fix(vector-io): handle missing document_id in insert_chunks

Fixed KeyError when chunks don't have document_id in metadata or chunk_metadata.
Updated logging to safely extract document_id using getattr and RAG memory
to handle different document_id locations. Added test for missing document_id scenarios.

Fixes issue #3494 where /v1/vector-io/insert would crash with KeyError.
This commit is contained in:
skamenan7 2025-09-22 16:54:51 -04:00
parent a50b63906c
commit a14f79a362
3 changed files with 29 additions and 3 deletions

View file

@ -101,11 +101,15 @@ class VectorIORouter(VectorIO):
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
doc_ids = [
getattr(chunk.chunk_metadata, "document_id", None) if chunk.chunk_metadata else None for chunk in chunks[:3]
]
logger.debug(
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, "
f"ttl_seconds={ttl_seconds}, chunk_ids={doc_ids}{' and more...' if len(chunks) > 3 else ''}"
)
provider = await self.routing_table.get_provider_impl(vector_db_id)
return await provider.insert_chunks(vector_db_id, chunks, ttl_seconds)
await provider.insert_chunks(vector_db_id, chunks, ttl_seconds)
async def query_chunks(
self,

View file

@ -279,7 +279,10 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
return RAGQueryResult(
content=picked,
metadata={
"document_ids": [c.metadata["document_id"] for c in chunks[: len(picked)]],
"document_ids": [
c.metadata.get("document_id") or (c.chunk_metadata.document_id if c.chunk_metadata else None)
for c in chunks[: len(picked)]
],
"chunks": [c.content for c in chunks[: len(picked)]],
"scores": scores[: len(picked)],
"vector_db_ids": [c.metadata["vector_db_id"] for c in chunks[: len(picked)]],

View file

@ -113,6 +113,25 @@ async def test_insert_chunks_missing_db_raises(vector_io_adapter):
await vector_io_adapter.insert_chunks("db_not_exist", [])
async def test_insert_chunks_with_missing_document_id(vector_io_adapter):
"""Ensure no KeyError when document_id is missing or in different places."""
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
fake_index = AsyncMock()
vector_io_adapter.cache["db1"] = fake_index
# Various document_id scenarios that shouldn't crash
chunks = [
Chunk(content="has doc_id in metadata", metadata={"document_id": "doc-1"}),
Chunk(content="no doc_id anywhere", metadata={"source": "test"}),
Chunk(content="doc_id in chunk_metadata", chunk_metadata=ChunkMetadata(document_id="doc-3")),
]
# Should work without KeyError
await vector_io_adapter.insert_chunks("db1", chunks)
fake_index.insert_chunks.assert_awaited_once()
async def test_query_chunks_calls_underlying_index_and_returns(vector_io_adapter):
expected = QueryChunksResponse(chunks=[Chunk(content="c1")], scores=[0.1])
fake_index = AsyncMock(query_chunks=AsyncMock(return_value=expected))