Ran precommit

This commit is contained in:
Omar Abdelwahab 2025-10-06 13:27:19 -07:00
parent 9886520b40
commit 9fc0d966f6
7 changed files with 153 additions and 310 deletions

View file

@ -8,6 +8,9 @@ from collections.abc import AsyncIterator
from enum import Enum
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, Field, field_validator
from typing_extensions import TypedDict
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent
from llama_stack.apis.common.responses import Order
from llama_stack.apis.models import Model
@ -23,9 +26,6 @@ from llama_stack.models.llama.datatypes import (
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
from pydantic import BaseModel, Field, field_validator
from typing_extensions import TypedDict
register_schema(ToolCall)
register_schema(ToolDefinition)
@ -381,9 +381,7 @@ class ToolConfig(BaseModel):
tool_choice: ToolChoice | str | None = Field(default=ToolChoice.auto)
tool_prompt_format: ToolPromptFormat | None = Field(default=None)
system_message_behavior: SystemMessageBehavior | None = Field(
default=SystemMessageBehavior.append
)
system_message_behavior: SystemMessageBehavior | None = Field(default=SystemMessageBehavior.append)
def model_post_init(self, __context: Any) -> None:
if isinstance(self.tool_choice, str):
@ -512,21 +510,15 @@ class OpenAIFile(BaseModel):
OpenAIChatCompletionContentPartParam = Annotated[
OpenAIChatCompletionContentPartTextParam
| OpenAIChatCompletionContentPartImageParam
| OpenAIFile,
OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam | OpenAIFile,
Field(discriminator="type"),
]
register_schema(
OpenAIChatCompletionContentPartParam, name="OpenAIChatCompletionContentPartParam"
)
register_schema(OpenAIChatCompletionContentPartParam, name="OpenAIChatCompletionContentPartParam")
OpenAIChatCompletionMessageContent = str | list[OpenAIChatCompletionContentPartParam]
OpenAIChatCompletionTextOnlyMessageContent = (
str | list[OpenAIChatCompletionContentPartTextParam]
)
OpenAIChatCompletionTextOnlyMessageContent = str | list[OpenAIChatCompletionContentPartTextParam]
@json_schema_type
@ -694,9 +686,7 @@ class OpenAIResponseFormatJSONObject(BaseModel):
OpenAIResponseFormatParam = Annotated[
OpenAIResponseFormatText
| OpenAIResponseFormatJSONSchema
| OpenAIResponseFormatJSONObject,
OpenAIResponseFormatText | OpenAIResponseFormatJSONSchema | OpenAIResponseFormatJSONObject,
Field(discriminator="type"),
]
register_schema(OpenAIResponseFormatParam, name="OpenAIResponseFormatParam")
@ -986,16 +976,8 @@ class InferenceProvider(Protocol):
async def rerank(
self,
model: str,
query: (
str
| OpenAIChatCompletionContentPartTextParam
| OpenAIChatCompletionContentPartImageParam
),
items: list[
str
| OpenAIChatCompletionContentPartTextParam
| OpenAIChatCompletionContentPartImageParam
],
query: (str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam),
items: list[str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam],
max_num_results: int | None = None,
) -> RerankResponse:
"""Rerank a list of documents based on their relevance to a query.

View file

@ -7,9 +7,17 @@
import asyncio
import time
from collections.abc import AsyncGenerator, AsyncIterator
from datetime import datetime, UTC
from datetime import UTC, datetime
from typing import Annotated, Any
from openai.types.chat import (
ChatCompletionToolChoiceOptionParam as OpenAIChatCompletionToolChoiceOptionParam,
)
from openai.types.chat import (
ChatCompletionToolParam as OpenAIChatCompletionToolParam,
)
from pydantic import Field, TypeAdapter
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
from llama_stack.apis.inference import (
@ -48,12 +56,6 @@ from llama_stack.providers.utils.telemetry.tracing import (
get_current_span,
)
from openai.types.chat import (
ChatCompletionToolChoiceOptionParam as OpenAIChatCompletionToolChoiceOptionParam,
ChatCompletionToolParam as OpenAIChatCompletionToolParam,
)
from pydantic import Field, TypeAdapter
logger = get_logger(name=__name__, category="core::routers")
@ -96,9 +98,7 @@ class InferenceRouter(Inference):
logger.debug(
f"InferenceRouter.register_model: {model_id=} {provider_model_id=} {provider_id=} {metadata=} {model_type=}",
)
await self.routing_table.register_model(
model_id, provider_model_id, provider_id, metadata, model_type
)
await self.routing_table.register_model(model_id, provider_model_id, provider_id, metadata, model_type)
def _construct_metrics(
self,
@ -153,16 +153,11 @@ class InferenceRouter(Inference):
total_tokens: int,
model: Model,
) -> list[MetricInResponse]:
metrics = self._construct_metrics(
prompt_tokens, completion_tokens, total_tokens, model
)
metrics = self._construct_metrics(prompt_tokens, completion_tokens, total_tokens, model)
if self.telemetry:
for metric in metrics:
enqueue_event(metric)
return [
MetricInResponse(metric=metric.metric, value=metric.value)
for metric in metrics
]
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
async def _count_tokens(
self,
@ -256,9 +251,7 @@ class InferenceRouter(Inference):
# these metrics will show up in the client response.
response.metrics = (
metrics
if not hasattr(response, "metrics") or response.metrics is None
else response.metrics + metrics
metrics if not hasattr(response, "metrics") or response.metrics is None else response.metrics + metrics
)
return response
@ -296,13 +289,9 @@ class InferenceRouter(Inference):
# Use the OpenAI client for a bit of extra input validation without
# exposing the OpenAI client itself as part of our API surface
if tool_choice:
TypeAdapter(OpenAIChatCompletionToolChoiceOptionParam).validate_python(
tool_choice
)
TypeAdapter(OpenAIChatCompletionToolChoiceOptionParam).validate_python(tool_choice)
if tools is None:
raise ValueError(
"'tool_choice' is only allowed when 'tools' is also provided"
)
raise ValueError("'tool_choice' is only allowed when 'tools' is also provided")
if tools:
for tool in tools:
TypeAdapter(OpenAIChatCompletionToolParam).validate_python(tool)
@ -367,9 +356,7 @@ class InferenceRouter(Inference):
enqueue_event(metric)
# these metrics will show up in the client response.
response.metrics = (
metrics
if not hasattr(response, "metrics") or response.metrics is None
else response.metrics + metrics
metrics if not hasattr(response, "metrics") or response.metrics is None else response.metrics + metrics
)
return response
@ -405,31 +392,19 @@ class InferenceRouter(Inference):
) -> ListOpenAIChatCompletionResponse:
if self.store:
return await self.store.list_chat_completions(after, limit, model, order)
raise NotImplementedError(
"List chat completions is not supported: inference store is not configured."
)
raise NotImplementedError("List chat completions is not supported: inference store is not configured.")
async def get_chat_completion(
self, completion_id: str
) -> OpenAICompletionWithInputMessages:
async def get_chat_completion(self, completion_id: str) -> OpenAICompletionWithInputMessages:
if self.store:
return await self.store.get_chat_completion(completion_id)
raise NotImplementedError(
"Get chat completion is not supported: inference store is not configured."
)
raise NotImplementedError("Get chat completion is not supported: inference store is not configured.")
async def _nonstream_openai_chat_completion(
self, provider: Inference, params: dict
) -> OpenAIChatCompletion:
async def _nonstream_openai_chat_completion(self, provider: Inference, params: dict) -> OpenAIChatCompletion:
response = await provider.openai_chat_completion(**params)
for choice in response.choices:
# some providers return an empty list for no tool calls in non-streaming responses
# but the OpenAI API returns None. So, set tool_calls to None if it's empty
if (
choice.message
and choice.message.tool_calls is not None
and len(choice.message.tool_calls) == 0
):
if choice.message and choice.message.tool_calls is not None and len(choice.message.tool_calls) == 0:
choice.message.tool_calls = None
return response
@ -449,9 +424,7 @@ class InferenceRouter(Inference):
message=f"Health check timed out after {timeout} seconds",
)
except NotImplementedError:
health_statuses[provider_id] = HealthResponse(
status=HealthStatus.NOT_IMPLEMENTED
)
health_statuses[provider_id] = HealthResponse(status=HealthStatus.NOT_IMPLEMENTED)
except Exception as e:
health_statuses[provider_id] = HealthResponse(
status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}"
@ -486,11 +459,7 @@ class InferenceRouter(Inference):
else:
if hasattr(chunk, "delta"):
completion_text += chunk.delta
if (
hasattr(chunk, "stop_reason")
and chunk.stop_reason
and self.telemetry
):
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry:
complete = True
completion_tokens = await self._count_tokens(completion_text)
# if we are done receiving tokens
@ -515,14 +484,9 @@ class InferenceRouter(Inference):
# Return metrics in response
async_metrics = [
MetricInResponse(metric=metric.metric, value=metric.value)
for metric in completion_metrics
MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics
]
chunk.metrics = (
async_metrics
if chunk.metrics is None
else chunk.metrics + async_metrics
)
chunk.metrics = async_metrics if chunk.metrics is None else chunk.metrics + async_metrics
else:
# Fallback if no telemetry
completion_metrics = self._construct_metrics(
@ -532,14 +496,9 @@ class InferenceRouter(Inference):
model,
)
async_metrics = [
MetricInResponse(metric=metric.metric, value=metric.value)
for metric in completion_metrics
MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics
]
chunk.metrics = (
async_metrics
if chunk.metrics is None
else chunk.metrics + async_metrics
)
chunk.metrics = async_metrics if chunk.metrics is None else chunk.metrics + async_metrics
yield chunk
async def count_tokens_and_compute_metrics(
@ -553,9 +512,7 @@ class InferenceRouter(Inference):
content = [response.completion_message]
else:
content = response.content
completion_tokens = await self._count_tokens(
messages=content, tool_prompt_format=tool_prompt_format
)
completion_tokens = await self._count_tokens(messages=content, tool_prompt_format=tool_prompt_format)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
# Create a separate span for completion metrics
@ -575,10 +532,7 @@ class InferenceRouter(Inference):
enqueue_event(metric)
# Return metrics in response
return [
MetricInResponse(metric=metric.metric, value=metric.value)
for metric in completion_metrics
]
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in completion_metrics]
# Fallback if no telemetry
metrics = self._construct_metrics(
@ -587,10 +541,7 @@ class InferenceRouter(Inference):
total_tokens,
model,
)
return [
MetricInResponse(metric=metric.metric, value=metric.value)
for metric in metrics
]
return [MetricInResponse(metric=metric.metric, value=metric.value) for metric in metrics]
async def stream_tokens_and_compute_metrics_openai_chat(
self,
@ -631,48 +582,33 @@ class InferenceRouter(Inference):
if choice_delta.delta:
delta = choice_delta.delta
if delta.content:
current_choice_data["content_parts"].append(
delta.content
)
current_choice_data["content_parts"].append(delta.content)
if delta.tool_calls:
for tool_call_delta in delta.tool_calls:
tc_idx = tool_call_delta.index
if (
tc_idx
not in current_choice_data["tool_calls_builder"]
):
current_choice_data["tool_calls_builder"][
tc_idx
] = {
if tc_idx not in current_choice_data["tool_calls_builder"]:
current_choice_data["tool_calls_builder"][tc_idx] = {
"id": None,
"type": "function",
"function_name_parts": [],
"function_arguments_parts": [],
}
builder = current_choice_data["tool_calls_builder"][
tc_idx
]
builder = current_choice_data["tool_calls_builder"][tc_idx]
if tool_call_delta.id:
builder["id"] = tool_call_delta.id
if tool_call_delta.type:
builder["type"] = tool_call_delta.type
if tool_call_delta.function:
if tool_call_delta.function.name:
builder["function_name_parts"].append(
tool_call_delta.function.name
)
builder["function_name_parts"].append(tool_call_delta.function.name)
if tool_call_delta.function.arguments:
builder["function_arguments_parts"].append(
tool_call_delta.function.arguments
)
if choice_delta.finish_reason:
current_choice_data["finish_reason"] = (
choice_delta.finish_reason
)
current_choice_data["finish_reason"] = choice_delta.finish_reason
if choice_delta.logprobs and choice_delta.logprobs.content:
current_choice_data["logprobs_content_parts"].extend(
choice_delta.logprobs.content
)
current_choice_data["logprobs_content_parts"].extend(choice_delta.logprobs.content)
# Compute metrics on final chunk
if chunk.choices and chunk.choices[0].finish_reason:
@ -702,12 +638,8 @@ class InferenceRouter(Inference):
if choice_data["tool_calls_builder"]:
for tc_build_data in choice_data["tool_calls_builder"].values():
if tc_build_data["id"]:
func_name = "".join(
tc_build_data["function_name_parts"]
)
func_args = "".join(
tc_build_data["function_arguments_parts"]
)
func_name = "".join(tc_build_data["function_name_parts"])
func_args = "".join(tc_build_data["function_arguments_parts"])
assembled_tool_calls.append(
OpenAIChatCompletionToolCall(
id=tc_build_data["id"],
@ -720,16 +652,10 @@ class InferenceRouter(Inference):
message = OpenAIAssistantMessageParam(
role="assistant",
content=content_str if content_str else None,
tool_calls=(
assembled_tool_calls if assembled_tool_calls else None
),
tool_calls=(assembled_tool_calls if assembled_tool_calls else None),
)
logprobs_content = choice_data["logprobs_content_parts"]
final_logprobs = (
OpenAIChoiceLogprobs(content=logprobs_content)
if logprobs_content
else None
)
final_logprobs = OpenAIChoiceLogprobs(content=logprobs_content) if logprobs_content else None
assembled_choices.append(
OpenAIChoice(
@ -748,6 +674,4 @@ class InferenceRouter(Inference):
object="chat.completion",
)
logger.debug(f"InferenceRouter.completion_response: {final_response}")
asyncio.create_task(
self.store.store_chat_completion(final_response, messages)
)
asyncio.create_task(self.store.store_chat_completion(final_response, messages))

View file

@ -7,10 +7,9 @@
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
from llama_stack.providers.utils.inference.model_registry import (
build_hf_repo_model_entry,
ModelRegistryHelper,
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
@ -51,9 +50,7 @@ class RunpodInferenceAdapter(
Inference,
):
def __init__(self, config: RunpodImplConfig) -> None:
ModelRegistryHelper.__init__(
self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS
)
ModelRegistryHelper.__init__(self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS)
self.config = config
def _get_params(self, request: ChatCompletionRequest) -> dict:

View file

@ -9,6 +9,7 @@ from typing import Any
from ibm_watsonx_ai.foundation_models import Model
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
from openai import AsyncOpenAI
from llama_stack.apis.inference import (
ChatCompletionRequest,
@ -33,7 +34,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
completion_request_to_prompt,
request_has_media,
)
from openai import AsyncOpenAI
from . import WatsonXConfig
from .models import MODEL_ENTRIES
@ -65,9 +65,7 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
self._project_id = self._config.project_id
def _get_client(self, model_id) -> Model:
config_api_key = (
self._config.api_key.get_secret_value() if self._config.api_key else None
)
config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None
config_url = self._config.url
project_id = self._config.project_id
credentials = {"url": config_url, "apikey": config_api_key}
@ -82,46 +80,28 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
)
return self._openai_client
async def _get_params(self, request: ChatCompletionRequest) -> dict:
input_dict = {"params": {}}
media_present = request_has_media(request)
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
input_dict["prompt"] = await chat_completion_request_to_prompt(
request, llama_model
)
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
else:
assert (
not media_present
), "Together does not support media for Completion requests"
assert not media_present, "Together does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
if request.sampling_params:
if request.sampling_params.strategy:
input_dict["params"][
GenParams.DECODING_METHOD
] = request.sampling_params.strategy.type
input_dict["params"][GenParams.DECODING_METHOD] = request.sampling_params.strategy.type
if request.sampling_params.max_tokens:
input_dict["params"][
GenParams.MAX_NEW_TOKENS
] = request.sampling_params.max_tokens
input_dict["params"][GenParams.MAX_NEW_TOKENS] = request.sampling_params.max_tokens
if request.sampling_params.repetition_penalty:
input_dict["params"][
GenParams.REPETITION_PENALTY
] = request.sampling_params.repetition_penalty
input_dict["params"][GenParams.REPETITION_PENALTY] = request.sampling_params.repetition_penalty
if isinstance(request.sampling_params.strategy, TopPSamplingStrategy):
input_dict["params"][
GenParams.TOP_P
] = request.sampling_params.strategy.top_p
input_dict["params"][
GenParams.TEMPERATURE
] = request.sampling_params.strategy.temperature
input_dict["params"][GenParams.TOP_P] = request.sampling_params.strategy.top_p
input_dict["params"][GenParams.TEMPERATURE] = request.sampling_params.strategy.temperature
if isinstance(request.sampling_params.strategy, TopKSamplingStrategy):
input_dict["params"][
GenParams.TOP_K
] = request.sampling_params.strategy.top_k
input_dict["params"][GenParams.TOP_K] = request.sampling_params.strategy.top_k
if isinstance(request.sampling_params.strategy, GreedySamplingStrategy):
input_dict["params"][GenParams.TEMPERATURE] = 0.0

View file

@ -15,9 +15,17 @@ from typing import Any
from openai import AsyncStream
from openai.types.chat import (
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
)
from openai.types.chat import (
ChatCompletionChunk as OpenAIChatCompletionChunk,
)
from openai.types.chat import (
ChatCompletionContentPartImageParam as OpenAIChatCompletionContentPartImageParam,
)
from openai.types.chat import (
ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam,
)
from openai.types.chat import (
ChatCompletionContentPartTextParam as OpenAIChatCompletionContentPartTextParam,
)
@ -29,15 +37,56 @@ except ImportError:
from openai.types.chat.chat_completion_message_tool_call import (
ChatCompletionMessageToolCall as OpenAIChatCompletionMessageFunctionToolCall,
)
from openai.types.chat import (
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
)
from openai.types.chat import (
ChatCompletionMessageToolCall,
)
from openai.types.chat import (
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
)
from openai.types.chat import (
ChatCompletionToolMessageParam as OpenAIChatCompletionToolMessage,
)
from openai.types.chat import (
ChatCompletionUserMessageParam as OpenAIChatCompletionUserMessage,
)
from openai.types.chat.chat_completion import (
Choice as OpenAIChoice,
)
from openai.types.chat.chat_completion import (
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
)
from openai.types.chat.chat_completion_chunk import (
Choice as OpenAIChatCompletionChunkChoice,
)
from openai.types.chat.chat_completion_chunk import (
ChoiceDelta as OpenAIChoiceDelta,
)
from openai.types.chat.chat_completion_chunk import (
ChoiceDeltaToolCall as OpenAIChoiceDeltaToolCall,
)
from openai.types.chat.chat_completion_chunk import (
ChoiceDeltaToolCallFunction as OpenAIChoiceDeltaToolCallFunction,
)
from openai.types.chat.chat_completion_content_part_image_param import (
ImageURL as OpenAIImageURL,
)
from openai.types.chat.chat_completion_message_tool_call import (
Function as OpenAIFunction,
)
from pydantic import BaseModel
from llama_stack.apis.common.content_types import (
_URLOrData,
URL,
ImageContentItem,
InterleavedContent,
TextContentItem,
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
URL,
_URLOrData,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
@ -74,30 +123,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_content_to_url,
decode_assistant_message,
)
from openai.types.chat import (
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
ChatCompletionMessageToolCall,
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
ChatCompletionToolMessageParam as OpenAIChatCompletionToolMessage,
ChatCompletionUserMessageParam as OpenAIChatCompletionUserMessage,
)
from openai.types.chat.chat_completion import (
Choice as OpenAIChoice,
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
)
from openai.types.chat.chat_completion_chunk import (
Choice as OpenAIChatCompletionChunkChoice,
ChoiceDelta as OpenAIChoiceDelta,
ChoiceDeltaToolCall as OpenAIChoiceDeltaToolCall,
ChoiceDeltaToolCallFunction as OpenAIChoiceDeltaToolCallFunction,
)
from openai.types.chat.chat_completion_content_part_image_param import (
ImageURL as OpenAIImageURL,
)
from openai.types.chat.chat_completion_message_tool_call import (
Function as OpenAIFunction,
)
from pydantic import BaseModel
logger = get_logger(name=__name__, category="providers::utils")
@ -196,16 +221,12 @@ def convert_openai_completion_logprobs(
if logprobs.tokens and logprobs.token_logprobs:
return [
TokenLogProbs(logprobs_by_token={token: token_lp})
for token, token_lp in zip(
logprobs.tokens, logprobs.token_logprobs, strict=False
)
for token, token_lp in zip(logprobs.tokens, logprobs.token_logprobs, strict=False)
]
return None
def convert_openai_completion_logprobs_stream(
text: str, logprobs: float | OpenAICompatLogprobs | None
):
def convert_openai_completion_logprobs_stream(text: str, logprobs: float | OpenAICompatLogprobs | None):
if logprobs is None:
return None
if isinstance(logprobs, float):
@ -250,9 +271,7 @@ def process_chat_completion_response(
if not choice.message or not choice.message.tool_calls:
raise ValueError("Tool calls are not present in the response")
