mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
Weaviate "should" work (i.e., is code-complete) but not tested
This commit is contained in:
parent
118c0ef105
commit
a05599c67a
1 changed files with 18 additions and 34 deletions
|
@ -4,7 +4,6 @@
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
import json
|
|
||||||
from typing import Any, Dict, List, Optional
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
import weaviate
|
import weaviate
|
||||||
|
@ -23,9 +22,9 @@ from .config import WeaviateConfig, WeaviateRequestProviderData
|
||||||
|
|
||||||
|
|
||||||
class WeaviateIndex(EmbeddingIndex):
|
class WeaviateIndex(EmbeddingIndex):
|
||||||
def __init__(self, client: weaviate.Client, collection: str):
|
def __init__(self, client: weaviate.Client, collection_name: str):
|
||||||
self.client = client
|
self.client = client
|
||||||
self.collection = collection
|
self.collection_name = collection_name
|
||||||
|
|
||||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||||
assert len(chunks) == len(
|
assert len(chunks) == len(
|
||||||
|
@ -44,17 +43,13 @@ class WeaviateIndex(EmbeddingIndex):
|
||||||
)
|
)
|
||||||
|
|
||||||
# Inserting chunks into a prespecified Weaviate collection
|
# Inserting chunks into a prespecified Weaviate collection
|
||||||
assert self.collection is not None, "Collection name must be specified"
|
collection = self.client.collections.get(self.collection_name)
|
||||||
my_collection = self.client.collections.get(self.collection)
|
await collection.data.insert_many(data_objects)
|
||||||
|
|
||||||
await my_collection.data.insert_many(data_objects)
|
|
||||||
|
|
||||||
async def query(self, embedding: NDArray, k: int) -> QueryDocumentsResponse:
|
async def query(self, embedding: NDArray, k: int) -> QueryDocumentsResponse:
|
||||||
assert self.collection is not None, "Collection name must be specified"
|
collection = self.client.collections.get(self.collection_name)
|
||||||
|
|
||||||
my_collection = self.client.collections.get(self.collection)
|
results = collection.query.near_vector(
|
||||||
|
|
||||||
results = my_collection.query.near_vector(
|
|
||||||
near_vector=embedding.tolist(),
|
near_vector=embedding.tolist(),
|
||||||
limit=k,
|
limit=k,
|
||||||
return_meta_data=wvc.query.MetadataQuery(distance=True),
|
return_meta_data=wvc.query.MetadataQuery(distance=True),
|
||||||
|
@ -63,17 +58,10 @@ class WeaviateIndex(EmbeddingIndex):
|
||||||
chunks = []
|
chunks = []
|
||||||
scores = []
|
scores = []
|
||||||
for doc in results.objects:
|
for doc in results.objects:
|
||||||
try:
|
|
||||||
chunk = doc.properties["chunk_content"]
|
chunk = doc.properties["chunk_content"]
|
||||||
chunks.append(chunk)
|
chunks.append(chunk)
|
||||||
scores.append(1.0 / doc.metadata.distance)
|
scores.append(1.0 / doc.metadata.distance)
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
import traceback
|
|
||||||
|
|
||||||
traceback.print_exc()
|
|
||||||
print(f"Failed to parse document: {e}")
|
|
||||||
|
|
||||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||||
|
|
||||||
|
|
||||||
|
@ -131,7 +119,7 @@ class WeaviateMemoryAdapter(Memory, NeedsRequestProviderData):
|
||||||
|
|
||||||
index = BankWithIndex(
|
index = BankWithIndex(
|
||||||
bank=memory_bank,
|
bank=memory_bank,
|
||||||
index=WeaviateIndex(client=client, collection=memory_bank.identifier),
|
index=WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
||||||
)
|
)
|
||||||
self.cache[bank_id] = index
|
self.cache[bank_id] = index
|
||||||
|
|
||||||
|
@ -144,20 +132,16 @@ class WeaviateMemoryAdapter(Memory, NeedsRequestProviderData):
|
||||||
raise ValueError(f"Bank {bank_id} not found")
|
raise ValueError(f"Bank {bank_id} not found")
|
||||||
|
|
||||||
client = await self._get_client()
|
client = await self._get_client()
|
||||||
collections = await client.collections.list_all().keys()
|
if not client.collections.exists(bank_id):
|
||||||
|
raise ValueError(f"Collection with name `{bank_id}` not found")
|
||||||
|
|
||||||
for collection in collections:
|
|
||||||
if collection == bank_id:
|
|
||||||
bank = MemoryBank(**json.loads(collection.metadata["bank"]))
|
|
||||||
index = BankWithIndex(
|
index = BankWithIndex(
|
||||||
bank=bank,
|
bank=bank,
|
||||||
index=WeaviateIndex(self.client, collection),
|
index=WeaviateIndex(client=client, collection_name=bank_id),
|
||||||
)
|
)
|
||||||
self.cache[bank_id] = index
|
self.cache[bank_id] = index
|
||||||
return index
|
return index
|
||||||
|
|
||||||
return None
|
|
||||||
|
|
||||||
async def insert_documents(
|
async def insert_documents(
|
||||||
self,
|
self,
|
||||||
bank_id: str,
|
bank_id: str,
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue