mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
reverting some formatting changes
This commit is contained in:
parent
59793ac63b
commit
a23ee35b24
1 changed files with 25 additions and 63 deletions
|
|
@ -26,7 +26,10 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseOutputMessageMCPCall,
|
||||
OpenAIResponseOutputMessageWebSearchToolCall,
|
||||
)
|
||||
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
|
|
@ -66,9 +69,7 @@ class ToolExecutor:
|
|||
) -> AsyncIterator[ToolExecutionResult]:
|
||||
tool_call_id = tool_call.id
|
||||
function = tool_call.function
|
||||
tool_kwargs = (
|
||||
json.loads(function.arguments) if function and function.arguments else {}
|
||||
)
|
||||
tool_kwargs = json.loads(function.arguments) if function and function.arguments else {}
|
||||
|
||||
if not function or not tool_call_id or not function.name:
|
||||
yield ToolExecutionResult(sequence_number=sequence_number)
|
||||
|
|
@ -76,12 +77,7 @@ class ToolExecutor:
|
|||
|
||||
# Emit progress events for tool execution start
|
||||
async for event_result in self._emit_progress_events(
|
||||
function.name,
|
||||
ctx,
|
||||
sequence_number,
|
||||
output_index,
|
||||
item_id,
|
||||
mcp_tool_to_server,
|
||||
function.name, ctx, sequence_number, output_index, item_id, mcp_tool_to_server
|
||||
):
|
||||
sequence_number = event_result.sequence_number
|
||||
yield event_result
|
||||
|
|
@ -97,10 +93,7 @@ class ToolExecutor:
|
|||
or (
|
||||
result
|
||||
and (
|
||||
(
|
||||
(error_code := getattr(result, "error_code", None))
|
||||
and error_code > 0
|
||||
)
|
||||
((error_code := getattr(result, "error_code", None)) and error_code > 0)
|
||||
or getattr(result, "error_message", None)
|
||||
)
|
||||
)
|
||||
|
|
@ -122,9 +115,7 @@ class ToolExecutor:
|
|||
final_output_message=output_message,
|
||||
final_input_message=input_message,
|
||||
citation_files=(
|
||||
metadata.get("citation_files")
|
||||
if result and (metadata := getattr(result, "metadata", None))
|
||||
else None
|
||||
metadata.get("citation_files") if result and (metadata := getattr(result, "metadata", None)) else None
|
||||
),
|
||||
)
|
||||
|
||||
|
|
@ -153,10 +144,7 @@ class ToolExecutor:
|
|||
return []
|
||||
|
||||
# Run all searches in parallel using gather
|
||||
search_tasks = [
|
||||
search_single_store(vid)
|
||||
for vid in response_file_search_tool.vector_store_ids
|
||||
]
|
||||
search_tasks = [search_single_store(vid) for vid in response_file_search_tool.vector_store_ids]
|
||||
all_results = await asyncio.gather(*search_tasks)
|
||||
|
||||
# Flatten results
|
||||
|
|
@ -175,9 +163,7 @@ class ToolExecutor:
|
|||
chunk_text = result_item.content[0].text if result_item.content else ""
|
||||
# Get file_id from attributes if result_item.file_id is empty
|
||||
file_id = result_item.file_id or (
|
||||
result_item.attributes.get("document_id")
|
||||
if result_item.attributes
|
||||
else None
|
||||
result_item.attributes.get("document_id") if result_item.attributes else None
|
||||
)
|
||||
metadata_text = f"document_id: {file_id}, score: {result_item.score}"
|
||||
if result_item.attributes:
|
||||
|
|
@ -189,9 +175,7 @@ class ToolExecutor:
|
|||
content_items.append(TextContentItem(text=text_content))
|
||||
unique_files.add(file_id)
|
||||
|
||||
content_items.append(
|
||||
TextContentItem(text="END of knowledge_search tool results.\n")
|
||||
)
|
||||
content_items.append(TextContentItem(text="END of knowledge_search tool results.\n"))
|
||||
|
||||
citation_instruction = ""
|
||||
if unique_files:
|
||||
|
|
@ -226,9 +210,7 @@ class ToolExecutor:
|
|||
content=content_items, # type: ignore[arg-type]
|
||||
metadata={
|
||||
"document_ids": [r.file_id for r in search_results],
|
||||
"chunks": [
|
||||
r.content[0].text if r.content else "" for r in search_results
|
||||
],
|
||||
"chunks": [r.content[0].text if r.content else "" for r in search_results],
|
||||
"scores": [r.score for r in search_results],
|
||||
"citation_files": citation_files,
|
||||
},
|
||||
|
|
@ -339,11 +321,7 @@ class ToolExecutor:
|
|||
elif function_name == "knowledge_search":
|
||||
response_file_search_tool = (
|
||||
next(
|
||||
(
|
||||
t
|
||||
for t in ctx.response_tools
|
||||
if isinstance(t, OpenAIResponseInputToolFileSearch)
|
||||
),
|
||||
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)),
|
||||
None,
|
||||
)
|
||||
if ctx.response_tools
|
||||
|
|
@ -389,39 +367,33 @@ class ToolExecutor:
|
|||
mcp_failed_event = OpenAIResponseObjectStreamResponseMcpCallFailed(
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
yield ToolExecutionResult(
|
||||
stream_event=mcp_failed_event, sequence_number=sequence_number
|
||||
)
|
||||
yield ToolExecutionResult(stream_event=mcp_failed_event, sequence_number=sequence_number)
|
||||
else:
|
||||
mcp_completed_event = (
|
||||
OpenAIResponseObjectStreamResponseMcpCallCompleted(
|
||||
mcp_completed_event = OpenAIResponseObjectStreamResponseMcpCallCompleted(
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
)
|
||||
yield ToolExecutionResult(
|
||||
stream_event=mcp_completed_event, sequence_number=sequence_number
|
||||
)
|
||||
elif function_name == "web_search":
|
||||
sequence_number += 1
|
||||
web_completion_event = (
|
||||
OpenAIResponseObjectStreamResponseWebSearchCallCompleted(
|
||||
web_completion_event = OpenAIResponseObjectStreamResponseWebSearchCallCompleted(
|
||||
item_id=item_id,
|
||||
output_index=output_index,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
)
|
||||
|
||||
yield ToolExecutionResult(
|
||||
stream_event=web_completion_event, sequence_number=sequence_number
|
||||
)
|
||||
elif function_name == "knowledge_search":
|
||||
sequence_number += 1
|
||||
file_completion_event = (
|
||||
OpenAIResponseObjectStreamResponseFileSearchCallCompleted(
|
||||
file_completion_event = OpenAIResponseObjectStreamResponseFileSearchCallCompleted(
|
||||
item_id=item_id,
|
||||
output_index=output_index,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
)
|
||||
|
||||
yield ToolExecutionResult(
|
||||
stream_event=file_completion_event, sequence_number=sequence_number
|
||||
)
|
||||
|
|
@ -454,11 +426,9 @@ class ToolExecutor:
|
|||
)
|
||||
if error_exc:
|
||||
message.error = str(error_exc)
|
||||
elif (
|
||||
result
|
||||
and (error_code := getattr(result, "error_code", None))
|
||||
and error_code > 0
|
||||
) or (result and getattr(result, "error_message", None)):
|
||||
elif (result and (error_code := getattr(result, "error_code", None)) and error_code > 0) or (
|
||||
result and getattr(result, "error_message", None)
|
||||
):
|
||||
ec = getattr(result, "error_code", "unknown")
|
||||
em = getattr(result, "error_message", "")
|
||||
message.error = f"Error (code {ec}): {em}"
|
||||
|
|
@ -478,11 +448,7 @@ class ToolExecutor:
|
|||
queries=[tool_kwargs.get("query", "")],
|
||||
status="completed",
|
||||
)
|
||||
if (
|
||||
result
|
||||
and (metadata := getattr(result, "metadata", None))
|
||||
and "document_ids" in metadata
|
||||
):
|
||||
if result and (metadata := getattr(result, "metadata", None)) and "document_ids" in metadata:
|
||||
message.results = []
|
||||
for i, doc_id in enumerate(metadata["document_ids"]):
|
||||
text = metadata["chunks"][i] if "chunks" in metadata else None
|
||||
|
|
@ -518,9 +484,7 @@ class ToolExecutor:
|
|||
url_value = f"data:image;base64,{item.image.data}"
|
||||
else:
|
||||
url_value = str(item.image.url) if item.image.url else ""
|
||||
part = OpenAIChatCompletionContentPartImageParam(
|
||||
image_url=OpenAIImageURL(url=url_value)
|
||||
)
|
||||
part = OpenAIChatCompletionContentPartImageParam(image_url=OpenAIImageURL(url=url_value))
|
||||
else:
|
||||
raise ValueError(f"Unknown result content type: {type(item)}")
|
||||
content_list.append(part)
|
||||
|
|
@ -532,8 +496,6 @@ class ToolExecutor:
|
|||
input_message = OpenAIToolMessageParam(content=msg_content, tool_call_id=tool_call_id) # type: ignore[arg-type]
|
||||
else:
|
||||
text = str(error_exc) if error_exc else "Tool execution failed"
|
||||
input_message = OpenAIToolMessageParam(
|
||||
content=text, tool_call_id=tool_call_id
|
||||
)
|
||||
input_message = OpenAIToolMessageParam(content=text, tool_call_id=tool_call_id)
|
||||
|
||||
return message, input_message
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue