mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-12 05:54:38 +00:00
chore!: BREAKING CHANGE removing VectorDB APIs (#3774)
# What does this PR do? Removes VectorDBs from API surface and our tests. Moves tests to Vector Stores. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
parent
06e4cd8e02
commit
a165b8b5bb
111 changed files with 60412 additions and 2765 deletions
|
@ -96,7 +96,6 @@ class Api(Enum, metaclass=DynamicApiMeta):
|
|||
:cvar telemetry: Observability and system monitoring
|
||||
:cvar models: Model metadata and management
|
||||
:cvar shields: Safety shield implementations
|
||||
:cvar vector_dbs: Vector database management
|
||||
:cvar datasets: Dataset creation and management
|
||||
:cvar scoring_functions: Scoring function definitions
|
||||
:cvar benchmarks: Benchmark suite management
|
||||
|
@ -122,7 +121,6 @@ class Api(Enum, metaclass=DynamicApiMeta):
|
|||
|
||||
models = "models"
|
||||
shields = "shields"
|
||||
vector_dbs = "vector_dbs"
|
||||
datasets = "datasets"
|
||||
scoring_functions = "scoring_functions"
|
||||
benchmarks = "benchmarks"
|
||||
|
|
|
@ -4,14 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Literal, Protocol, runtime_checkable
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -61,57 +59,3 @@ class ListVectorDBsResponse(BaseModel):
|
|||
"""
|
||||
|
||||
data: list[VectorDB]
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class VectorDBs(Protocol):
|
||||
@webmethod(route="/vector-dbs", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_vector_dbs(self) -> ListVectorDBsResponse:
|
||||
"""List all vector databases.
|
||||
|
||||
:returns: A ListVectorDBsResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
) -> VectorDB:
|
||||
"""Get a vector database by its identifier.
|
||||
|
||||
:param vector_db_id: The identifier of the vector database to get.
|
||||
:returns: A VectorDB.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/vector-dbs", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def register_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
vector_db_name: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorDB:
|
||||
"""Register a vector database.
|
||||
|
||||
:param vector_db_id: The identifier of the vector database to register.
|
||||
:param embedding_model: The embedding model to use.
|
||||
:param embedding_dimension: The dimension of the embedding model.
|
||||
:param provider_id: The identifier of the provider.
|
||||
:param vector_db_name: The name of the vector database.
|
||||
:param provider_vector_db_id: The identifier of the vector database in the provider.
|
||||
:returns: A VectorDB.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/vector-dbs/{vector_db_id:path}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
"""Unregister a vector database.
|
||||
|
||||
:param vector_db_id: The identifier of the vector database to unregister.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -47,10 +47,6 @@ def builtin_automatically_routed_apis() -> list[AutoRoutedApiInfo]:
|
|||
routing_table_api=Api.shields,
|
||||
router_api=Api.safety,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.vector_dbs,
|
||||
router_api=Api.vector_io,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.datasets,
|
||||
router_api=Api.datasetio,
|
||||
|
|
|
@ -28,7 +28,6 @@ from llama_stack.apis.scoring_functions import ScoringFunctions
|
|||
from llama_stack.apis.shields import Shields
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDBs
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.core.client import get_client_impl
|
||||
|
@ -55,7 +54,6 @@ from llama_stack.providers.datatypes import (
|
|||
ScoringFunctionsProtocolPrivate,
|
||||
ShieldsProtocolPrivate,
|
||||
ToolGroupsProtocolPrivate,
|
||||
VectorDBsProtocolPrivate,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
|
@ -81,7 +79,6 @@ def api_protocol_map(external_apis: dict[Api, ExternalApiSpec] | None = None) ->
|
|||
Api.inspect: Inspect,
|
||||
Api.batches: Batches,
|
||||
Api.vector_io: VectorIO,
|
||||
Api.vector_dbs: VectorDBs,
|
||||
Api.models: Models,
|
||||
Api.safety: Safety,
|
||||
Api.shields: Shields,
|
||||
|
@ -125,7 +122,6 @@ def additional_protocols_map() -> dict[Api, Any]:
|
|||
return {
|
||||
Api.inference: (ModelsProtocolPrivate, Models, Api.models),
|
||||
Api.tool_groups: (ToolGroupsProtocolPrivate, ToolGroups, Api.tool_groups),
|
||||
Api.vector_io: (VectorDBsProtocolPrivate, VectorDBs, Api.vector_dbs),
|
||||
Api.safety: (ShieldsProtocolPrivate, Shields, Api.shields),
|
||||
Api.datasetio: (DatasetsProtocolPrivate, Datasets, Api.datasets),
|
||||
Api.scoring: (
|
||||
|
|
|
@ -26,10 +26,8 @@ async def get_routing_table_impl(
|
|||
from ..routing_tables.scoring_functions import ScoringFunctionsRoutingTable
|
||||
from ..routing_tables.shields import ShieldsRoutingTable
|
||||
from ..routing_tables.toolgroups import ToolGroupsRoutingTable
|
||||
from ..routing_tables.vector_dbs import VectorDBsRoutingTable
|
||||
|
||||
api_to_tables = {
|
||||
"vector_dbs": VectorDBsRoutingTable,
|
||||
"models": ModelsRoutingTable,
|
||||
"shields": ShieldsRoutingTable,
|
||||
"datasets": DatasetsRoutingTable,
|
||||
|
|
|
@ -134,15 +134,12 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
from .scoring_functions import ScoringFunctionsRoutingTable
|
||||
from .shields import ShieldsRoutingTable
|
||||
from .toolgroups import ToolGroupsRoutingTable
|
||||
from .vector_dbs import VectorDBsRoutingTable
|
||||
|
||||
def apiname_object():
|
||||
if isinstance(self, ModelsRoutingTable):
|
||||
return ("Inference", "model")
|
||||
elif isinstance(self, ShieldsRoutingTable):
|
||||
return ("Safety", "shield")
|
||||
elif isinstance(self, VectorDBsRoutingTable):
|
||||
return ("VectorIO", "vector_db")
|
||||
elif isinstance(self, DatasetsRoutingTable):
|
||||
return ("DatasetIO", "dataset")
|
||||
elif isinstance(self, ScoringFunctionsRoutingTable):
|
||||
|
|
|
@ -1,309 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError, VectorStoreNotFoundError
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.apis.resource import ResourceType
|
||||
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
|
||||
from llama_stack.apis.vector_io.vector_io import (
|
||||
SearchRankingOptions,
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileDeleteResponse,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreFileStatus,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.core.datatypes import (
|
||||
VectorDBWithOwner,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from .common import CommonRoutingTableImpl, lookup_model
|
||||
|
||||
logger = get_logger(name=__name__, category="core::routing_tables")
|
||||
|
||||
|
||||
class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
||||
async def list_vector_dbs(self) -> ListVectorDBsResponse:
|
||||
return ListVectorDBsResponse(data=await self.get_all_with_type("vector_db"))
|
||||
|
||||
async def get_vector_db(self, vector_db_id: str) -> VectorDB:
|
||||
vector_db = await self.get_object_by_identifier("vector_db", vector_db_id)
|
||||
if vector_db is None:
|
||||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
return vector_db
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
vector_db_name: str | None = None,
|
||||
) -> VectorDB:
|
||||
if provider_id is None:
|
||||
if len(self.impls_by_provider_id) > 0:
|
||||
provider_id = list(self.impls_by_provider_id.keys())[0]
|
||||
if len(self.impls_by_provider_id) > 1:
|
||||
logger.warning(
|
||||
f"No provider specified and multiple providers available. Arbitrarily selected the first provider {provider_id}."
|
||||
)
|
||||
else:
|
||||
raise ValueError("No provider available. Please configure a vector_io provider.")
|
||||
model = await lookup_model(self, embedding_model)
|
||||
if model is None:
|
||||
raise ModelNotFoundError(embedding_model)
|
||||
if model.model_type != ModelType.embedding:
|
||||
raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding)
|
||||
if "embedding_dimension" not in model.metadata:
|
||||
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
|
||||
|
||||
provider = self.impls_by_provider_id[provider_id]
|
||||
logger.warning(
|
||||
"VectorDB is being deprecated in future releases in favor of VectorStore. Please migrate your usage accordingly."
|
||||
)
|
||||
vector_store = await provider.openai_create_vector_store(
|
||||
name=vector_db_name or vector_db_id,
|
||||
embedding_model=embedding_model,
|
||||
embedding_dimension=model.metadata["embedding_dimension"],
|
||||
provider_id=provider_id,
|
||||
provider_vector_db_id=provider_vector_db_id,
|
||||
)
|
||||
|
||||
vector_store_id = vector_store.id
|
||||
actual_provider_vector_db_id = provider_vector_db_id or vector_store_id
|
||||
logger.warning(
|
||||
f"Ignoring vector_db_id {vector_db_id} and using vector_store_id {vector_store_id} instead. Setting VectorDB {vector_db_id} to VectorDB.vector_db_name"
|
||||
)
|
||||
|
||||
vector_db_data = {
|
||||
"identifier": vector_store_id,
|
||||
"type": ResourceType.vector_db.value,
|
||||
"provider_id": provider_id,
|
||||
"provider_resource_id": actual_provider_vector_db_id,
|
||||
"embedding_model": embedding_model,
|
||||
"embedding_dimension": model.metadata["embedding_dimension"],
|
||||
"vector_db_name": vector_store.name,
|
||||
}
|
||||
vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data)
|
||||
await self.register_object(vector_db)
|
||||
return vector_db
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
existing_vector_db = await self.get_vector_db(vector_db_id)
|
||||
await self.unregister_object(existing_vector_db)
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store(vector_store_id)
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_update_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
name=name,
|
||||
expires_after=expires_after,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
await self.assert_action_allowed("delete", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
result = await provider.openai_delete_vector_store(vector_store_id)
|
||||
await self.unregister_vector_db(vector_store_id)
|
||||
return result
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
query=query,
|
||||
filters=filters,
|
||||
max_num_results=max_num_results,
|
||||
ranking_options=ranking_options,
|
||||
rewrite_query=rewrite_query,
|
||||
search_mode=search_mode,
|
||||
)
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_attach_file_to_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
)
|
||||
|
||||
async def openai_list_files_in_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: VectorStoreFileStatus | None = None,
|
||||
) -> list[VectorStoreFileObject]:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_list_files_in_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
limit=limit,
|
||||
order=order,
|
||||
after=after,
|
||||
before=before,
|
||||
filter=filter,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store_file_contents(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_contents(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
)
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any],
|
||||
) -> VectorStoreFileObject:
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_update_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
attributes=attributes,
|
||||
)
|
||||
|
||||
async def openai_delete_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileDeleteResponse:
|
||||
await self.assert_action_allowed("delete", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_delete_vector_store_file(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
)
|
||||
|
||||
async def openai_create_vector_store_file_batch(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_ids: list[str],
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: Any | None = None,
|
||||
):
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_create_vector_store_file_batch(
|
||||
vector_store_id=vector_store_id,
|
||||
file_ids=file_ids,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
):
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
||||
async def openai_list_files_in_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: str | None = None,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
):
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
after=after,
|
||||
before=before,
|
||||
filter=filter,
|
||||
limit=limit,
|
||||
order=order,
|
||||
)
|
||||
|
||||
async def openai_cancel_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
):
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_cancel_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
|
@ -33,7 +33,6 @@ from llama_stack.apis.shields import Shields
|
|||
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDBs
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl
|
||||
from llama_stack.core.datatypes import Provider, StackRunConfig
|
||||
|
@ -53,7 +52,6 @@ logger = get_logger(name=__name__, category="core")
|
|||
|
||||
class LlamaStack(
|
||||
Providers,
|
||||
VectorDBs,
|
||||
Inference,
|
||||
Agents,
|
||||
Safety,
|
||||
|
@ -83,7 +81,6 @@ class LlamaStack(
|
|||
RESOURCES = [
|
||||
("models", Api.models, "register_model", "list_models"),
|
||||
("shields", Api.shields, "register_shield", "list_shields"),
|
||||
("vector_dbs", Api.vector_dbs, "register_vector_db", "list_vector_dbs"),
|
||||
("datasets", Api.datasets, "register_dataset", "list_datasets"),
|
||||
(
|
||||
"scoring_fns",
|
||||
|
|
|
@ -11,19 +11,17 @@ from llama_stack.core.ui.page.distribution.eval_tasks import benchmarks
|
|||
from llama_stack.core.ui.page.distribution.models import models
|
||||
from llama_stack.core.ui.page.distribution.scoring_functions import scoring_functions
|
||||
from llama_stack.core.ui.page.distribution.shields import shields
|
||||
from llama_stack.core.ui.page.distribution.vector_dbs import vector_dbs
|
||||
|
||||
|
||||
def resources_page():
|
||||
options = [
|
||||
"Models",
|
||||
"Vector Databases",
|
||||
"Shields",
|
||||
"Scoring Functions",
|
||||
"Datasets",
|
||||
"Benchmarks",
|
||||
]
|
||||
icons = ["magic", "memory", "shield", "file-bar-graph", "database", "list-task"]
|
||||
icons = ["magic", "shield", "file-bar-graph", "database", "list-task"]
|
||||
selected_resource = option_menu(
|
||||
None,
|
||||
options,
|
||||
|
@ -37,8 +35,6 @@ def resources_page():
|
|||
)
|
||||
if selected_resource == "Benchmarks":
|
||||
benchmarks()
|
||||
elif selected_resource == "Vector Databases":
|
||||
vector_dbs()
|
||||
elif selected_resource == "Datasets":
|
||||
datasets()
|
||||
elif selected_resource == "Models":
|
||||
|
|
|
@ -1,20 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.core.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def vector_dbs():
|
||||
st.header("Vector Databases")
|
||||
vector_dbs_info = {v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()}
|
||||
|
||||
if len(vector_dbs_info) > 0:
|
||||
selected_vector_db = st.selectbox("Select a vector database", list(vector_dbs_info.keys()))
|
||||
st.json(vector_dbs_info[selected_vector_db])
|
||||
else:
|
||||
st.info("No vector databases found")
|
|
@ -1,301 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
|
||||
import streamlit as st
|
||||
from llama_stack_client import Agent, AgentEventLogger, RAGDocument
|
||||
|
||||
from llama_stack.apis.common.content_types import ToolCallDelta
|
||||
from llama_stack.core.ui.modules.api import llama_stack_api
|
||||
from llama_stack.core.ui.modules.utils import data_url_from_file
|
||||
|
||||
|
||||
def rag_chat_page():
|
||||
st.title("🦙 RAG")
|
||||
|
||||
def reset_agent_and_chat():
|
||||
st.session_state.clear()
|
||||
st.cache_resource.clear()
|
||||
|
||||
def should_disable_input():
|
||||
return "displayed_messages" in st.session_state and len(st.session_state.displayed_messages) > 0
|
||||
|
||||
def log_message(message):
|
||||
with st.chat_message(message["role"]):
|
||||
if "tool_output" in message and message["tool_output"]:
|
||||
with st.expander(label="Tool Output", expanded=False, icon="🛠"):
|
||||
st.write(message["tool_output"])
|
||||
st.markdown(message["content"])
|
||||
|
||||
with st.sidebar:
|
||||
# File/Directory Upload Section
|
||||
st.subheader("Upload Documents", divider=True)
|
||||
uploaded_files = st.file_uploader(
|
||||
"Upload file(s) or directory",
|
||||
accept_multiple_files=True,
|
||||
type=["txt", "pdf", "doc", "docx"], # Add more file types as needed
|
||||
)
|
||||
# Process uploaded files
|
||||
if uploaded_files:
|
||||
st.success(f"Successfully uploaded {len(uploaded_files)} files")
|
||||
# Add memory bank name input field
|
||||
vector_db_name = st.text_input(
|
||||
"Document Collection Name",
|
||||
value="rag_vector_db",
|
||||
help="Enter a unique identifier for this document collection",
|
||||
)
|
||||
if st.button("Create Document Collection"):
|
||||
documents = [
|
||||
RAGDocument(
|
||||
document_id=uploaded_file.name,
|
||||
content=data_url_from_file(uploaded_file),
|
||||
)
|
||||
for i, uploaded_file in enumerate(uploaded_files)
|
||||
]
|
||||
|
||||
providers = llama_stack_api.client.providers.list()
|
||||
vector_io_provider = None
|
||||
|
||||
for x in providers:
|
||||
if x.api == "vector_io":
|
||||
vector_io_provider = x.provider_id
|
||||
|
||||
llama_stack_api.client.vector_dbs.register(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
embedding_dimension=384,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
provider_id=vector_io_provider,
|
||||
)
|
||||
|
||||
# insert documents using the custom vector db name
|
||||
llama_stack_api.client.tool_runtime.rag_tool.insert(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
documents=documents,
|
||||
chunk_size_in_tokens=512,
|
||||
)
|
||||
st.success("Vector database created successfully!")
|
||||
|
||||
st.subheader("RAG Parameters", divider=True)
|
||||
|
||||
rag_mode = st.radio(
|
||||
"RAG mode",
|
||||
["Direct", "Agent-based"],
|
||||
captions=[
|
||||
"RAG is performed by directly retrieving the information and augmenting the user query",
|
||||
"RAG is performed by an agent activating a dedicated knowledge search tool.",
|
||||
],
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
|
||||
# select memory banks
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list()
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
selected_vector_dbs = st.multiselect(
|
||||
label="Select Document Collections to use in RAG queries",
|
||||
options=vector_dbs,
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
|
||||
st.subheader("Inference Parameters", divider=True)
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
selected_model = st.selectbox(
|
||||
label="Choose a model",
|
||||
options=available_models,
|
||||
index=0,
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
system_prompt = st.text_area(
|
||||
"System Prompt",
|
||||
value="You are a helpful assistant. ",
|
||||
help="Initial instructions given to the AI to set its behavior and context",
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
temperature = st.slider(
|
||||
"Temperature",
|
||||
min_value=0.0,
|
||||
max_value=1.0,
|
||||
value=0.0,
|
||||
step=0.1,
|
||||
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
|
||||
top_p = st.slider(
|
||||
"Top P",
|
||||
min_value=0.0,
|
||||
max_value=1.0,
|
||||
value=0.95,
|
||||
step=0.1,
|
||||
on_change=reset_agent_and_chat,
|
||||
disabled=should_disable_input(),
|
||||
)
|
||||
|
||||
# Add clear chat button to sidebar
|
||||
if st.button("Clear Chat", use_container_width=True):
|
||||
reset_agent_and_chat()
|
||||
st.rerun()
|
||||
|
||||
# Chat Interface
|
||||
if "messages" not in st.session_state:
|
||||
st.session_state.messages = []
|
||||
if "displayed_messages" not in st.session_state:
|
||||
st.session_state.displayed_messages = []
|
||||
|
||||
# Display chat history
|
||||
for message in st.session_state.displayed_messages:
|
||||
log_message(message)
|
||||
|
||||
if temperature > 0.0:
|
||||
strategy = {
|
||||
"type": "top_p",
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
}
|
||||
else:
|
||||
strategy = {"type": "greedy"}
|
||||
|
||||
@st.cache_resource
|
||||
def create_agent():
|
||||
return Agent(
|
||||
llama_stack_api.client,
|
||||
model=selected_model,
|
||||
instructions=system_prompt,
|
||||
sampling_params={
|
||||
"strategy": strategy,
|
||||
},
|
||||
tools=[
|
||||
dict(
|
||||
name="builtin::rag/knowledge_search",
|
||||
args={
|
||||
"vector_db_ids": list(selected_vector_dbs),
|
||||
},
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
if rag_mode == "Agent-based":
|
||||
agent = create_agent()
|
||||
if "agent_session_id" not in st.session_state:
|
||||
st.session_state["agent_session_id"] = agent.create_session(session_name=f"rag_demo_{uuid.uuid4()}")
|
||||
|
||||
session_id = st.session_state["agent_session_id"]
|
||||
|
||||
def agent_process_prompt(prompt):
|
||||
# Add user message to chat history
|
||||
st.session_state.messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# Send the prompt to the agent
|
||||
response = agent.create_turn(
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
}
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Display assistant response
|
||||
with st.chat_message("assistant"):
|
||||
retrieval_message_placeholder = st.expander(label="Tool Output", expanded=False, icon="🛠")
|
||||
message_placeholder = st.empty()
|
||||
full_response = ""
|
||||
retrieval_response = ""
|
||||
for log in AgentEventLogger().log(response):
|
||||
log.print()
|
||||
if log.role == "tool_execution":
|
||||
retrieval_response += log.content.replace("====", "").strip()
|
||||
retrieval_message_placeholder.write(retrieval_response)
|
||||
else:
|
||||
full_response += log.content
|
||||
message_placeholder.markdown(full_response + "▌")
|
||||
message_placeholder.markdown(full_response)
|
||||
|
||||
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
||||
st.session_state.displayed_messages.append(
|
||||
{"role": "assistant", "content": full_response, "tool_output": retrieval_response}
|
||||
)
|
||||
|
||||
def direct_process_prompt(prompt):
|
||||
# Add the system prompt in the beginning of the conversation
|
||||
if len(st.session_state.messages) == 0:
|
||||
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
||||
|
||||
# Query the vector DB
|
||||
rag_response = llama_stack_api.client.tool_runtime.rag_tool.query(
|
||||
content=prompt, vector_db_ids=list(selected_vector_dbs)
|
||||
)
|
||||
prompt_context = rag_response.content
|
||||
|
||||
with st.chat_message("assistant"):
|
||||
with st.expander(label="Retrieval Output", expanded=False):
|
||||
st.write(prompt_context)
|
||||
|
||||
retrieval_message_placeholder = st.empty()
|
||||
message_placeholder = st.empty()
|
||||
full_response = ""
|
||||
retrieval_response = ""
|
||||
|
||||
# Construct the extended prompt
|
||||
extended_prompt = f"Please answer the following query using the context below.\n\nCONTEXT:\n{prompt_context}\n\nQUERY:\n{prompt}"
|
||||
|
||||
# Run inference directly
|
||||
st.session_state.messages.append({"role": "user", "content": extended_prompt})
|
||||
response = llama_stack_api.client.inference.chat_completion(
|
||||
messages=st.session_state.messages,
|
||||
model_id=selected_model,
|
||||
sampling_params={
|
||||
"strategy": strategy,
|
||||
},
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# Display assistant response
|
||||
for chunk in response:
|
||||
response_delta = chunk.event.delta
|
||||
if isinstance(response_delta, ToolCallDelta):
|
||||
retrieval_response += response_delta.tool_call.replace("====", "").strip()
|
||||
retrieval_message_placeholder.info(retrieval_response)
|
||||
else:
|
||||
full_response += chunk.event.delta.text
|
||||
message_placeholder.markdown(full_response + "▌")
|
||||
message_placeholder.markdown(full_response)
|
||||
|
||||
response_dict = {"role": "assistant", "content": full_response, "stop_reason": "end_of_message"}
|
||||
st.session_state.messages.append(response_dict)
|
||||
st.session_state.displayed_messages.append(response_dict)
|
||||
|
||||
# Chat input
|
||||
if prompt := st.chat_input("Ask a question about your documents"):
|
||||
# Add user message to chat history
|
||||
st.session_state.displayed_messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# Display user message
|
||||
with st.chat_message("user"):
|
||||
st.markdown(prompt)
|
||||
|
||||
# store the prompt to process it after page refresh
|
||||
st.session_state.prompt = prompt
|
||||
|
||||
# force page refresh to disable the settings widgets
|
||||
st.rerun()
|
||||
|
||||
if "prompt" in st.session_state and st.session_state.prompt is not None:
|
||||
if rag_mode == "Agent-based":
|
||||
agent_process_prompt(st.session_state.prompt)
|
||||
else: # rag_mode == "Direct"
|
||||
direct_process_prompt(st.session_state.prompt)
|
||||
st.session_state.prompt = None
|
||||
|
||||
|
||||
rag_chat_page()
|
|
@ -32,7 +32,6 @@ def available_providers() -> list[ProviderSpec]:
|
|||
Api.inference,
|
||||
Api.safety,
|
||||
Api.vector_io,
|
||||
Api.vector_dbs,
|
||||
Api.tool_runtime,
|
||||
Api.tool_groups,
|
||||
Api.conversations,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue