generator + scorer Api for MMLU

This commit is contained in:
Xi Yan 2024-10-13 23:27:02 -07:00
parent fb565dfb06
commit a25aff290e
14 changed files with 618 additions and 131 deletions

View file

@ -3,16 +3,27 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from termcolor import cprint
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import (
AggregateScorer,
)
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.evals import * # noqa: F403
from llama_stack.apis.dataset import * # noqa: F403
from termcolor import cprint
from llama_stack.distribution.registry.datasets.dataset_registry import DatasetRegistry
from llama_stack.providers.impls.meta_reference.evals.processor.mmlu_processor import (
MMLUProcessor,
)
# from llama_stack.distribution.registry.tasks.task_registry import TaskRegistry
# from .tasks.run_eval_task import RunEvalTask
from .scorer.basic_scorers import * # noqa: F403
from llama_stack.distribution.registry.tasks.task_registry import TaskRegistry
from .config import MetaReferenceEvalsImplConfig
@ -27,7 +38,7 @@ class MetaReferenceEvalsImpl(Evals):
async def shutdown(self) -> None:
pass
async def run_evals(
async def run_eval_task(
self,
model: str,
task: str,
@ -38,43 +49,142 @@ class MetaReferenceEvalsImpl(Evals):
f"model={model}, dataset={dataset}, task={task}, eval_task_config={eval_task_config}",
"red",
)
if not dataset:
raise ValueError("dataset must be specified for mete-reference evals")
dataset = DatasetRegistry.get_dataset(dataset)
dataset.load()
if not eval_task_config:
# construct eval task config from inputs
eval_task_config = EvaluateTaskConfig(
dataset_config=EvaluateDatasetConfig(
dataset_name=dataset,
row_limit=2,
),
generation_config=EvaluateModelGenerationConfig(
model=model,
),
scoring_config=EvaluateScoringConfig(
scorer_config_list=[
EvaluateSingleScorerConfig(scorer_name="accuracy"),
]
),
)
task_impl = TaskRegistry.get_task(task)()
preprocessed = task_impl.preprocess(dataset)
# TODO: wrap inside task
# run_task = RunEvalTask(
# eval_task_config=eval_task_config,
# )
# eval_result = run_task.run()
# TODO: replace w/ batch inference & async return eval job
generation_outputs = []
if eval_task_config is None:
eval_task_config = EvaluateTaskConfig(n_samples=len(preprocessed))
if eval_task_config.n_samples is None or eval_task_config.n_samples > len(
preprocessed
):
eval_task_config.n_samples = len(preprocessed)
print(
f"Eval generation start, generate on {eval_task_config.n_samples} samples"
dataset = DatasetRegistry.get_dataset(
eval_task_config.dataset_config.dataset_name
)
dataset.load(n_samples=eval_task_config.dataset_config.row_limit)
print(f"Running on {len(dataset)} samples")
for sample in preprocessed[: eval_task_config.n_samples]:
# F1
processor = MMLUProcessor()
preprocessed = processor.preprocess(dataset)
# Generation
# TODO: wrap inside BaseGenerator
generation_outputs = []
for sample in preprocessed:
print("generation: ", sample)
response = await self.inference_api.chat_completion(
model=model,
messages=sample.preprocessed["messages"],
messages=sample.generation_input.messages,
stream=False,
)
sample.prediction = PredictionSample(
completion_message=response.completion_message.content
)
generation_outputs.append(sample)
cprint(f"response: {response}", "cyan")
postprocessed = task_impl.postprocess(generation_outputs)
eval_results = task_impl.score(postprocessed)
aggr_result = task_impl.aggregate_results(eval_results)
return EvaluateResponse(
eval_result=aggr_result,
generation_outputs.append(
GenerationResponseSample(
generation_output=GenerationOutput(
completion_message=response.completion_message.content
)
)
)
cprint(generation_outputs, "green")
# F2
postprocessed = processor.postprocess(generation_outputs, dataset)
cprint(postprocessed, "blue")
# F3 - scorer
scorer = AggregateScorer(
scorers=[
AccuracyScorer(),
RandomScorer(),
]
)
scorer_results = scorer.score(postprocessed)
cprint(scorer_results, "magenta")
eval_result = scorer.aggregate_results(scorer_results)
return EvaluateResponse(
eval_result=eval_result,
formatted_report=json.dumps(eval_result.json(), indent=4),
)
async def run_scorer(
self,
dataset_config: EvaluateDatasetConfig,
eval_scoring_config: EvaluateScoringConfig,
) -> EvaluateResponse:
return EvaluateResponse(
eval_result={},
)
# async def run_evals(
# self,
# model: str,
# task: str,
# dataset: Optional[str] = None,
# eval_task_config: Optional[EvaluateTaskConfig] = None,
# ) -> EvaluateResponse:
# cprint(
# f"model={model}, dataset={dataset}, task={task}, eval_task_config={eval_task_config}",
# "red",
# )
# if not dataset:
# raise ValueError("dataset must be specified for mete-reference evals")
# dataset = DatasetRegistry.get_dataset(dataset)
# dataset.load()
# task_impl = TaskRegistry.get_task(task)()
# preprocessed = task_impl.preprocess(dataset)
# # TODO: replace w/ batch inference & async return eval job
# generation_outputs = []
# if eval_task_config is None:
# eval_task_config = EvaluateTaskConfig(n_samples=len(preprocessed))
# if eval_task_config.n_samples is None or eval_task_config.n_samples > len(
# preprocessed
# ):
# eval_task_config.n_samples = len(preprocessed)
# print(
# f"Eval generation start, generate on {eval_task_config.n_samples} samples"
# )
# for sample in preprocessed[: eval_task_config.n_samples]:
# print("generation: ", sample)
# response = await self.inference_api.chat_completion(
# model=model,
# messages=sample.preprocessed["messages"],
# stream=False,
# )
# sample.prediction = PredictionSample(
# completion_message=response.completion_message.content
# )
# generation_outputs.append(sample)
# postprocessed = task_impl.postprocess(generation_outputs)
# eval_results = task_impl.score(postprocessed)
# aggr_result = task_impl.aggregate_results(eval_results)
# return EvaluateResponse(
# eval_result=aggr_result,
# )

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -7,8 +7,6 @@ import re
from llama_stack.apis.evals import * # noqa: F403
# from llama_stack.distribution.registry.tasks.task import BaseTask
QUERY_TEMPLATE_MULTICHOICE = """
Answer the following multiple choice question and make the answer very simple. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD.
@ -112,60 +110,78 @@ def normalize_extracted_answer(extracted_answer: str) -> str:
)
class MMLUTask(BaseTask[DictSample, ProcessedDictSample]):
class MMLUProcessor(
BaseGeneratorProcessor[
DictSample, PreprocessedSample, GenerationResponseSample, ScorerInputSample
]
):
"""
MMLU Task.
Generator processor for MMLU
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def preprocess_sample(self, sample: ProcessedDictSample) -> ProcessedDictSample:
def preprocess_sample(self, sample: DictSample) -> PreprocessedSample:
content = QUERY_TEMPLATE_MULTICHOICE.format(**sample.data)
preprocessed = {
"messages": [
{
"role": "user",
"content": content,
}
],
}
processed_sample = ProcessedDictSample(
data=sample.data,
preprocessed=preprocessed,
preprocessed_msgs = [
{
"role": "user",
"content": content,
}
]
processed_sample = PreprocessedSample(
generation_input=GenerationInput(
messages=preprocessed_msgs,
)
)
return processed_sample
def postprocess_sample(self, sample: ProcessedDictSample) -> ProcessedDictSample:
if not sample.postprocessed:
sample.postprocessed = {}
sample.postprocessed["postprocessed"] = normalize_response(
sample.prediction.completion_message
)
return sample
def postprocess_sample(
self, generation_sample: GenerationResponseSample, dataset_sample: DictSample
) -> ScorerInputSample:
response_text = generation_sample.generation_output.completion_message
normalized_response = normalize_response(response_text)
def score_sample(self, sample: ProcessedDictSample) -> SingleEvalResult:
postprocessed_output = sample.postprocessed["postprocessed"]
expected_answer = sample.data["Answer"]
extracted_answer = None
# extract answer
extracted_answer = ""
for answer_regex in MULTILINGUAL_ANSWER_REGEXES:
regex = MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(answer_regex)
match = re.search(regex, postprocessed_output)
match = re.search(regex, normalized_response)
if match:
extracted_answer = normalize_extracted_answer(match.group(1))
break
score = 1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
return SingleEvalResult(
score_data={
"score": score,
},
return ScorerInputSample(
generation_output=PostprocessedGeneration(
completion_message=response_text,
transformed_generation=extracted_answer,
),
expected_output=dataset_sample.data["Answer"],
)
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
print("aggregate_results", eval_results)
sum_score = sum([result.score_data["score"] for result in eval_results])
# def score_sample(self, sample: ProcessedDictSample) -> SingleEvalResult:
# postprocessed_output = sample.postprocessed["postprocessed"]
# expected_answer = sample.data["Answer"]
return EvalResult(metrics={"score": str(sum_score / len(eval_results))})
# extracted_answer = None
# for answer_regex in MULTILINGUAL_ANSWER_REGEXES:
# regex = MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(answer_regex)
# match = re.search(regex, postprocessed_output)
# if match:
# extracted_answer = normalize_extracted_answer(match.group(1))
# break
# score = 1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
# return SingleEvalResult(
# score_data={
# "score": score,
# },
# )
# def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
# print("aggregate_results", eval_results)
# sum_score = sum([result.score_data["score"] for result in eval_results])
# return EvalResult(metrics={"score": str(sum_score / len(eval_results))})

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,78 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import random
from llama_stack.apis.evals.evals import BaseScorer, EvalResult, SingleEvalResult
from llama_stack.apis.dataset.dataset import * # noqa: F401 F403
class AggregateScorer(BaseScorer[ScorerInputSample]):
def __init__(self, scorers: List[BaseScorer[ScorerInputSample]]):
self.scorers = scorers
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
all_score_data = {}
for scorer in self.scorers:
score_data = scorer.score_sample(scorer_input_sample).score_data
for k, v in score_data.items():
all_score_data[k] = v
return SingleEvalResult(
score_data=all_score_data,
)
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
all_metrics = {}
for scorer in self.scorers:
metrics = scorer.aggregate_results(eval_results).metrics
for k, v in metrics.items():
all_metrics[f"{scorer.__class__.__name__}:{k}"] = v
return EvalResult(
metrics=all_metrics,
)
class RandomScorer(BaseScorer[ScorerInputSample]):
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
return SingleEvalResult(score_data={"random": random.random()})
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
avg_random = sum(
[result.score_data["random"] for result in eval_results]
) / len(eval_results)
max_random = max([result.score_data["random"] for result in eval_results])
return EvalResult(
metrics={
"avg_random": avg_random,
"max_random": max_random,
}
)
class AccuracyScorer(BaseScorer[ScorerInputSample]):
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
extracted_answer = scorer_input_sample.generation_output.transformed_generation
expected_answer = scorer_input_sample.expected_output
accuracy = (
1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
)
return SingleEvalResult(score_data={"accuracy": accuracy})
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
num_correct = sum([result.score_data["accuracy"] for result in eval_results])
num_total = len(eval_results)
return EvalResult(
metrics={
"avg_accuracy": num_correct / num_total,
"num_correct": num_correct,
"num_total": num_total,
}
)

View file

@ -0,0 +1,39 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.distribution.registry.datasets.dataset_registry import DatasetRegistry
from llama_stack.apis.evals import * # noqa: F403
class RunEvalTask(BaseTask):
"""
RunEvalTask for LlamaStack
"""
def __init__(
self,
eval_task_config,
generator_processor: Optional[BaseGeneratorProcessor] = None,
generator: Optional[BaseGenerator] = None,
scorer: Optional[BaseScorer] = None,
*args,
**kwargs,
) -> None:
super().__init__(
generator_processor=generator_processor,
generator=generator,
scorer=scorer,
*args,
**kwargs,
)
self.eval_task_config = eval_task_config
self.dataset = DatasetRegistry.get_dataset(
eval_task_config.dataset_config.dataset_name
)
def run(self, *args, **kwargs) -> EvalResult:
print(f"Running eval task on {self.dataset}")
return EvalResult()