig(RemoteInferenceProviderConfig):
api_key: str | None = Field(
default=None,
description="API key for OpenAI models",
)
base_url: str = Field(
default="https://api.openai.com/v1",
description="Base URL for OpenAI API",

View file

@ -29,9 +29,6 @@ class OpenAIInferenceAdapter(OpenAIMixin):
"text-embedding-3-large": {"embedding_dimension": 3072, "context_length": 8192},
}
def get_api_key(self) -> str:
return self.config.api_key or ""
def get_base_url(self) -> str:
"""
Get the OpenAI API base URL.

View file

@ -13,15 +13,15 @@ from llama_stack.apis.inference import (
Inference,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletion,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.apis.models import Model
from llama_stack.core.library_client import convert_pydantic_to_json_value
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
from .config import PassthroughImplConfig
@ -70,120 +70,37 @@ class PassthroughInferenceAdapter(Inference):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
client = self._get_client()
model_obj = await self.model_store.get_model(model)
model_obj = await self.model_store.get_model(params.model)
params = await prepare_openai_completion_params(
model=model_obj.provider_resource_id,
prompt=prompt,
best_of=best_of,
echo=echo,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
logprobs=logprobs,
max_tokens=max_tokens,
n=n,
presence_penalty=presence_penalty,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
top_p=top_p,
user=user,
guided_choice=guided_choice,
prompt_logprobs=prompt_logprobs,
)
params = params.model_copy()
params.model = model_obj.provider_resource_id
return await client.inference.openai_completion(**params)
request_params = params.model_dump(exclude_none=True)
return await client.inference.openai_completion(**request_params)
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
client = self._get_client()
model_obj = await self.model_store.get_model(model)
model_obj = await self.model_store.get_model(params.model)
params = await prepare_openai_completion_params(
model=model_obj.provider_resource_id,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
params = params.model_copy()
params.model = model_obj.provider_resource_id
return await client.inference.openai_chat_completion(**params)
request_params = params.model_dump(exclude_none=True)
return await client.inference.openai_chat_completion(**request_params)
def cast_value_to_json_dict(self, request_params: dict[str, Any]) -> dict[str, Any]:
json_params = {}

View file

@ -6,7 +6,7 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@ -25,8 +25,9 @@ class RunpodImplConfig(RemoteInferenceProviderConfig):
default=None,
description="The URL for the Runpod model serving endpoint",
)
api_token: str | None = Field(
auth_credential: SecretStr | None = Field(
default=None,
alias="api_token",
description="The API token",
)

View file

@ -4,11 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from collections.abc import AsyncIterator
from llama_stack.apis.inference import (
OpenAIMessageParam,
OpenAIResponseFormatParam,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIChatCompletionRequestWithExtraBody,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -25,66 +26,18 @@ class RunpodInferenceAdapter(OpenAIMixin):
config: RunpodImplConfig
provider_data_api_key_field: str = "runpod_api_token"
def get_api_key(self) -> str:
"""Get API key for OpenAI client."""
return self.config.api_token
def get_base_url(self) -> str:
"""Get base URL for OpenAI client."""
return self.config.url
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
):
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
"""Override to add RunPod-specific stream_options requirement."""
if stream and not stream_options:
stream_options = {"include_usage": True}
params = params.model_copy()
return await super().openai_chat_completion(
model=model,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
if params.stream and not params.stream_options:
params.stream_options = {"include_usage": True}
return await super().openai_chat_completion(params)

View file

@ -6,7 +6,7 @@
from typing import Any
from pydantic import BaseModel, Field, SecretStr
from pydantic import BaseModel, Field
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@ -25,10 +25,6 @@ class SambaNovaImplConfig(RemoteInferenceProviderConfig):
default="https://api.sambanova.ai/v1",
description="The URL for the SambaNova AI server",
)
api_key: SecretStr | None = Field(
default=None,
description="The SambaNova cloud API Key",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY:=}", **kwargs) -> dict[str, Any]:

View file

@ -19,9 +19,6 @@ class SambaNovaInferenceAdapter(OpenAIMixin):
SambaNova Inference Adapter for Llama Stack.
"""
def get_api_key(self) -> str:
return self.config.api_key.get_secret_value() if self.config.api_key else ""
def get_base_url(self) -> str:
"""
Get the base URL for OpenAI mixin.

View file

@ -13,6 +13,8 @@ from llama_stack.schema_utils import json_schema_type
@json_schema_type
class TGIImplConfig(RemoteInferenceProviderConfig):
auth_credential: SecretStr | None = Field(default=None, exclude=True)
url: str = Field(
description="The URL for the TGI serving endpoint",
)

View file

@ -10,7 +10,10 @@ from collections.abc import Iterable
from huggingface_hub import AsyncInferenceClient, HfApi
from pydantic import SecretStr
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
from llama_stack.apis.inference import (
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -30,7 +33,7 @@ class _HfAdapter(OpenAIMixin):
overwrite_completion_id = True # TGI always returns id=""
def get_api_key(self):
return self.api_key.get_secret_value()
return "NO KEY REQUIRED"
def get_base_url(self):
return self.url
@ -40,11 +43,7 @@ class _HfAdapter(OpenAIMixin):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -6,7 +6,7 @@
from typing import Any
from pydantic import Field, SecretStr
from pydantic import Field
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@ -18,10 +18,6 @@ class TogetherImplConfig(RemoteInferenceProviderConfig):
default="https://api.together.xyz/v1",
description="The URL for the Together AI server",
)
api_key: SecretStr | None = Field(
default=None,
description="The Together AI API Key",
)
@classmethod
def sample_run_config(cls, **kwargs) -> dict[str, Any]:

View file

@ -11,6 +11,7 @@ from together import AsyncTogether
from together.constants import BASE_URL
from llama_stack.apis.inference import (
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
@ -39,15 +40,12 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
provider_data_api_key_field: str = "together_api_key"
def get_api_key(self):
return self.config.api_key.get_secret_value() if self.config.api_key else None
def get_base_url(self):
return BASE_URL
def _get_client(self) -> AsyncTogether:
together_api_key = None
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
config_api_key = self.config.auth_credential.get_secret_value() if self.config.auth_credential else None
if config_api_key:
together_api_key = config_api_key
else:
@ -65,11 +63,7 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
"""
Together's OpenAI-compatible embeddings endpoint is not compatible with
@ -81,25 +75,27 @@ class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
"""
# Together support ticket #13332 -> will not fix
if user is not None:
if params.user is not None:
raise ValueError("Together's embeddings endpoint does not support user param.")
# Together support ticket #13333 -> escalated
if dimensions is not None:
if params.dimensions is not None:
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(model),
input=input,
encoding_format=encoding_format,
model=await self._get_provider_model_id(params.model),
input=params.input,
encoding_format=params.encoding_format,
)
response.model = model # return the user the same model id they provided, avoid exposing the provider model id
response.model = (
params.model
) # return the user the same model id they provided, avoid exposing the provider model id
# Together support ticket #13330 -> escalated
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
if not hasattr(response, "usage") or response.usage is None:
logger.warning(
f"Together's embedding endpoint for {model} did not return usage information, substituting -1s."
f"Together's embedding endpoint for {params.model} did not return usage information, substituting -1s."
)
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)

View file

@ -6,7 +6,7 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@ -25,6 +25,8 @@ class VertexAIProviderDataValidator(BaseModel):
@json_schema_type
class VertexAIConfig(RemoteInferenceProviderConfig):
auth_credential: SecretStr | None = Field(default=None, exclude=True)
project: str = Field(
description="Google Cloud project ID for Vertex AI",
)

View file

@ -6,7 +6,7 @@
from pathlib import Path
from pydantic import Field, field_validator
from pydantic import Field, SecretStr, field_validator
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@ -22,8 +22,9 @@ class VLLMInferenceAdapterConfig(RemoteInferenceProviderConfig):
default=4096,
description="Maximum number of tokens to generate.",
)
api_token: str | None = Field(
default="fake",
auth_credential: SecretStr | None = Field(
default=None,
alias="api_token",
description="The API token",
)
tls_verify: bool | str = Field(

View file

@ -4,7 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncIterator
from typing import Any
from urllib.parse import urljoin
import httpx
@ -15,8 +14,7 @@ from pydantic import ConfigDict
from llama_stack.apis.inference import (
OpenAIChatCompletion,
OpenAIMessageParam,
OpenAIResponseFormatParam,
OpenAIChatCompletionRequestWithExtraBody,
ToolChoice,
)
from llama_stack.log import get_logger
@ -38,8 +36,10 @@ class VLLMInferenceAdapter(OpenAIMixin):
provider_data_api_key_field: str = "vllm_api_token"
def get_api_key(self) -> str:
return self.config.api_token or ""
def get_api_key(self) -> str | None:
if self.config.auth_credential:
return self.config.auth_credential.get_secret_value()
return "NO KEY REQUIRED"
def get_base_url(self) -> str:
"""Get the base URL from config."""
@ -77,63 +77,35 @@ class VLLMInferenceAdapter(OpenAIMixin):
def get_extra_client_params(self):
return {"http_client": httpx.AsyncClient(verify=self.config.tls_verify)}
async def check_model_availability(self, model: str) -> bool:
"""
Skip the check when running without authentication.
"""
if not self.config.auth_credential:
model_ids = []
async for m in self.client.models.list():
if m.id == model: # Found exact match
return True
model_ids.append(m.id)
raise ValueError(f"Model '{model}' not found. Available models: {model_ids}")
log.warning(f"Not checking model availability for {model} as API token may trigger OAuth workflow")
return True
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
max_tokens = max_tokens or self.config.max_tokens
params = params.model_copy()
# Apply vLLM-specific defaults
if params.max_tokens is None and self.config.max_tokens:
params.max_tokens = self.config.max_tokens
# This is to be consistent with OpenAI API and support vLLM <= v0.6.3
# References:
# * https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice
# * https://github.com/vllm-project/vllm/pull/10000
if not tools and tool_choice is not None:
tool_choice = ToolChoice.none.value
if not params.tools and params.tool_choice is not None:
params.tool_choice = ToolChoice.none.value
return await super().openai_chat_completion(
model=model,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
return await super().openai_chat_completion(params)

View file

@ -7,18 +7,18 @@
import os
from typing import Any
from pydantic import BaseModel, ConfigDict, Field, SecretStr
from pydantic import BaseModel, Field
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
class WatsonXProviderDataValidator(BaseModel):
model_config = ConfigDict(
from_attributes=True,
extra="forbid",
watsonx_project_id: str | None = Field(
default=None,
description="IBM WatsonX project ID",
)
watsonx_api_key: str | None
watsonx_api_key: str | None = None
@json_schema_type
@ -27,14 +27,6 @@ class WatsonXConfig(RemoteInferenceProviderConfig):
default_factory=lambda: os.getenv("WATSONX_BASE_URL", "https://us-south.ml.cloud.ibm.com"),
description="A base url for accessing the watsonx.ai",
)
# This seems like it should be required, but none of the other remote inference
# providers require it, so this is optional here too for consistency.
# The OpenAIConfig uses default=None instead, so this is following that precedent.
api_key: SecretStr | None = Field(
default=None,
description="The watsonx.ai API key",
)
# As above, this is optional here too for consistency.
project_id: str | None = Field(
default=None,
description="The watsonx.ai project ID",

View file

@ -4,42 +4,259 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncIterator
from typing import Any
import litellm
import requests
from llama_stack.apis.inference import ChatCompletionRequest
from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIChatCompletionRequestWithExtraBody,
OpenAIChatCompletionUsage,
OpenAICompletion,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.models import Model
from llama_stack.apis.models.models import ModelType
from llama_stack.core.telemetry.tracing import get_current_span
from llama_stack.log import get_logger
from llama_stack.providers.remote.inference.watsonx.config import WatsonXConfig
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
logger = get_logger(name=__name__, category="providers::remote::watsonx")
class WatsonXInferenceAdapter(LiteLLMOpenAIMixin):
_model_cache: dict[str, Model] = {}
provider_data_api_key_field: str = "watsonx_api_key"
def __init__(self, config: WatsonXConfig):
self.available_models = None
self.config = config
api_key = config.auth_credential.get_secret_value() if config.auth_credential else None
LiteLLMOpenAIMixin.__init__(
self,
litellm_provider_name="watsonx",
api_key_from_config=config.api_key.get_secret_value() if config.api_key else None,
api_key_from_config=api_key,
provider_data_api_key_field="watsonx_api_key",
openai_compat_api_base=self.get_base_url(),
)
async def openai_chat_completion(
self,
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
"""
Override parent method to add timeout and inject usage object when missing.
This works around a LiteLLM defect where usage block is sometimes dropped.
"""
# Add usage tracking for streaming when telemetry is active
stream_options = params.stream_options
if params.stream and get_current_span() is not None:
if stream_options is None:
stream_options = {"include_usage": True}
elif "include_usage" not in stream_options:
stream_options = {**stream_options, "include_usage": True}
model_obj = await self.model_store.get_model(params.model)
request_params = await prepare_openai_completion_params(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
messages=params.messages,
frequency_penalty=params.frequency_penalty,
function_call=params.function_call,
functions=params.functions,
logit_bias=params.logit_bias,
logprobs=params.logprobs,
max_completion_tokens=params.max_completion_tokens,
max_tokens=params.max_tokens,
n=params.n,
parallel_tool_calls=params.parallel_tool_calls,
presence_penalty=params.presence_penalty,
response_format=params.response_format,
seed=params.seed,
stop=params.stop,
stream=params.stream,
stream_options=stream_options,
temperature=params.temperature,
tool_choice=params.tool_choice,
tools=params.tools,
top_logprobs=params.top_logprobs,
top_p=params.top_p,
user=params.user,
api_key=self.get_api_key(),
api_base=self.api_base,
# These are watsonx-specific parameters
timeout=self.config.timeout,
project_id=self.config.project_id,
)
result = await litellm.acompletion(**request_params)
# If not streaming, check and inject usage if missing
if not params.stream:
# Use getattr to safely handle cases where usage attribute might not exist
if getattr(result, "usage", None) is None:
# Create usage object with zeros
usage_obj = OpenAIChatCompletionUsage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0,
)
# Use model_copy to create a new response with the usage injected
result = result.model_copy(update={"usage": usage_obj})
return result
# For streaming, wrap the iterator to normalize chunks
return self._normalize_stream(result)
def _normalize_chunk(self, chunk: OpenAIChatCompletionChunk) -> OpenAIChatCompletionChunk:
"""
Normalize a chunk to ensure it has all expected attributes.
This works around LiteLLM not always including all expected attributes.
"""
# Ensure chunk has usage attribute with zeros if missing
if not hasattr(chunk, "usage") or chunk.usage is None:
usage_obj = OpenAIChatCompletionUsage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0,
)
chunk = chunk.model_copy(update={"usage": usage_obj})
# Ensure all delta objects in choices have expected attributes
if hasattr(chunk, "choices") and chunk.choices:
normalized_choices = []
for choice in chunk.choices:
if hasattr(choice, "delta") and choice.delta:
delta = choice.delta
# Build update dict for missing attributes
delta_updates = {}
if not hasattr(delta, "refusal"):
delta_updates["refusal"] = None
if not hasattr(delta, "reasoning_content"):
delta_updates["reasoning_content"] = None
# If we need to update delta, create a new choice with updated delta
if delta_updates:
new_delta = delta.model_copy(update=delta_updates)
new_choice = choice.model_copy(update={"delta": new_delta})
normalized_choices.append(new_choice)
else:
normalized_choices.append(choice)
else:
normalized_choices.append(choice)
# If we modified any choices, create a new chunk with updated choices
if any(normalized_choices[i] is not chunk.choices[i] for i in range(len(chunk.choices))):
chunk = chunk.model_copy(update={"choices": normalized_choices})
return chunk
async def _normalize_stream(
self, stream: AsyncIterator[OpenAIChatCompletionChunk]
) -> AsyncIterator[OpenAIChatCompletionChunk]:
"""
Normalize all chunks in the stream to ensure they have expected attributes.
This works around LiteLLM sometimes not including expected attributes.
"""
try:
async for chunk in stream:
# Normalize and yield each chunk immediately
yield self._normalize_chunk(chunk)
except Exception as e:
logger.error(f"Error normalizing stream: {e}", exc_info=True)
raise
async def openai_completion(
self,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
"""
Override parent method to add watsonx-specific parameters.
"""
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
model_obj = await self.model_store.get_model(params.model)
request_params = await prepare_openai_completion_params(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
prompt=params.prompt,
best_of=params.best_of,
echo=params.echo,
frequency_penalty=params.frequency_penalty,
logit_bias=params.logit_bias,
logprobs=params.logprobs,
max_tokens=params.max_tokens,
n=params.n,
presence_penalty=params.presence_penalty,
seed=params.seed,
stop=params.stop,
stream=params.stream,
stream_options=params.stream_options,
temperature=params.temperature,
top_p=params.top_p,
user=params.user,
suffix=params.suffix,
api_key=self.get_api_key(),
api_base=self.api_base,
# These are watsonx-specific parameters
timeout=self.config.timeout,
project_id=self.config.project_id,
)
return await litellm.atext_completion(**request_params)
async def openai_embeddings(
self,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
"""
Override parent method to add watsonx-specific parameters.
"""
model_obj = await self.model_store.get_model(params.model)
# Convert input to list if it's a string
input_list = [params.input] if isinstance(params.input, str) else params.input
# Call litellm embedding function with watsonx-specific parameters
response = litellm.embedding(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
input=input_list,
api_key=self.get_api_key(),
api_base=self.api_base,
dimensions=params.dimensions,
# These are watsonx-specific parameters
timeout=self.config.timeout,
project_id=self.config.project_id,
)
# Convert response to OpenAI format
from llama_stack.apis.inference import OpenAIEmbeddingUsage
from llama_stack.providers.utils.inference.litellm_openai_mixin import b64_encode_openai_embeddings_response
data = b64_encode_openai_embeddings_response(response.data, params.encoding_format)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response["usage"]["prompt_tokens"],
total_tokens=response["usage"]["total_tokens"],
)
return OpenAIEmbeddingsResponse(
data=data,
model=model_obj.provider_resource_id,
usage=usage,
)
self.available_models = None
self.config = config
def get_base_url(self) -> str:
return self.config.url
async def _get_params(self, request: ChatCompletionRequest) -> dict[str, Any]:
# Get base parameters from parent
params = await super()._get_params(request)
# Add watsonx.ai specific parameters
params["project_id"] = self.config.project_id
params["time_limit"] = self.config.timeout
return params
# Copied from OpenAIMixin
async def check_model_availability(self, model: str) -> bool:
"""

View file

@ -22,7 +22,7 @@ This provider enables fine-tuning of LLMs using NVIDIA's NeMo Customizer service
Build the NVIDIA environment:
```bash
llama stack build --distro nvidia --image-type venv
uv run llama stack list-deps nvidia | xargs -L1 uv pip install
```
### Basic Usage using the LlamaStack Python Client

View file

@ -7,7 +7,7 @@
import json
from typing import Any
from llama_stack.apis.inference import Message
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
@ -56,7 +56,7 @@ class BedrockSafetyAdapter(Safety, ShieldsProtocolPrivate):
pass
async def run_shield(
self, shield_id: str, messages: list[Message], params: dict[str, Any] = None
self, shield_id: str, messages: list[OpenAIMessageParam], params: dict[str, Any] = None
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
if not shield:

View file

@ -19,7 +19,7 @@ This provider enables safety checks and guardrails for LLM interactions using NV
Build the NVIDIA environment:
```bash
llama stack build --distro nvidia --image-type venv
uv run llama stack list-deps nvidia | xargs -L1 uv pip install
```
### Basic Usage using the LlamaStack Python Client

View file

@ -8,12 +8,11 @@ from typing import Any
import requests
from llama_stack.apis.inference import Message
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.apis.safety import ModerationObject, RunShieldResponse, Safety, SafetyViolation, ViolationLevel
from llama_stack.apis.shields import Shield
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import convert_message_to_openai_dict_new
from .config import NVIDIASafetyConfig
@ -44,7 +43,7 @@ class NVIDIASafetyAdapter(Safety, ShieldsProtocolPrivate):
pass
async def run_shield(
self, shield_id: str, messages: list[Message], params: dict[str, Any] | None = None
self, shield_id: str, messages: list[OpenAIMessageParam], params: dict[str, Any] | None = None
) -> RunShieldResponse:
"""
Run a safety shield check against the provided messages.
@ -67,7 +66,7 @@ class NVIDIASafetyAdapter(Safety, ShieldsProtocolPrivate):
self.shield = NeMoGuardrails(self.config, shield.shield_id)
return await self.shield.run(messages)
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
async def run_moderation(self, input: str | list[str], model: str | None = None) -> ModerationObject:
raise NotImplementedError("NVIDIA safety provider currently does not implement run_moderation")
@ -118,7 +117,7 @@ class NeMoGuardrails:
response.raise_for_status()
return response.json()
async def run(self, messages: list[Message]) -> RunShieldResponse:
async def run(self, messages: list[OpenAIMessageParam]) -> RunShieldResponse:
"""
Queries the /v1/guardrails/checks endpoint of the NeMo guardrails deployed API.
@ -132,10 +131,9 @@ class NeMoGuardrails:
Raises:
requests.HTTPError: If the POST request fails.
"""
request_messages = [await convert_message_to_openai_dict_new(message) for message in messages]
request_data = {
"model": self.model,
"messages": request_messages,
"messages": [{"role": message.role, "content": message.content} for message in messages],
"temperature": self.temperature,
"top_p": 1,
"frequency_penalty": 0,

View file

@ -4,13 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from typing import Any
import litellm
import requests
from llama_stack.apis.inference import Message
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
@ -21,7 +20,6 @@ from llama_stack.apis.shields import Shield
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import convert_message_to_openai_dict_new
from .config import SambaNovaSafetyConfig
@ -72,7 +70,7 @@ class SambaNovaSafetyAdapter(Safety, ShieldsProtocolPrivate, NeedsRequestProvide
pass
async def run_shield(
self, shield_id: str, messages: list[Message], params: dict[str, Any] | None = None
self, shield_id: str, messages: list[OpenAIMessageParam], params: dict[str, Any] | None = None
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
if not shield:
@ -80,12 +78,8 @@ class SambaNovaSafetyAdapter(Safety, ShieldsProtocolPrivate, NeedsRequestProvide
shield_params = shield.params
logger.debug(f"run_shield::{shield_params}::messages={messages}")
content_messages = [await convert_message_to_openai_dict_new(m) for m in messages]
logger.debug(f"run_shield::final:messages::{json.dumps(content_messages, indent=2)}:")
response = litellm.completion(
model=shield.provider_resource_id, messages=content_messages, api_key=self._get_api_key()
)
response = litellm.completion(model=shield.provider_resource_id, messages=messages, api_key=self._get_api_key())
shield_message = response.choices[0].message.content
if "unsafe" in shield_message.lower():