tool_calls = [
convert_tool_call(tool_call) for tool_call in choice.message.tool_calls
]
tool_calls = [convert_tool_call(tool_call) for tool_call in choice.message.tool_calls]
if any(isinstance(tool_call, UnparseableToolCall) for tool_call in tool_calls):
# If we couldn't parse a tool call, jsonify the tool calls and return them
return ChatCompletionResponse(
@ -276,9 +295,7 @@ def process_chat_completion_response(
# TODO: This does not work well with tool calls for vLLM remote provider
# Ref: https://github.com/meta-llama/llama-stack/issues/1058
raw_message = decode_assistant_message(
text_from_choice(choice), get_stop_reason(choice.finish_reason)
)
raw_message = decode_assistant_message(text_from_choice(choice), get_stop_reason(choice.finish_reason))
# NOTE: If we do not set tools in chat-completion request, we should not
# expect the ToolCall in the response. Instead, we should return the raw
@ -479,17 +496,13 @@ async def process_chat_completion_stream_response(
)
async def convert_message_to_openai_dict(
message: Message, download: bool = False
) -> dict:
async def convert_message_to_openai_dict(message: Message, download: bool = False) -> dict:
async def _convert_content(content) -> dict:
if isinstance(content, ImageContentItem):
return {
"type": "image_url",
"image_url": {
"url": await convert_image_content_to_url(
content, download=download
),
"url": await convert_image_content_to_url(content, download=download),
},
}
else:
@ -574,11 +587,7 @@ async def convert_message_to_openai_dict_new(
) -> str | Iterable[OpenAIChatCompletionContentPartParam]:
async def impl(
content_: InterleavedContent,
) -> (
str
| OpenAIChatCompletionContentPartParam
| list[OpenAIChatCompletionContentPartParam]
):
) -> str | OpenAIChatCompletionContentPartParam | list[OpenAIChatCompletionContentPartParam]:
# Llama Stack and OpenAI spec match for str and text input
if isinstance(content_, str):
return content_
@ -591,9 +600,7 @@ async def convert_message_to_openai_dict_new(
return OpenAIChatCompletionContentPartImageParam(
type="image_url",
image_url=OpenAIImageURL(
url=await convert_image_content_to_url(
content_, download=download_images
)
url=await convert_image_content_to_url(content_, download=download_images)
),
)
elif isinstance(content_, list):
@ -620,11 +627,7 @@ async def convert_message_to_openai_dict_new(
OpenAIChatCompletionMessageFunctionToolCall(
id=tool.call_id,
function=OpenAIFunction(
name=(
tool.tool_name
if not isinstance(tool.tool_name, BuiltinTool)
else tool.tool_name.value
),
name=(tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value),
arguments=tool.arguments, # Already a JSON string, don't double-encode
),
type="function",
@ -804,9 +807,7 @@ def _convert_openai_finish_reason(finish_reason: str) -> StopReason:
}.get(finish_reason, StopReason.end_of_turn)
def _convert_openai_request_tool_config(
tool_choice: str | dict[str, Any] | None = None
) -> ToolConfig:
def _convert_openai_request_tool_config(tool_choice: str | dict[str, Any] | None = None) -> ToolConfig:
tool_config = ToolConfig()
if tool_choice:
try:
@ -817,9 +818,7 @@ def _convert_openai_request_tool_config(
return tool_config
def _convert_openai_request_tools(
tools: list[dict[str, Any]] | None = None
) -> list[ToolDefinition]:
def _convert_openai_request_tools(tools: list[dict[str, Any]] | None = None) -> list[ToolDefinition]:
lls_tools = []
if not tools:
return lls_tools
@ -918,11 +917,7 @@ def _convert_openai_logprobs(
return None
return [
TokenLogProbs(
logprobs_by_token={
logprobs.token: logprobs.logprob for logprobs in content.top_logprobs
}
)
TokenLogProbs(logprobs_by_token={logprobs.token: logprobs.logprob for logprobs in content.top_logprobs})
for content in logprobs.content
]
@ -961,13 +956,9 @@ def openai_messages_to_messages(
converted_messages = []
for message in messages:
if message.role == "system":
converted_message = SystemMessage(
content=openai_content_to_content(message.content)
)
converted_message = SystemMessage(content=openai_content_to_content(message.content))
elif message.role == "user":
converted_message = UserMessage(
content=openai_content_to_content(message.content)
)
converted_message = UserMessage(content=openai_content_to_content(message.content))
elif message.role == "assistant":
converted_message = CompletionMessage(
content=openai_content_to_content(message.content),
@ -999,9 +990,7 @@ def openai_content_to_content(
if content.type == "text":
return TextContentItem(type="text", text=content.text)
elif content.type == "image_url":
return ImageContentItem(
type="image", image=_URLOrData(url=URL(uri=content.image_url.url))
)
return ImageContentItem(type="image", image=_URLOrData(url=URL(uri=content.image_url.url)))
else:
raise ValueError(f"Unknown content type: {content.type}")
else:
@ -1041,17 +1030,14 @@ def convert_openai_chat_completion_choice(
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
assert (
hasattr(choice, "message") and choice.message
), "error in server response: message not found"
assert (
hasattr(choice, "finish_reason") and choice.finish_reason
), "error in server response: finish_reason not found"
assert hasattr(choice, "message") and choice.message, "error in server response: message not found"
assert hasattr(choice, "finish_reason") and choice.finish_reason, (
"error in server response: finish_reason not found"
)
return ChatCompletionResponse(
completion_message=CompletionMessage(
content=choice.message.content
or "", # CompletionMessage content is not optional
content=choice.message.content or "", # CompletionMessage content is not optional
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
tool_calls=_convert_openai_tool_calls(choice.message.tool_calls),
),
@ -1291,9 +1277,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
outstanding_responses.append(response)
if stream:
return OpenAIChatCompletionToLlamaStackMixin._process_stream_response(
self, model, outstanding_responses
)
return OpenAIChatCompletionToLlamaStackMixin._process_stream_response(self, model, outstanding_responses)
return await OpenAIChatCompletionToLlamaStackMixin._process_non_stream_response(
self, model, outstanding_responses
@ -1302,29 +1286,21 @@ class OpenAIChatCompletionToLlamaStackMixin:
async def _process_stream_response(
self,
model: str,
outstanding_responses: list[
Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]
],
outstanding_responses: list[Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]],
):
id = f"chatcmpl-{uuid.uuid4()}"
for i, outstanding_response in enumerate(outstanding_responses):
response = await outstanding_response
async for chunk in response:
event = chunk.event
finish_reason = _convert_stop_reason_to_openai_finish_reason(
event.stop_reason
)
finish_reason = _convert_stop_reason_to_openai_finish_reason(event.stop_reason)
if isinstance(event.delta, TextDelta):
text_delta = event.delta.text
delta = OpenAIChoiceDelta(content=text_delta)
yield OpenAIChatCompletionChunk(
id=id,
choices=[
OpenAIChatCompletionChunkChoice(
index=i, finish_reason=finish_reason, delta=delta
)
],
choices=[OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta)],
created=int(time.time()),
model=model,
object="chat.completion.chunk",
@ -1346,9 +1322,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
yield OpenAIChatCompletionChunk(
id=id,
choices=[
OpenAIChatCompletionChunkChoice(
index=i, finish_reason=finish_reason, delta=delta
)
OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta)
],
created=int(time.time()),
model=model,
@ -1365,9 +1339,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
yield OpenAIChatCompletionChunk(
id=id,
choices=[
OpenAIChatCompletionChunkChoice(
index=i, finish_reason=finish_reason, delta=delta
)
OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta)
],
created=int(time.time()),
model=model,
@ -1382,9 +1354,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
response = await outstanding_response
completion_message = response.completion_message
message = await convert_message_to_openai_dict_new(completion_message)
finish_reason = _convert_stop_reason_to_openai_finish_reason(
completion_message.stop_reason
)
finish_reason = _convert_stop_reason_to_openai_finish_reason(completion_message.stop_reason)
choice = OpenAIChatCompletionChoice(
index=len(choices),

View file

@ -87,9 +87,7 @@ def pytest_configure(config):
suite = config.getoption("--suite")
if suite:
if suite not in SUITE_DEFINITIONS:
raise pytest.UsageError(
f"Unknown suite: {suite}. Available: {', '.join(sorted(SUITE_DEFINITIONS.keys()))}"
)
raise pytest.UsageError(f"Unknown suite: {suite}. Available: {', '.join(sorted(SUITE_DEFINITIONS.keys()))}")
# Apply setups (global parameterizations): env + defaults
setup = config.getoption("--setup")
@ -127,9 +125,7 @@ def pytest_addoption(parser):
"""
),
)
parser.addoption(
"--env", action="append", help="Set environment variables, e.g. --env KEY=value"
)
parser.addoption("--env", action="append", help="Set environment variables, e.g. --env KEY=value")
parser.addoption(
"--text-model",
help="comma-separated list of text models. Fixture name: text_model_id",
@ -169,7 +165,9 @@ def pytest_addoption(parser):
)
available_suites = ", ".join(sorted(SUITE_DEFINITIONS.keys()))
suite_help = f"Single test suite to run (narrows collection). Available: {available_suites}. Example: --suite=responses"
suite_help = (
f"Single test suite to run (narrows collection). Available: {available_suites}. Example: --suite=responses"
)
parser.addoption("--suite", help=suite_help)
# Global setups for any suite
@ -241,11 +239,7 @@ def pytest_generate_tests(metafunc):
# Generate test IDs
test_ids = []
non_empty_params = [
(i, values)
for i, values in enumerate(param_values.values())
if values[0] is not None
]
non_empty_params = [(i, values) for i, values in enumerate(param_values.values()) if values[0] is not None]
# Get actual function parameters using inspect
test_func_params = set(inspect.signature(metafunc.function).parameters.keys())
@ -262,9 +256,7 @@ def pytest_generate_tests(metafunc):
if parts:
test_ids.append(":".join(parts))
metafunc.parametrize(
params, value_combinations, scope="session", ids=test_ids if test_ids else None
)
metafunc.parametrize(params, value_combinations, scope="session", ids=test_ids if test_ids else None)
def pytest_ignore_collect(path: str, config: pytest.Config) -> bool:
@ -274,9 +266,7 @@ def pytest_ignore_collect(path: str, config: pytest.Config) -> bool:
return False
sobj = SUITE_DEFINITIONS.get(suite)
roots: list[str] = (
sobj.get("roots", []) if isinstance(sobj, dict) else getattr(sobj, "roots", [])
)
roots: list[str] = sobj.get("roots", []) if isinstance(sobj, dict) else getattr(sobj, "roots", [])
if not roots:
return False

View file

@ -9,15 +9,15 @@ import sys
from typing import Any, Protocol
from unittest.mock import AsyncMock, MagicMock
from llama_stack.apis.inference import Inference, SamplingParams
from pydantic import BaseModel, Field
from llama_stack.apis.inference import Inference
from llama_stack.core.datatypes import Api, Provider, StackRunConfig
from llama_stack.core.resolver import resolve_impls
from llama_stack.core.routers.inference import InferenceRouter
from llama_stack.core.routing_tables.models import ModelsRoutingTable
from llama_stack.providers.datatypes import InlineProviderSpec, ProviderSpec
from pydantic import BaseModel, Field
def add_protocol_methods(cls: type, protocol: type[Protocol]) -> None:
"""Dynamically add protocol methods to a class by inspecting the protocol."""