feat: Updating files/content response to return additional fields

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-08-06 16:55:14 -04:00
parent e12524af85
commit a19c16428f
143 changed files with 6907 additions and 15104 deletions

View file

@ -15,6 +15,9 @@ from llama_stack.apis.vector_io import QueryChunksResponse
pymilvus_mock = MagicMock()
pymilvus_mock.DataType = MagicMock()
pymilvus_mock.MilvusClient = MagicMock
pymilvus_mock.RRFRanker = MagicMock
pymilvus_mock.WeightedRanker = MagicMock
pymilvus_mock.AnnSearchRequest = MagicMock
# Apply the mock before importing MilvusIndex
with patch.dict("sys.modules", {"pymilvus": pymilvus_mock}):
@ -183,3 +186,141 @@ async def test_delete_collection(milvus_index, mock_milvus_client):
await milvus_index.delete()
mock_milvus_client.drop_collection.assert_called_once_with(collection_name=milvus_index.collection_name)
async def test_query_hybrid_search_rrf(
milvus_index, sample_chunks, sample_embeddings, embedding_dimension, mock_milvus_client
):
"""Test hybrid search with RRF reranker."""
mock_milvus_client.has_collection.return_value = True
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
# Mock hybrid search results
mock_milvus_client.hybrid_search.return_value = [
[
{
"id": 0,
"distance": 0.1,
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
},
{
"id": 1,
"distance": 0.2,
"entity": {"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}}},
},
]
]
# Test hybrid search with RRF reranker
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
query_string = "test query"
response = await milvus_index.query_hybrid(
embedding=query_embedding,
query_string=query_string,
k=2,
score_threshold=0.0,
reranker_type="rrf",
reranker_params={"impact_factor": 60.0},
)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) == 2
assert len(response.scores) == 2
# Verify hybrid search was called with correct parameters
mock_milvus_client.hybrid_search.assert_called_once()
call_args = mock_milvus_client.hybrid_search.call_args
# Check that the request contains both vector and BM25 search requests
reqs = call_args[1]["reqs"]
assert len(reqs) == 2
assert reqs[0].anns_field == "vector"
assert reqs[1].anns_field == "sparse"
ranker = call_args[1]["ranker"]
assert ranker is not None
async def test_query_hybrid_search_weighted(
milvus_index, sample_chunks, sample_embeddings, embedding_dimension, mock_milvus_client
):
"""Test hybrid search with weighted reranker."""
mock_milvus_client.has_collection.return_value = True
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
# Mock hybrid search results
mock_milvus_client.hybrid_search.return_value = [
[
{
"id": 0,
"distance": 0.1,
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
},
{
"id": 1,
"distance": 0.2,
"entity": {"chunk_content": {"content": "mock chunk 2", "metadata": {"document_id": "doc2"}}},
},
]
]
# Test hybrid search with weighted reranker
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
query_string = "test query"
response = await milvus_index.query_hybrid(
embedding=query_embedding,
query_string=query_string,
k=2,
score_threshold=0.0,
reranker_type="weighted",
reranker_params={"alpha": 0.7},
)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) == 2
assert len(response.scores) == 2
# Verify hybrid search was called with correct parameters
mock_milvus_client.hybrid_search.assert_called_once()
call_args = mock_milvus_client.hybrid_search.call_args
ranker = call_args[1]["ranker"]
assert ranker is not None
async def test_query_hybrid_search_default_rrf(
milvus_index, sample_chunks, sample_embeddings, embedding_dimension, mock_milvus_client
):
"""Test hybrid search with default RRF reranker (no reranker_type specified)."""
mock_milvus_client.has_collection.return_value = True
await milvus_index.add_chunks(sample_chunks, sample_embeddings)
# Mock hybrid search results
mock_milvus_client.hybrid_search.return_value = [
[
{
"id": 0,
"distance": 0.1,
"entity": {"chunk_content": {"content": "mock chunk 1", "metadata": {"document_id": "doc1"}}},
},
]
]
# Test hybrid search with default reranker (should be RRF)
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
query_string = "test query"
response = await milvus_index.query_hybrid(
embedding=query_embedding,
query_string=query_string,
k=1,
score_threshold=0.0,
reranker_type="unknown_type", # Should default to RRF
reranker_params=None, # Should use default impact_factor
)
assert isinstance(response, QueryChunksResponse)
assert len(response.chunks) == 1
# Verify hybrid search was called with RRF reranker
mock_milvus_client.hybrid_search.assert_called_once()
call_args = mock_milvus_client.hybrid_search.call_args
ranker = call_args[1]["ranker"]
assert ranker is not None

View file

@ -12,7 +12,7 @@ import numpy as np
import pytest
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse, VectorStoreContent
from llama_stack.providers.remote.vector_io.milvus.milvus import VECTOR_DBS_PREFIX
# This test is a unit test for the inline VectoerIO providers. This should only contain
@ -294,3 +294,35 @@ async def test_delete_openai_vector_store_file_from_storage(vector_io_adapter, t
assert loaded_file_info == {}
loaded_contents = await vector_io_adapter._load_openai_vector_store_file_contents(store_id, file_id)
assert loaded_contents == []
async def test_chunk_to_vector_store_content_with_new_fields(vector_io_adapter):
sample_chunk_metadata = ChunkMetadata(
chunk_id="chunk123",
document_id="doc456",
source="test_source",
created_timestamp=1625133600,
updated_timestamp=1625133600,
chunk_window="0-100",
chunk_tokenizer="test_tokenizer",
chunk_embedding_model="dummy_model",
chunk_embedding_dimension=384,
content_token_count=100,
metadata_token_count=100,
)
sample_chunk = Chunk(
content="hello world", metadata={"lang": "en"}, embedding=[0.5, 0.7, 0.9], chunk_metadata=sample_chunk_metadata
)
vsc_list: VectorStoreContent = vector_io_adapter._chunk_to_vector_store_content(sample_chunk)
assert isinstance(vsc_list, list)
assert len(vsc_list) > 0
vsc = vsc_list[0]
assert vsc.text == "hello world"
assert vsc.type == "text"
assert vsc.metadata == {"lang": "en"}
assert vsc.chunk_metadata == sample_chunk_metadata
assert vsc.embedding == [0.5, 0.7, 0.9]
assert vsc.created_timestamp == 1625133600