View file

@ -12,24 +12,16 @@ import chromadb
from numpy.typing import NDArray
from llama_stack.apis.files import Files
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
)
from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex
from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig
@ -38,7 +30,7 @@ log = get_logger(name=__name__, category="vector_io::chroma")
ChromaClientType = chromadb.api.AsyncClientAPI | chromadb.api.ClientAPI
VERSION = "v3"
VECTOR_DBS_PREFIX = f"vector_dbs:chroma:{VERSION}::"
VECTOR_DBS_PREFIX = f"vector_stores:chroma:{VERSION}::"
VECTOR_INDEX_PREFIX = f"vector_index:chroma:{VERSION}::"
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:chroma:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:chroma:{VERSION}::"
@ -68,19 +60,13 @@ class ChromaIndex(EmbeddingIndex):
ids = [f"{c.metadata.get('document_id', '')}:{c.chunk_id}" for c in chunks]
await maybe_await(
self.collection.add(
documents=[chunk.model_dump_json() for chunk in chunks],
embeddings=embeddings,
ids=ids,
)
self.collection.add(documents=[chunk.model_dump_json() for chunk in chunks], embeddings=embeddings, ids=ids)
)
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
results = await maybe_await(
self.collection.query(
query_embeddings=[embedding.tolist()],
n_results=k,
include=["documents", "distances"],
query_embeddings=[embedding.tolist()], n_results=k, include=["documents", "distances"]
)
)
distances = results["distances"][0]
@ -108,12 +94,7 @@ class ChromaIndex(EmbeddingIndex):
async def delete(self):
await maybe_await(self.client.delete_collection(self.collection.name))
async def query_keyword(
self,
query_string: str,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in Chroma")
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
@ -133,11 +114,11 @@ class ChromaIndex(EmbeddingIndex):
raise NotImplementedError("Hybrid search is not supported in Chroma")
class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
def __init__(
self,
config: RemoteChromaVectorIOConfig | InlineChromaVectorIOConfig,
inference_api: Api.inference,
inference_api: Inference,
files_api: Files | None,
) -> None:
super().__init__(files_api=files_api, kvstore=None)
@ -146,11 +127,11 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.inference_api = inference_api
self.client = None
self.cache = {}
self.vector_db_store = None
self.vector_store_table = None
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
self.vector_db_store = self.kvstore
self.kvstore = await kvstore_impl(self.config.persistence)
self.vector_store_table = self.kvstore
if isinstance(self.config, RemoteChromaVectorIOConfig):
log.info(f"Connecting to Chroma server at: {self.config.url}")
@ -170,70 +151,58 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
# Clean up mixin resources (file batch tasks)
await super().shutdown()
async def register_vector_db(
self,
vector_db: VectorDB,
) -> None:
async def register_vector_store(self, vector_store: VectorStore) -> None:
collection = await maybe_await(
self.client.get_or_create_collection(
name=vector_db.identifier,
metadata={"vector_db": vector_db.model_dump_json()},
name=vector_store.identifier, metadata={"vector_store": vector_store.model_dump_json()}
)
)
self.cache[vector_db.identifier] = VectorDBWithIndex(
vector_db, ChromaIndex(self.client, collection), self.inference_api
self.cache[vector_store.identifier] = VectorStoreWithIndex(
vector_store, ChromaIndex(self.client, collection), self.inference_api
)
async def unregister_vector_db(self, vector_db_id: str) -> None:
if vector_db_id not in self.cache:
log.warning(f"Vector DB {vector_db_id} not found")
async def unregister_vector_store(self, vector_store_id: str) -> None:
if vector_store_id not in self.cache:
log.warning(f"Vector DB {vector_store_id} not found")
return
await self.cache[vector_db_id].index.delete()
del self.cache[vector_db_id]
await self.cache[vector_store_id].index.delete()
del self.cache[vector_store_id]
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_db_id)
if index is None:
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
await index.insert_chunks(chunks)
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_db_id)
if index is None:
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
return await index.query_chunks(query, params)
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex:
if vector_db_id in self.cache:
return self.cache[vector_db_id]
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex:
if vector_store_id in self.cache:
return self.cache[vector_store_id]
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db:
raise ValueError(f"Vector DB {vector_db_id} not found in Llama Stack")
collection = await maybe_await(self.client.get_collection(vector_db_id))
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
if not vector_store:
raise ValueError(f"Vector DB {vector_store_id} not found in Llama Stack")
collection = await maybe_await(self.client.get_collection(vector_store_id))
if not collection:
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
index = VectorDBWithIndex(vector_db, ChromaIndex(self.client, collection), self.inference_api)
self.cache[vector_db_id] = index
raise ValueError(f"Vector DB {vector_store_id} not found in Chroma")
index = VectorStoreWithIndex(vector_store, ChromaIndex(self.client, collection), self.inference_api)
self.cache[vector_store_id] = index
return index
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a Chroma vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
index = await self._get_and_cache_vector_store_index(store_id)
if not index:
raise ValueError(f"Vector DB {store_id} not found")

View file

@ -8,21 +8,21 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class ChromaVectorIOConfig(BaseModel):
url: str | None
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
persistence: KVStoreReference = Field(description="Config for KV store backend")
@classmethod
def sample_run_config(cls, __distro_dir__: str, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
return {
"url": url,
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="chroma_remote_registry.db",
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::chroma_remote",
).model_dump(exclude_none=True),
}

View file

@ -13,7 +13,6 @@ async def get_adapter_impl(config: MilvusVectorIOConfig, deps: dict[Api, Provide
from .milvus import MilvusVectorIOAdapter
assert isinstance(config, MilvusVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = MilvusVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
impl = MilvusVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import BaseModel, ConfigDict, Field
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.core.storage.datatypes import KVStoreReference
from llama_stack.schema_utils import json_schema_type
@ -17,7 +17,7 @@ class MilvusVectorIOConfig(BaseModel):
uri: str = Field(description="The URI of the Milvus server")
token: str | None = Field(description="The token of the Milvus server")
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
persistence: KVStoreReference = Field(description="Config for KV store backend")
# This configuration allows additional fields to be passed through to the underlying Milvus client.
# See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general.
@ -28,8 +28,8 @@ class MilvusVectorIOConfig(BaseModel):
return {
"uri": "${env.MILVUS_ENDPOINT}",
"token": "${env.MILVUS_TOKEN}",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="milvus_remote_registry.db",
),
"persistence": KVStoreReference(
backend="kv_default",
namespace="vector_io::milvus_remote",
).model_dump(exclude_none=True),
}

View file

@ -12,16 +12,12 @@ from numpy.typing import NDArray
from pymilvus import AnnSearchRequest, DataType, Function, FunctionType, MilvusClient, RRFRanker, WeightedRanker
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files.files import Files
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_stores import VectorStore
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.datatypes import VectorStoresProtocolPrivate
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
@ -30,7 +26,7 @@ from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_WEIGHTED,
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
VectorStoreWithIndex,
)
from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collection_name
@ -39,7 +35,7 @@ from .config import MilvusVectorIOConfig as RemoteMilvusVectorIOConfig
logger = get_logger(name=__name__, category="vector_io::milvus")
VERSION = "v3"
VECTOR_DBS_PREFIX = f"vector_dbs:milvus:{VERSION}::"
VECTOR_DBS_PREFIX = f"vector_stores:milvus:{VERSION}::"
VECTOR_INDEX_PREFIX = f"vector_index:milvus:{VERSION}::"
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:milvus:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:milvus:{VERSION}::"
@ -73,46 +69,23 @@ class MilvusIndex(EmbeddingIndex):
logger.info(f"Creating new collection {self.collection_name} with nullable sparse field")
# Create schema for vector search
schema = self.client.create_schema()
schema.add_field(
field_name="chunk_id",
datatype=DataType.VARCHAR,
is_primary=True,
max_length=100,
)
schema.add_field(field_name="chunk_id", datatype=DataType.VARCHAR, is_primary=True, max_length=100)
schema.add_field(
field_name="content",
datatype=DataType.VARCHAR,
max_length=65535,
enable_analyzer=True, # Enable text analysis for BM25
)
schema.add_field(
field_name="vector",
datatype=DataType.FLOAT_VECTOR,
dim=len(embeddings[0]),
)
schema.add_field(
field_name="chunk_content",
datatype=DataType.JSON,
)
schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=len(embeddings[0]))
schema.add_field(field_name="chunk_content", datatype=DataType.JSON)
# Add sparse vector field for BM25 (required by the function)
schema.add_field(
field_name="sparse",
datatype=DataType.SPARSE_FLOAT_VECTOR,
)
schema.add_field(field_name="sparse", datatype=DataType.SPARSE_FLOAT_VECTOR)
# Create indexes
index_params = self.client.prepare_index_params()
index_params.add_index(
field_name="vector",
index_type="FLAT",
metric_type="COSINE",
)
index_params.add_index(field_name="vector", index_type="FLAT", metric_type="COSINE")
# Add index for sparse field (required by BM25 function)
index_params.add_index(
field_name="sparse",
index_type="SPARSE_INVERTED_INDEX",
metric_type="BM25",
)
index_params.add_index(field_name="sparse", index_type="SPARSE_INVERTED_INDEX", metric_type="BM25")
# Add BM25 function for full-text search
bm25_function = Function(
@ -143,11 +116,7 @@ class MilvusIndex(EmbeddingIndex):
}
)
try:
await asyncio.to_thread(
self.client.insert,
self.collection_name,
data=data,
)
await asyncio.to_thread(self.client.insert, self.collection_name, data=data)
except Exception as e:
logger.error(f"Error inserting chunks into Milvus collection {self.collection_name}: {e}")
raise e
@ -166,12 +135,7 @@ class MilvusIndex(EmbeddingIndex):
scores = [res["distance"] for res in search_res[0]]
return QueryChunksResponse(chunks=chunks, scores=scores)
async def query_keyword(
self,
query_string: str,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
"""
Perform BM25-based keyword search using Milvus's built-in full-text search.
"""
@ -209,12 +173,7 @@ class MilvusIndex(EmbeddingIndex):
# Fallback to simple text search
return await self._fallback_keyword_search(query_string, k, score_threshold)
async def _fallback_keyword_search(
self,
query_string: str,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def _fallback_keyword_search(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
"""
Fallback to simple text search when BM25 search is not available.
"""
@ -302,7 +261,7 @@ class MilvusIndex(EmbeddingIndex):
raise
class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
def __init__(
self,
config: RemoteMilvusVectorIOConfig | InlineMilvusVectorIOConfig,
@ -314,28 +273,28 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.cache = {}
self.client = None
self.inference_api = inference_api
self.vector_db_store = None
self.vector_store_table = None
self.metadata_collection_name = "openai_vector_stores_metadata"
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
self.kvstore = await kvstore_impl(self.config.persistence)
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)
stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key)
for vector_db_data in stored_vector_dbs:
vector_db = VectorDB.model_validate_json(vector_db_data)
index = VectorDBWithIndex(
vector_db,
for vector_store_data in stored_vector_stores:
vector_store = VectorStore.model_validate_json(vector_store_data)
index = VectorStoreWithIndex(
vector_store,
index=MilvusIndex(
client=self.client,
collection_name=vector_db.identifier,
collection_name=vector_store.identifier,
consistency_level=self.config.consistency_level,
kvstore=self.kvstore,
),
inference_api=self.inference_api,
)
self.cache[vector_db.identifier] = index
self.cache[vector_store.identifier] = index
if isinstance(self.config, RemoteMilvusVectorIOConfig):
logger.info(f"Connecting to Milvus server at {self.config.uri}")
self.client = MilvusClient(**self.config.model_dump(exclude_none=True))
@ -352,72 +311,61 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
# Clean up mixin resources (file batch tasks)
await super().shutdown()
async def register_vector_db(
self,
vector_db: VectorDB,
) -> None:
async def register_vector_store(self, vector_store: VectorStore) -> None:
if isinstance(self.config, RemoteMilvusVectorIOConfig):
consistency_level = self.config.consistency_level
else:
consistency_level = "Strong"
index = VectorDBWithIndex(
vector_db=vector_db,
index=MilvusIndex(self.client, vector_db.identifier, consistency_level=consistency_level),
index = VectorStoreWithIndex(
vector_store=vector_store,
index=MilvusIndex(self.client, vector_store.identifier, consistency_level=consistency_level),
inference_api=self.inference_api,
)
self.cache[vector_db.identifier] = index
self.cache[vector_store.identifier] = index
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None:
if vector_db_id in self.cache:
return self.cache[vector_db_id]
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None:
if vector_store_id in self.cache:
return self.cache[vector_store_id]
if self.vector_db_store is None:
raise VectorStoreNotFoundError(vector_db_id)
if self.vector_store_table is None:
raise VectorStoreNotFoundError(vector_store_id)
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db:
raise VectorStoreNotFoundError(vector_db_id)
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
if not vector_store:
raise VectorStoreNotFoundError(vector_store_id)
index = VectorDBWithIndex(
vector_db=vector_db,
index=MilvusIndex(client=self.client, collection_name=vector_db.identifier, kvstore=self.kvstore),
index = VectorStoreWithIndex(
vector_store=vector_store,
index=MilvusIndex(client=self.client, collection_name=vector_store.identifier, kvstore=self.kvstore),
inference_api=self.inference_api,
)
self.cache[vector_db_id] = index
self.cache[vector_store_id] = index
return index
async def unregister_vector_db(self, vector_db_id: str) -> None:
if vector_db_id in self.cache:
await self.cache[vector_db_id].index.delete()
del self.cache[vector_db_id]
async def unregister_vector_store(self, vector_store_id: str) -> None:
if vector_store_id in self.cache:
await self.cache[vector_store_id].index.delete()
del self.cache[vector_store_id]
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_store_index(vector_db_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
await index.insert_chunks(chunks)
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id)
index = await self._get_and_cache_vector_store_index(vector_db_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete a chunk from a milvus vector store."""
index = await self._get_and_cache_vector_db_index(store_id)
index = await self._get_and_cache_vector_store_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)

Some files were not shown because too many files have changed in this diff Show more