mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
Revert parts of 0d2eb3bd25
This commit is contained in:
parent
059e50b389
commit
a2465f3f9c
4 changed files with 75 additions and 43 deletions
|
@ -7,11 +7,11 @@
|
|||
from .config import SafetyConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: SafetyConfig, deps):
|
||||
async def get_provider_impl(config: SafetyConfig, _deps):
|
||||
from .safety import MetaReferenceSafetyImpl
|
||||
|
||||
assert isinstance(config, SafetyConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = MetaReferenceSafetyImpl(config, deps)
|
||||
impl = MetaReferenceSafetyImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -7,10 +7,8 @@
|
|||
from llama_models.sku_list import resolve_model
|
||||
|
||||
from llama_stack.distribution.utils.model_utils import model_local_dir
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.safety.shields.base import (
|
||||
OnViolationAction,
|
||||
|
@ -36,11 +34,20 @@ def resolve_and_get_path(model_name: str) -> str:
|
|||
|
||||
|
||||
class MetaReferenceSafetyImpl(Safety):
|
||||
def __init__(self, config: SafetyConfig, deps) -> None:
|
||||
def __init__(self, config: SafetyConfig) -> None:
|
||||
self.config = config
|
||||
self.inference_api = deps[Api.inference]
|
||||
|
||||
async def initialize(self) -> None:
|
||||
shield_cfg = self.config.llama_guard_shield
|
||||
if shield_cfg is not None:
|
||||
model_dir = resolve_and_get_path(shield_cfg.model)
|
||||
_ = LlamaGuardShield.instance(
|
||||
model_dir=model_dir,
|
||||
excluded_categories=shield_cfg.excluded_categories,
|
||||
disable_input_check=shield_cfg.disable_input_check,
|
||||
disable_output_check=shield_cfg.disable_output_check,
|
||||
)
|
||||
|
||||
shield_cfg = self.config.prompt_guard_shield
|
||||
if shield_cfg is not None:
|
||||
model_dir = resolve_and_get_path(shield_cfg.model)
|
||||
|
@ -84,18 +91,11 @@ class MetaReferenceSafetyImpl(Safety):
|
|||
def get_shield_impl(self, typ: MetaReferenceShieldType) -> ShieldBase:
|
||||
cfg = self.config
|
||||
if typ == MetaReferenceShieldType.llama_guard:
|
||||
cfg = cfg.llama_guard_shield
|
||||
assert (
|
||||
cfg is not None
|
||||
cfg.llama_guard_shield is not None
|
||||
), "Cannot use LlamaGuardShield since not present in config"
|
||||
|
||||
return LlamaGuardShield(
|
||||
model=cfg.model,
|
||||
inference_api=self.inference_api,
|
||||
excluded_categories=cfg.excluded_categories,
|
||||
disable_input_check=cfg.disable_input_check,
|
||||
disable_output_check=cfg.disable_output_check,
|
||||
)
|
||||
model_dir = resolve_and_get_path(cfg.llama_guard_shield.model)
|
||||
return LlamaGuardShield.instance(model_dir=model_dir)
|
||||
elif typ == MetaReferenceShieldType.jailbreak_shield:
|
||||
assert (
|
||||
cfg.prompt_guard_shield is not None
|
||||
|
|
|
@ -9,8 +9,9 @@ import re
|
|||
from string import Template
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
from llama_models.llama3.api.datatypes import Message, Role
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
from .base import CANNED_RESPONSE_TEXT, OnViolationAction, ShieldBase, ShieldResponse
|
||||
|
||||
|
@ -99,17 +100,39 @@ PROMPT_TEMPLATE = Template(
|
|||
|
||||
|
||||
class LlamaGuardShield(ShieldBase):
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
inference_api: Inference,
|
||||
@staticmethod
|
||||
def instance(
|
||||
on_violation_action=OnViolationAction.RAISE,
|
||||
model_dir: str = None,
|
||||
excluded_categories: List[str] = None,
|
||||
disable_input_check: bool = False,
|
||||
disable_output_check: bool = False,
|
||||
) -> "LlamaGuardShield":
|
||||
global _INSTANCE
|
||||
if _INSTANCE is None:
|
||||
_INSTANCE = LlamaGuardShield(
|
||||
on_violation_action,
|
||||
model_dir,
|
||||
excluded_categories,
|
||||
disable_input_check,
|
||||
disable_output_check,
|
||||
)
|
||||
return _INSTANCE
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
|
||||
model_dir: str = None,
|
||||
excluded_categories: List[str] = None,
|
||||
disable_input_check: bool = False,
|
||||
disable_output_check: bool = False,
|
||||
):
|
||||
super().__init__(on_violation_action)
|
||||
|
||||
dtype = torch.bfloat16
|
||||
|
||||
assert model_dir is not None, "Llama Guard model_dir is None"
|
||||
|
||||
if excluded_categories is None:
|
||||
excluded_categories = []
|
||||
|
||||
|
@ -117,12 +140,18 @@ class LlamaGuardShield(ShieldBase):
|
|||
x in SAFETY_CATEGORIES_TO_CODE_MAP.values() for x in excluded_categories
|
||||
), "Invalid categories in excluded categories. Expected format is ['S1', 'S2', ..]"
|
||||
|
||||
self.model = model
|
||||
self.inference_api = inference_api
|
||||
self.device = "cuda"
|
||||
self.excluded_categories = excluded_categories
|
||||
self.disable_input_check = disable_input_check
|
||||
self.disable_output_check = disable_output_check
|
||||
|
||||
# load model
|
||||
torch_dtype = torch.bfloat16
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_dir, torch_dtype=torch_dtype, device_map=self.device
|
||||
)
|
||||
|
||||
def check_unsafe_response(self, response: str) -> Optional[str]:
|
||||
match = re.match(r"^unsafe\n(.*)$", response)
|
||||
if match:
|
||||
|
@ -183,21 +212,26 @@ class LlamaGuardShield(ShieldBase):
|
|||
)
|
||||
else:
|
||||
prompt = self.build_prompt(messages)
|
||||
llama_guard_input = {
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
}
|
||||
input_ids = self.tokenizer.apply_chat_template(
|
||||
[llama_guard_input], return_tensors="pt", tokenize=True
|
||||
).to(self.device)
|
||||
prompt_len = input_ids.shape[1]
|
||||
output = self.model.generate(
|
||||
input_ids=input_ids,
|
||||
max_new_tokens=20,
|
||||
output_scores=True,
|
||||
return_dict_in_generate=True,
|
||||
pad_token_id=0,
|
||||
)
|
||||
generated_tokens = output.sequences[:, prompt_len:]
|
||||
|
||||
# TODO: llama-stack inference protocol has issues with non-streaming inference code
|
||||
content = ""
|
||||
async for chunk in self.inference_api.chat_completion(
|
||||
model=self.model,
|
||||
messages=[
|
||||
UserMessage(content=prompt),
|
||||
],
|
||||
stream=True,
|
||||
):
|
||||
event = chunk.event
|
||||
if event.event_type == ChatCompletionResponseEventType.progress:
|
||||
assert isinstance(event.delta, str)
|
||||
content += event.delta
|
||||
|
||||
content = content.strip()
|
||||
shield_response = self.get_shield_response(content)
|
||||
response = self.tokenizer.decode(
|
||||
generated_tokens[0], skip_special_tokens=True
|
||||
)
|
||||
response = response.strip()
|
||||
shield_response = self.get_shield_response(response)
|
||||
return shield_response
|
||||
|
|
|
@ -21,15 +21,13 @@ def available_providers() -> List[ProviderSpec]:
|
|||
api=Api.safety,
|
||||
provider_id="meta-reference",
|
||||
pip_packages=[
|
||||
"accelerate",
|
||||
"codeshield",
|
||||
"torch",
|
||||
"transformers",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu",
|
||||
],
|
||||
module="llama_stack.providers.impls.meta_reference.safety",
|
||||
config_class="llama_stack.providers.impls.meta_reference.safety.SafetyConfig",
|
||||
api_dependencies=[
|
||||
Api.inference,
|
||||
],
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.safety,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue