mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-09 21:18:38 +00:00
faiss provider implementation
This commit is contained in:
parent
14637bea66
commit
a08958c000
9 changed files with 401 additions and 3 deletions
5
llama_toolchain/memory/meta_reference/__init__.py
Normal file
5
llama_toolchain/memory/meta_reference/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
8
llama_toolchain/memory/meta_reference/faiss/__init__.py
Normal file
8
llama_toolchain/memory/meta_reference/faiss/__init__.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import FaissImplConfig # noqa
|
||||
from .memory import get_provider_impl # noqa
|
13
llama_toolchain/memory/meta_reference/faiss/config.py
Normal file
13
llama_toolchain/memory/meta_reference/faiss/config.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FaissImplConfig(BaseModel): ...
|
179
llama_toolchain/memory/meta_reference/faiss/memory.py
Normal file
179
llama_toolchain/memory/meta_reference/faiss/memory.py
Normal file
|
@ -0,0 +1,179 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import faiss
|
||||
import httpx
|
||||
import numpy as np
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_toolchain.distribution.datatypes import Api, ProviderSpec
|
||||
from llama_toolchain.memory.api import * # noqa: F403
|
||||
from .config import FaissImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: FaissImplConfig, _deps: Dict[Api, ProviderSpec]):
|
||||
assert isinstance(
|
||||
config, FaissImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = FaissMemoryImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
||||
|
||||
async def content_from_doc(doc: MemoryBankDocument) -> str:
|
||||
if isinstance(doc.content, URL):
|
||||
async with httpx.AsyncClient() as client:
|
||||
return await client.get(doc.content).text
|
||||
|
||||
def _process(c):
|
||||
if isinstance(c, str):
|
||||
return c
|
||||
else:
|
||||
return "<media>"
|
||||
|
||||
if isinstance(doc.content, list):
|
||||
return " ".join([_process(c) for c in doc.content])
|
||||
else:
|
||||
return _process(doc.content)
|
||||
|
||||
|
||||
def make_overlapped_chunks(
|
||||
text: str, window_len: int, overlap_len: int
|
||||
) -> List[Tuple[str, int]]:
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
tokens = tokenizer.encode(text, bos=False, eos=False)
|
||||
|
||||
chunks = []
|
||||
for i in range(0, len(tokens), window_len - overlap_len):
|
||||
toks = tokens[i : i + window_len]
|
||||
chunk = tokenizer.decode(toks)
|
||||
chunks.append((chunk, len(toks)))
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
class BankState(BaseModel):
|
||||
bank: MemoryBank
|
||||
index: Optional[faiss.IndexFlatL2] = None
|
||||
doc_by_id: Dict[str, MemoryBankDocument] = Field(default_factory=dict)
|
||||
id_by_index: Dict[int, str] = Field(default_factory=dict)
|
||||
chunk_by_index: Dict[int, str] = Field(default_factory=dict)
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
model: SentenceTransformer,
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None:
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
chunk_size = self.bank.config.chunk_size_in_tokens
|
||||
|
||||
for doc in documents:
|
||||
indexlen = len(self.id_by_index)
|
||||
self.doc_by_id[doc.document_id] = doc
|
||||
|
||||
content = await content_from_doc(doc)
|
||||
chunks = make_overlapped_chunks(
|
||||
content,
|
||||
self.bank.config.chunk_size_in_tokens,
|
||||
self.bank.config.overlap_size_in_tokens
|
||||
or (self.bank.config.chunk_size_in_tokens // 4),
|
||||
)
|
||||
embeddings = model.encode([x[0] for x in chunks]).astype(np.float32)
|
||||
await self._ensure_index(embeddings.shape[1])
|
||||
|
||||
self.index.add(embeddings)
|
||||
for i, chunk in enumerate(chunks):
|
||||
self.chunk_by_index[indexlen + i] = Chunk(
|
||||
content=chunk[0],
|
||||
token_count=chunk[1],
|
||||
)
|
||||
self.id_by_index[indexlen + i] = doc.document_id
|
||||
|
||||
async def query_documents(
|
||||
self, model: SentenceTransformer, query: str, params: Dict[str, Any]
|
||||
) -> Tuple[List[Chunk], List[float]]:
|
||||
k = params.get("max_chunks", 3)
|
||||
query_vector = model.encode([query])[0]
|
||||
distances, indices = self.index.search(
|
||||
query_vector.reshape(1, -1).astype(np.float32), k
|
||||
)
|
||||
|
||||
chunks = [self.chunk_by_index[int(i)] for i in indices[0]]
|
||||
scores = [1.0 / float(d) for d in distances[0]]
|
||||
|
||||
return chunks, scores
|
||||
|
||||
async def _ensure_index(self, dimension: int) -> faiss.IndexFlatL2:
|
||||
if self.index is None:
|
||||
self.index = faiss.IndexFlatL2(dimension)
|
||||
return self.index
|
||||
|
||||
|
||||
class FaissMemoryImpl(Memory):
|
||||
def __init__(self, config: FaissImplConfig) -> None:
|
||||
self.config = config
|
||||
self.model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
self.states = {}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def create_memory_bank(
|
||||
self,
|
||||
name: str,
|
||||
config: MemoryBankConfig,
|
||||
url: Optional[URL] = None,
|
||||
) -> MemoryBank:
|
||||
assert url is None, "URL is not supported for this implementation"
|
||||
assert (
|
||||
config.type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {config.type}"
|
||||
|
||||
id = str(uuid.uuid4())
|
||||
bank = MemoryBank(
|
||||
bank_id=id,
|
||||
name=name,
|
||||
config=config,
|
||||
url=url,
|
||||
)
|
||||
state = BankState(bank=bank)
|
||||
self.states[id] = state
|
||||
return bank
|
||||
|
||||
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]:
|
||||
if bank_id not in self.states:
|
||||
return None
|
||||
return self.states[bank_id].bank
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None:
|
||||
assert bank_id in self.states, f"Bank {bank_id} not found"
|
||||
state = self.states[bank_id]
|
||||
|
||||
await state.insert_documents(self.model, documents)
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
assert bank_id in self.states, f"Bank {bank_id} not found"
|
||||
state = self.states[bank_id]
|
||||
|
||||
chunks, scores = await state.query_documents(self.model, query, params)
|
||||
return QueryDocumentsResponse(chunk=chunks, scores=scores)
|
Loading…
Add table
Add a link
Reference in a new issue