Add OpenAI-Compatible models, completions, chat/completions endpoints

This stubs in some OpenAI server-side compatibility with three new
endpoints:

/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions

This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .

The two "v1" instances in there isn't awesome, but the thinking is
that Llama Stack's API is v1 and then our OpenAI compatibility layer
is compatible with OpenAI V1. And, some OpenAI clients implicitly
assume the URL ends with "v1", so this gives maximum compatibility.

The openai models endpoint is implemented in the routing layer, and
just returns all the models Llama Stack knows about.

The chat endpoints are only actually implemented for the remote-vllm
provider right now, and it just proxies the completion and chat
completion requests to the backend vLLM.

The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API,
we'll add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses
to OpenAI responses.
This commit is contained in:
Ben Browning 2025-04-07 21:27:06 -04:00
parent e2299291c4
commit a193c9fc3f
12 changed files with 443 additions and 8 deletions

View file

@ -17,6 +17,9 @@ from typing import (
runtime_checkable,
)
from openai.types.chat import ChatCompletion as OpenAIChatCompletion
from openai.types.chat import ChatCompletionMessageParam as OpenAIChatCompletionMessageParam
from openai.types.completion import Completion as OpenAICompletion
from pydantic import BaseModel, Field, field_validator
from typing_extensions import Annotated
@ -564,3 +567,57 @@ class Inference(Protocol):
:returns: An array of embeddings, one for each content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id}
"""
...
@webmethod(route="/openai/v1/completions", method="POST")
async def openai_completion(
self,
model: str,
prompt: str,
best_of: Optional[int] = None,
echo: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAICompletion:
"""Generate an OpenAI-compatible completion for the given prompt using the specified model."""
...
@webmethod(route="/openai/v1/chat/completions", method="POST")
async def openai_chat_completion(
self,
model: str,
messages: List[OpenAIChatCompletionMessageParam],
frequency_penalty: Optional[float] = None,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
parallel_tool_calls: Optional[bool] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[Dict[str, str]] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAIChatCompletion:
"""Generate an OpenAI-compatible chat completion for the given messages using the specified model."""
...

View file

@ -7,6 +7,7 @@
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from openai.types.model import Model as OpenAIModel
from pydantic import BaseModel, ConfigDict, Field
from llama_stack.apis.resource import Resource, ResourceType
@ -56,12 +57,19 @@ class ListModelsResponse(BaseModel):
data: List[Model]
class OpenAIListModelsResponse(BaseModel):
data: List[OpenAIModel]
@runtime_checkable
@trace_protocol
class Models(Protocol):
@webmethod(route="/models", method="GET")
async def list_models(self) -> ListModelsResponse: ...
@webmethod(route="/openai/v1/models", method="GET")
async def openai_list_models(self) -> OpenAIListModelsResponse: ...
@webmethod(route="/models/{model_id:path}", method="GET")
async def get_model(
self,

View file

@ -7,6 +7,10 @@
import time
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
from openai.types.chat import ChatCompletion as OpenAIChatCompletion
from openai.types.chat import ChatCompletionMessageParam as OpenAIChatCompletionMessageParam
from openai.types.completion import Completion as OpenAICompletion
from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
@ -419,6 +423,122 @@ class InferenceRouter(Inference):
task_type=task_type,
)
async def openai_completion(
self,
model: str,
prompt: str,
best_of: Optional[int] = None,
echo: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAICompletion:
logger.debug(
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support completions")
params = dict(
model=model_obj.identifier,
prompt=prompt,
best_of=best_of,
echo=echo,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
logprobs=logprobs,
max_tokens=max_tokens,
n=n,
presence_penalty=presence_penalty,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
top_p=top_p,
user=user,
)
provider = self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.openai_completion(**params)
async def openai_chat_completion(
self,
model: str,
messages: List[OpenAIChatCompletionMessageParam],
frequency_penalty: Optional[float] = None,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
parallel_tool_calls: Optional[bool] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[Dict[str, str]] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAIChatCompletion:
logger.debug(
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
params = dict(
model=model_obj.identifier,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
provider = self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.openai_chat_completion(**params)
class SafetyRouter(Safety):
def __init__(

View file

@ -5,9 +5,11 @@
# the root directory of this source tree.
import logging
import time
import uuid
from typing import Any, Dict, List, Optional
from openai.types.model import Model as OpenAIModel
from pydantic import TypeAdapter
from llama_stack.apis.benchmarks import Benchmark, Benchmarks, ListBenchmarksResponse
@ -23,7 +25,7 @@ from llama_stack.apis.datasets import (
RowsDataSource,
URIDataSource,
)
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType, OpenAIListModelsResponse
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.scoring_functions import (
ListScoringFunctionsResponse,
@ -254,6 +256,19 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def list_models(self) -> ListModelsResponse:
return ListModelsResponse(data=await self.get_all_with_type("model"))
async def openai_list_models(self) -> OpenAIListModelsResponse:
models = await self.get_all_with_type("model")
openai_models = [
OpenAIModel(
id=model.identifier,
object="model",
created=int(time.time()),
owned_by="llama_stack",
)
for model in models
]
return OpenAIListModelsResponse(data=openai_models)
async def get_model(self, model_id: str) -> Model:
model = await self.get_object_by_identifier("model", model_id)
if model is None:

View file

@ -54,6 +54,10 @@ from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionUnsupportedMixin,
OpenAICompletionUnsupportedMixin,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
augment_content_with_response_format_prompt,
chat_completion_request_to_messages,
@ -79,6 +83,8 @@ def llama4_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama
class MetaReferenceInferenceImpl(
OpenAICompletionUnsupportedMixin,
OpenAIChatCompletionUnsupportedMixin,
SentenceTransformerEmbeddingMixin,
Inference,
ModelsProtocolPrivate,

View file

@ -5,7 +5,11 @@
# the root directory of this source tree.
import logging
from typing import AsyncGenerator, List, Optional, Union
from typing import Any, AsyncGenerator, Dict, List, Optional, Union
from openai.types.chat import ChatCompletion as OpenAIChatCompletion
from openai.types.chat import ChatCompletionMessageParam as OpenAIChatCompletionMessageParam
from openai.types.completion import Completion as OpenAICompletion
from llama_stack.apis.inference import (
CompletionResponse,
@ -74,3 +78,53 @@ class SentenceTransformersInferenceImpl(
tool_config: Optional[ToolConfig] = None,
) -> AsyncGenerator:
raise ValueError("Sentence transformers don't support chat completion")
async def openai_completion(
self,
model: str,
prompt: str,
best_of: Optional[int] = None,
echo: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAICompletion:
raise ValueError("Sentence transformers don't support openai completion")
async def openai_chat_completion(
self,
model: str,
messages: List[OpenAIChatCompletionMessageParam],
frequency_penalty: Optional[float] = None,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
parallel_tool_calls: Optional[bool] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[Dict[str, str]] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAIChatCompletion:
raise ValueError("Sentence transformers don't support openai chat completion")

View file

@ -45,8 +45,10 @@ from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionUnsupportedMixin,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
OpenAICompletionUnsupportedMixin,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -67,7 +69,12 @@ from .models import model_entries
logger = get_logger(name=__name__, category="inference")
class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
class OllamaInferenceAdapter(
OpenAICompletionUnsupportedMixin,
OpenAIChatCompletionUnsupportedMixin,
Inference,
ModelsProtocolPrivate,
):
def __init__(self, url: str) -> None:
self.register_helper = ModelRegistryHelper(model_entries)
self.url = url

View file

@ -5,13 +5,16 @@
# the root directory of this source tree.
import json
import logging
from typing import Any, AsyncGenerator, List, Optional, Union
from typing import Any, AsyncGenerator, Dict, List, Optional, Union
import httpx
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletion as OpenAIChatCompletion
from openai.types.chat import ChatCompletionMessageParam as OpenAIChatCompletionMessageParam
from openai.types.chat.chat_completion_chunk import (
ChatCompletionChunk as OpenAIChatCompletionChunk,
)
from openai.types.completion import Completion as OpenAICompletion
from llama_stack.apis.common.content_types import (
InterleavedContent,
@ -418,3 +421,107 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_completion(
self,
model: str,
prompt: str,
best_of: Optional[int] = None,
echo: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAICompletion:
model_obj = await self._get_model(model)
params = {
k: v
for k, v in {
"model": model_obj.provider_resource_id,
"prompt": prompt,
"best_of": best_of,
"echo": echo,
"frequency_penalty": frequency_penalty,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_tokens": max_tokens,
"n": n,
"presence_penalty": presence_penalty,
"seed": seed,
"stop": stop,
"stream": stream,
"stream_options": stream_options,
"temperature": temperature,
"top_p": top_p,
"user": user,
}.items()
if v is not None
}
return await self.client.completions.create(**params) # type: ignore
async def openai_chat_completion(
self,
model: str,
messages: List[OpenAIChatCompletionMessageParam],
frequency_penalty: Optional[float] = None,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
parallel_tool_calls: Optional[bool] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[Dict[str, str]] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAIChatCompletion:
model_obj = await self._get_model(model)
params = {
k: v
for k, v in {
"model": model_obj.provider_resource_id,
"messages": messages,
"frequency_penalty": frequency_penalty,
"function_call": function_call,
"functions": functions,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_completion_tokens": max_completion_tokens,
"max_tokens": max_tokens,
"n": n,
"parallel_tool_calls": parallel_tool_calls,
"presence_penalty": presence_penalty,
"response_format": response_format,
"seed": seed,
"stop": stop,
"stream": stream,
"stream_options": stream_options,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_logprobs": top_logprobs,
"top_p": top_p,
"user": user,
}.items()
if v is not None
}
return await self.client.chat.completions.create(**params) # type: ignore

View file

@ -6,9 +6,10 @@
import json
import logging
import warnings
from typing import AsyncGenerator, Dict, Iterable, List, Optional, Union
from typing import Any, AsyncGenerator, Dict, Iterable, List, Optional, Union
from openai import AsyncStream
from openai.types.chat import ChatCompletion as OpenAIChatCompletion
from openai.types.chat import (
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
)
@ -54,6 +55,7 @@ from openai.types.chat.chat_completion_content_part_image_param import (
from openai.types.chat.chat_completion_message_tool_call_param import (
Function as OpenAIFunction,
)
from openai.types.completion import Completion as OpenAICompletion
from pydantic import BaseModel
from llama_stack.apis.common.content_types import (
@ -1049,3 +1051,57 @@ async def convert_openai_chat_completion_stream(
stop_reason=stop_reason,
)
)
class OpenAICompletionUnsupportedMixin:
async def openai_completion(
self,
model: str,
prompt: str,
best_of: Optional[int] = None,
echo: Optional[bool] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAICompletion:
raise ValueError(f"{self.__class__.__name__} doesn't support openai completion")
class OpenAIChatCompletionUnsupportedMixin:
async def openai_chat_completion(
self,
model: str,
messages: List[OpenAIChatCompletionMessage],
frequency_penalty: Optional[float] = None,
function_call: Optional[Union[str, Dict[str, Any]]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
parallel_tool_calls: Optional[bool] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[Dict[str, str]] = None,
seed: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
stream: Optional[bool] = None,
stream_options: Optional[Dict[str, Any]] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> OpenAIChatCompletion:
raise ValueError(f"{self.__class__.__name__} doesn't support openai chat completion")

View file

@ -28,6 +28,7 @@ dependencies = [
"jinja2>=3.1.6",
"jsonschema",
"llama-stack-client>=0.2.1",
"openai>=1.66",
"prompt-toolkit",
"python-dotenv",
"pydantic>=2",

View file

@ -19,6 +19,7 @@ httpx==0.28.1
huggingface-hub==0.29.0
idna==3.10
jinja2==3.1.6
jiter==0.8.2
jsonschema==4.23.0
jsonschema-specifications==2024.10.1
llama-stack-client==0.2.1
@ -27,6 +28,7 @@ markdown-it-py==3.0.0
markupsafe==3.0.2
mdurl==0.1.2
numpy==2.2.3
openai==1.71.0
packaging==24.2
pandas==2.2.3
pillow==11.1.0

8
uv.lock generated
View file

@ -1384,6 +1384,7 @@ dependencies = [
{ name = "jinja2" },
{ name = "jsonschema" },
{ name = "llama-stack-client" },
{ name = "openai" },
{ name = "pillow" },
{ name = "prompt-toolkit" },
{ name = "pydantic" },
@ -1485,6 +1486,7 @@ requires-dist = [
{ name = "mcp", marker = "extra == 'test'" },
{ name = "myst-parser", marker = "extra == 'docs'" },
{ name = "nbval", marker = "extra == 'dev'" },
{ name = "openai", specifier = ">=1.66" },
{ name = "openai", marker = "extra == 'test'" },
{ name = "openai", marker = "extra == 'unit'" },
{ name = "opentelemetry-exporter-otlp-proto-http", marker = "extra == 'test'" },
@ -2016,7 +2018,7 @@ wheels = [
[[package]]
name = "openai"
version = "1.63.2"
version = "1.71.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "anyio" },
@ -2028,9 +2030,9 @@ dependencies = [
{ name = "tqdm" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/e6/1c/11b520deb71f9ea54ced3c52cd6a5f7131215deba63ad07f23982e328141/openai-1.63.2.tar.gz", hash = "sha256:aeabeec984a7d2957b4928ceaa339e2ead19c61cfcf35ae62b7c363368d26360", size = 356902 }
sdist = { url = "https://files.pythonhosted.org/packages/d9/19/b8f0347090a649dce55a008ec54ac6abb50553a06508cdb5e7abb2813e99/openai-1.71.0.tar.gz", hash = "sha256:52b20bb990a1780f9b0b8ccebac93416343ebd3e4e714e3eff730336833ca207", size = 409926 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/15/64/db3462b358072387b8e93e6e6a38d3c741a17b4a84171ef01d6c85c63f25/openai-1.63.2-py3-none-any.whl", hash = "sha256:1f38b27b5a40814c2b7d8759ec78110df58c4a614c25f182809ca52b080ff4d4", size = 472282 },
{ url = "https://files.pythonhosted.org/packages/c4/f7/049e85faf6a000890e5ca0edca8e9183f8a43c9e7bba869cad871da0caba/openai-1.71.0-py3-none-any.whl", hash = "sha256:e1c643738f1fff1af52bce6ef06a7716c95d089281e7011777179614f32937aa", size = 598975 },
]
[[package]]