mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
fix(vector-io): handle missing document_id in insert_chunks
Fixed KeyError when chunks don't have document_id in metadata or chunk_metadata. Updated logging to safely extract document_id using getattr and RAG memory to handle different document_id locations. Added test for missing document_id scenarios. Fixes issue #3494 where /v1/vector-io/insert would crash with KeyError.
This commit is contained in:
parent
a50b63906c
commit
a14f79a362
3 changed files with 29 additions and 3 deletions
|
@ -101,11 +101,15 @@ class VectorIORouter(VectorIO):
|
||||||
chunks: list[Chunk],
|
chunks: list[Chunk],
|
||||||
ttl_seconds: int | None = None,
|
ttl_seconds: int | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
|
doc_ids = [
|
||||||
|
getattr(chunk.chunk_metadata, "document_id", None) if chunk.chunk_metadata else None for chunk in chunks[:3]
|
||||||
|
]
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
|
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, "
|
||||||
|
f"ttl_seconds={ttl_seconds}, chunk_ids={doc_ids}{' and more...' if len(chunks) > 3 else ''}"
|
||||||
)
|
)
|
||||||
provider = await self.routing_table.get_provider_impl(vector_db_id)
|
provider = await self.routing_table.get_provider_impl(vector_db_id)
|
||||||
return await provider.insert_chunks(vector_db_id, chunks, ttl_seconds)
|
await provider.insert_chunks(vector_db_id, chunks, ttl_seconds)
|
||||||
|
|
||||||
async def query_chunks(
|
async def query_chunks(
|
||||||
self,
|
self,
|
||||||
|
|
|
@ -279,7 +279,10 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
|
||||||
return RAGQueryResult(
|
return RAGQueryResult(
|
||||||
content=picked,
|
content=picked,
|
||||||
metadata={
|
metadata={
|
||||||
"document_ids": [c.metadata["document_id"] for c in chunks[: len(picked)]],
|
"document_ids": [
|
||||||
|
c.metadata.get("document_id") or (c.chunk_metadata.document_id if c.chunk_metadata else None)
|
||||||
|
for c in chunks[: len(picked)]
|
||||||
|
],
|
||||||
"chunks": [c.content for c in chunks[: len(picked)]],
|
"chunks": [c.content for c in chunks[: len(picked)]],
|
||||||
"scores": scores[: len(picked)],
|
"scores": scores[: len(picked)],
|
||||||
"vector_db_ids": [c.metadata["vector_db_id"] for c in chunks[: len(picked)]],
|
"vector_db_ids": [c.metadata["vector_db_id"] for c in chunks[: len(picked)]],
|
||||||
|
|
|
@ -113,6 +113,25 @@ async def test_insert_chunks_missing_db_raises(vector_io_adapter):
|
||||||
await vector_io_adapter.insert_chunks("db_not_exist", [])
|
await vector_io_adapter.insert_chunks("db_not_exist", [])
|
||||||
|
|
||||||
|
|
||||||
|
async def test_insert_chunks_with_missing_document_id(vector_io_adapter):
|
||||||
|
"""Ensure no KeyError when document_id is missing or in different places."""
|
||||||
|
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
|
||||||
|
|
||||||
|
fake_index = AsyncMock()
|
||||||
|
vector_io_adapter.cache["db1"] = fake_index
|
||||||
|
|
||||||
|
# Various document_id scenarios that shouldn't crash
|
||||||
|
chunks = [
|
||||||
|
Chunk(content="has doc_id in metadata", metadata={"document_id": "doc-1"}),
|
||||||
|
Chunk(content="no doc_id anywhere", metadata={"source": "test"}),
|
||||||
|
Chunk(content="doc_id in chunk_metadata", chunk_metadata=ChunkMetadata(document_id="doc-3")),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Should work without KeyError
|
||||||
|
await vector_io_adapter.insert_chunks("db1", chunks)
|
||||||
|
fake_index.insert_chunks.assert_awaited_once()
|
||||||
|
|
||||||
|
|
||||||
async def test_query_chunks_calls_underlying_index_and_returns(vector_io_adapter):
|
async def test_query_chunks_calls_underlying_index_and_returns(vector_io_adapter):
|
||||||
expected = QueryChunksResponse(chunks=[Chunk(content="c1")], scores=[0.1])
|
expected = QueryChunksResponse(chunks=[Chunk(content="c1")], scores=[0.1])
|
||||||
fake_index = AsyncMock(query_chunks=AsyncMock(return_value=expected))
|
fake_index = AsyncMock(query_chunks=AsyncMock(return_value=expected))
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue