diff --git a/.github/CODEOWNERS b/.github/CODEOWNERS index 1623d1829..ecfaf3ec2 100644 --- a/.github/CODEOWNERS +++ b/.github/CODEOWNERS @@ -2,4 +2,4 @@ # These owners will be the default owners for everything in # the repo. Unless a later match takes precedence, -* @ashwinb @yanxi0830 @hardikjshah @dltn @raghotham @dineshyv @vladimirivic +* @ashwinb @yanxi0830 @hardikjshah @dltn @raghotham @dineshyv @vladimirivic @sixianyi0721 diff --git a/.github/workflows/publish-to-test-pypi.yml b/.github/workflows/publish-to-test-pypi.yml new file mode 100644 index 000000000..957761235 --- /dev/null +++ b/.github/workflows/publish-to-test-pypi.yml @@ -0,0 +1,232 @@ +name: Publish Python π distribution π¦ to TestPyPI + +on: + workflow_dispatch: # Keep manual trigger + inputs: + version: + description: 'Version number (e.g. 0.0.63.dev20250111)' + required: true + type: string + schedule: + - cron: "0 0 * * *" # Run every day at midnight + +jobs: + trigger-client-and-models-build: + name: Trigger llama-stack-client and llama-models build + runs-on: ubuntu-latest + outputs: + version: ${{ steps.version.outputs.version }} + client_run_id: ${{ steps.trigger-client.outputs.workflow_id }} + model_run_id: ${{ steps.trigger-models.outputs.workflow_id }} + steps: + - uses: actions/checkout@v4 + with: + persist-credentials: false + - name: Get date + id: date + run: echo "date=$(date +'%Y%m%d')" >> $GITHUB_OUTPUT + - name: Compute version based on dispatch event + id: version + run: | + # Read base version from pyproject.toml + version=$(sed -n 's/.*version="\([^"]*\)".*/\1/p' setup.py) + if [ "${{ github.event_name }}" = "schedule" ]; then + echo "version=${version}.dev${{ steps.date.outputs.date }}" >> $GITHUB_OUTPUT + elif [ "${{ github.event_name }}" = "workflow_dispatch" ]; then + echo "version=${{ inputs.version }}" >> $GITHUB_OUTPUT + else + echo "version=${version}.dev$(shuf -i 10000000-99999999 -n 1)" >> $GITHUB_OUTPUT + fi + - name: Trigger llama-stack-client workflow + id: trigger-client + run: | + response=$(curl -X POST https://api.github.com/repos/meta-llama/llama-stack-client-python/dispatches \ + -H 'Accept: application/vnd.github.everest-preview+json' \ + -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \ + --data "{\"event_type\": \"build-client-package\", \"client_payload\": {\"source\": \"llama-stack-nightly\", \"version\": \"${{ steps.version.outputs.version }}\"}}" \ + -w "\n%{http_code}") + + http_code=$(echo "$response" | tail -n1) + if [ "$http_code" != "204" ]; then + echo "Failed to trigger client workflow" + exit 1 + fi + + # Get the run ID of the triggered workflow + sleep 5 # Wait for workflow to be created + run_id=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \ + "https://api.github.com/repos/meta-llama/llama-stack-client-python/actions/runs?event=repository_dispatch" \ + | jq '.workflow_runs[0].id') + echo "workflow_id=$run_id" >> $GITHUB_OUTPUT + + - name: Trigger llama-models workflow + id: trigger-models + run: | + response=$(curl -X POST https://api.github.com/repos/meta-llama/llama-models/dispatches \ + -H 'Accept: application/vnd.github.everest-preview+json' \ + -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \ + --data "{\"event_type\": \"build-models-package\", \"client_payload\": {\"source\": \"llama-stack-nightly\", \"version\": \"${{ steps.version.outputs.version }}\"}}" \ + -w "\n%{http_code}") + + http_code=$(echo "$response" | tail -n1) + if [ "$http_code" != "204" ]; then + echo "Failed to trigger models workflow" + exit 1 + fi + + # Get the run ID of the triggered workflow + sleep 5 # Wait for workflow to be created + run_id=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \ + "https://api.github.com/repos/meta-llama/llama-models/actions/runs?event=repository_dispatch" \ + | jq '.workflow_runs[0].id') + echo "workflow_id=$run_id" >> $GITHUB_OUTPUT + + wait-for-workflows: + name: Wait for triggered workflows + needs: trigger-client-and-models-build + runs-on: ubuntu-latest + steps: + - name: Wait for client workflow + run: | + while true; do + status=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \ + "https://api.github.com/repos/meta-llama/llama-stack-client-python/actions/runs/${{ needs.trigger-client-and-models-build.outputs.client_run_id }}" \ + | jq -r '.status') + conclusion=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \ + "https://api.github.com/repos/meta-llama/llama-stack-client-python/actions/runs/${{ needs.trigger-client-and-models-build.outputs.client_run_id }}" \ + | jq -r '.conclusion') + + echo "llama-stack-client-python workflow status: $status, conclusion: $conclusion" + + if [ "$status" = "completed" ]; then + if [ "$conclusion" != "success" ]; then + echo "llama-stack-client-python workflow failed" + exit 1 + fi + break + fi + + sleep 10 + done + + - name: Wait for models workflow + run: | + while true; do + status=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \ + "https://api.github.com/repos/meta-llama/llama-models/actions/runs/${{ needs.trigger-client-and-models-build.outputs.model_run_id }}" \ + | jq -r '.status') + conclusion=$(curl -s -H "authorization: Bearer ${{ secrets.PAT_TOKEN }}" \ + "https://api.github.com/repos/meta-llama/llama-models/actions/runs/${{ needs.trigger-client-and-models-build.outputs.model_run_id }}" \ + | jq -r '.conclusion') + + echo "llama-models workflow status: $status, conclusion: $conclusion" + + if [ "$status" = "completed" ]; then + if [ "$conclusion" != "success" ]; then + echo "llama-models workflow failed" + exit 1 + fi + break + fi + + sleep 10 + done + + build: + name: Build distribution π¦ + needs: + - wait-for-workflows + - trigger-client-and-models-build + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v4 + with: + persist-credentials: false + - name: Get date + id: date + run: echo "date=$(date +'%Y%m%d')" >> $GITHUB_OUTPUT + - name: Update version for nightly + run: | + sed -i 's/version="\([^"]*\)"/version="${{ needs.trigger-client-and-models-build.outputs.version }}"/' setup.py + sed -i 's/llama-stack-client>=\([^"]*\)/llama-stack-client==${{ needs.trigger-client-and-models-build.outputs.version }}/' requirements.txt + sed -i 's/llama-models>=\([^"]*\)/llama-models==${{ needs.trigger-client-and-models-build.outputs.version }}/' requirements.txt + - name: Set up Python + uses: actions/setup-python@v5 + with: + python-version: "3.11" + - name: Install pypa/build + run: >- + python3 -m + pip install + build + --user + - name: Build a binary wheel and a source tarball + run: python3 -m build + - name: Store the distribution packages + uses: actions/upload-artifact@v4 + with: + name: python-package-distributions + path: dist/ + + publish-to-testpypi: + name: Publish Python π distribution π¦ to TestPyPI + needs: + - build + runs-on: ubuntu-latest + + environment: + name: testrelease + url: https://test.pypi.org/p/llama-stack + + permissions: + id-token: write # IMPORTANT: mandatory for trusted publishing + + steps: + - name: Download all the dists + uses: actions/download-artifact@v4 + with: + name: python-package-distributions + path: dist/ + - name: Publish distribution π¦ to TestPyPI + uses: pypa/gh-action-pypi-publish@release/v1 + with: + repository-url: https://test.pypi.org/legacy/ + + test-published-package: + name: Test published package + needs: + - publish-to-testpypi + - trigger-client-and-models-build + runs-on: ubuntu-latest + steps: + - name: Install the package + run: | + max_attempts=6 + attempt=1 + while [ $attempt -le $max_attempts ]; do + echo "Attempt $attempt of $max_attempts to install package..." + if pip install --no-cache --index-url https://pypi.org/simple/ --extra-index-url https://test.pypi.org/simple/ llama-stack==${{ needs.trigger-client-and-models-build.outputs.version }}; then + echo "Package installed successfully" + break + fi + if [ $attempt -ge $max_attempts ]; then + echo "Failed to install package after $max_attempts attempts" + exit 1 + fi + attempt=$((attempt + 1)) + sleep 10 + done + - name: Test the package versions + run: | + pip list | grep llama_ + - name: Test CLI commands + run: | + llama model list + llama stack build --list-templates + llama model prompt-format -m Llama3.2-11B-Vision-Instruct + llama stack list-apis + llama stack list-providers inference + llama stack list-providers telemetry + + # TODO: add trigger for integration test workflow & docker builds diff --git a/README.md b/README.md index b0cb81d43..61a0f33fe 100644 --- a/README.md +++ b/README.md @@ -99,7 +99,7 @@ Additionally, we have designed every element of the Stack such that APIs as well |:---------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------:| | Meta Reference | [llamastack/distribution-meta-reference-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/meta-reference-gpu.html) | | Meta Reference Quantized | [llamastack/distribution-meta-reference-quantized-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-quantized-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/meta-reference-quantized-gpu.html) | -| Cerebras | [llamastack/distribution-cerebras](https://hub.docker.com/repository/docker/llamastack/distribution-cerebras/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/self_hosted_distro/cerebras.html) | +| Cerebras | [llamastack/distribution-cerebras](https://hub.docker.com/repository/docker/llamastack/distribution-cerebras/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/cerebras.html) | | Ollama | [llamastack/distribution-ollama](https://hub.docker.com/repository/docker/llamastack/distribution-ollama/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/ollama.html) | | TGI | [llamastack/distribution-tgi](https://hub.docker.com/repository/docker/llamastack/distribution-tgi/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/tgi.html) | | Together | [llamastack/distribution-together](https://hub.docker.com/repository/docker/llamastack/distribution-together/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/distributions/self_hosted_distro/together.html) | diff --git a/distributions/dependencies.json b/distributions/dependencies.json index 366a2a0f2..bd363ea40 100644 --- a/distributions/dependencies.json +++ b/distributions/dependencies.json @@ -1,9 +1,42 @@ { - "bedrock": [ + "hf-serverless": [ + "aiohttp", + "aiosqlite", + "autoevals", + "blobfile", + "chardet", + "chromadb-client", + "datasets", + "faiss-cpu", + "fastapi", + "fire", + "httpx", + "huggingface_hub", + "matplotlib", + "nltk", + "numpy", + "openai", + "opentelemetry-exporter-otlp-proto-http", + "opentelemetry-sdk", + "pandas", + "pillow", + "psycopg2-binary", + "pypdf", + "redis", + "requests", + "scikit-learn", + "scipy", + "sentencepiece", + "tqdm", + "transformers", + "uvicorn", + "sentence-transformers --no-deps", + "torch --index-url https://download.pytorch.org/whl/cpu" + ], + "together": [ "aiosqlite", "autoevals", "blobfile", - "boto3", "chardet", "chromadb-client", "datasets", @@ -22,6 +55,71 @@ "psycopg2-binary", "pypdf", "redis", + "requests", + "scikit-learn", + "scipy", + "sentencepiece", + "together", + "tqdm", + "transformers", + "uvicorn", + "sentence-transformers --no-deps", + "torch --index-url https://download.pytorch.org/whl/cpu" + ], + "vllm-gpu": [ + "aiosqlite", + "autoevals", + "blobfile", + "chardet", + "chromadb-client", + "datasets", + "faiss-cpu", + "fastapi", + "fire", + "httpx", + "matplotlib", + "nltk", + "numpy", + "openai", + "opentelemetry-exporter-otlp-proto-http", + "opentelemetry-sdk", + "pandas", + "pillow", + "psycopg2-binary", + "pypdf", + "redis", + "requests", + "scikit-learn", + "scipy", + "sentencepiece", + "tqdm", + "transformers", + "uvicorn", + "vllm", + "sentence-transformers --no-deps", + "torch --index-url https://download.pytorch.org/whl/cpu" + ], + "remote-vllm": [ + "aiosqlite", + "blobfile", + "chardet", + "chromadb-client", + "faiss-cpu", + "fastapi", + "fire", + "httpx", + "matplotlib", + "nltk", + "numpy", + "openai", + "opentelemetry-exporter-otlp-proto-http", + "opentelemetry-sdk", + "pandas", + "pillow", + "psycopg2-binary", + "pypdf", + "redis", + "requests", "scikit-learn", "scipy", "sentencepiece", @@ -54,6 +152,7 @@ "psycopg2-binary", "pypdf", "redis", + "requests", "scikit-learn", "scipy", "sentencepiece", @@ -63,7 +162,7 @@ "sentence-transformers --no-deps", "torch --index-url https://download.pytorch.org/whl/cpu" ], - "hf-endpoint": [ + "tgi": [ "aiohttp", "aiosqlite", "autoevals", @@ -87,6 +186,7 @@ "psycopg2-binary", "pypdf", "redis", + "requests", "scikit-learn", "scipy", "sentencepiece", @@ -96,11 +196,11 @@ "sentence-transformers --no-deps", "torch --index-url https://download.pytorch.org/whl/cpu" ], - "hf-serverless": [ - "aiohttp", + "bedrock": [ "aiosqlite", "autoevals", "blobfile", + "boto3", "chardet", "chromadb-client", "datasets", @@ -108,7 +208,6 @@ "fastapi", "fire", "httpx", - "huggingface_hub", "matplotlib", "nltk", "numpy", @@ -120,6 +219,7 @@ "psycopg2-binary", "pypdf", "redis", + "requests", "scikit-learn", "scipy", "sentencepiece", @@ -154,6 +254,7 @@ "psycopg2-binary", "pypdf", "redis", + "requests", "scikit-learn", "scipy", "sentence-transformers", @@ -193,6 +294,7 @@ "psycopg2-binary", "pypdf", "redis", + "requests", "scikit-learn", "scipy", "sentence-transformers", @@ -207,6 +309,35 @@ "sentence-transformers --no-deps", "torch --index-url https://download.pytorch.org/whl/cpu" ], + "cerebras": [ + "aiosqlite", + "blobfile", + "cerebras_cloud_sdk", + "chardet", + "faiss-cpu", + "fastapi", + "fire", + "httpx", + "matplotlib", + "nltk", + "numpy", + "opentelemetry-exporter-otlp-proto-http", + "opentelemetry-sdk", + "pandas", + "pillow", + "psycopg2-binary", + "pypdf", + "redis", + "requests", + "scikit-learn", + "scipy", + "sentencepiece", + "tqdm", + "transformers", + "uvicorn", + "sentence-transformers --no-deps", + "torch --index-url https://download.pytorch.org/whl/cpu" + ], "ollama": [ "aiohttp", "aiosqlite", @@ -231,6 +362,7 @@ "psycopg2-binary", "pypdf", "redis", + "requests", "scikit-learn", "scipy", "sentencepiece", @@ -240,7 +372,7 @@ "sentence-transformers --no-deps", "torch --index-url https://download.pytorch.org/whl/cpu" ], - "tgi": [ + "hf-endpoint": [ "aiohttp", "aiosqlite", "autoevals", @@ -264,127 +396,7 @@ "psycopg2-binary", "pypdf", "redis", - "scikit-learn", - "scipy", - "sentencepiece", - "tqdm", - "transformers", - "uvicorn", - "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" - ], - "together": [ - "aiosqlite", - "autoevals", - "blobfile", - "chardet", - "chromadb-client", - "datasets", - "faiss-cpu", - "fastapi", - "fire", - "httpx", - "matplotlib", - "nltk", - "numpy", - "openai", - "opentelemetry-exporter-otlp-proto-http", - "opentelemetry-sdk", - "pandas", - "pillow", - "psycopg2-binary", - "pypdf", - "redis", - "scikit-learn", - "scipy", - "sentencepiece", - "together", - "tqdm", - "transformers", - "uvicorn", - "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" - ], - "remote-vllm": [ - "aiosqlite", - "blobfile", - "chardet", - "chromadb-client", - "faiss-cpu", - "fastapi", - "fire", - "httpx", - "matplotlib", - "nltk", - "numpy", - "openai", - "opentelemetry-exporter-otlp-proto-http", - "opentelemetry-sdk", - "pandas", - "pillow", - "psycopg2-binary", - "pypdf", - "redis", - "scikit-learn", - "scipy", - "sentencepiece", - "tqdm", - "transformers", - "uvicorn", - "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" - ], - "vllm-gpu": [ - "aiosqlite", - "autoevals", - "blobfile", - "chardet", - "chromadb-client", - "datasets", - "faiss-cpu", - "fastapi", - "fire", - "httpx", - "matplotlib", - "nltk", - "numpy", - "openai", - "opentelemetry-exporter-otlp-proto-http", - "opentelemetry-sdk", - "pandas", - "pillow", - "psycopg2-binary", - "pypdf", - "redis", - "scikit-learn", - "scipy", - "sentencepiece", - "tqdm", - "transformers", - "uvicorn", - "vllm", - "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" - ], - "cerebras": [ - "aiosqlite", - "blobfile", - "cerebras_cloud_sdk", - "chardet", - "faiss-cpu", - "fastapi", - "fire", - "httpx", - "matplotlib", - "nltk", - "numpy", - "opentelemetry-exporter-otlp-proto-http", - "opentelemetry-sdk", - "pandas", - "pillow", - "psycopg2-binary", - "pypdf", - "redis", + "requests", "scikit-learn", "scipy", "sentencepiece", diff --git a/distributions/remote-vllm/compose.yaml b/distributions/remote-vllm/compose.yaml index 09701e099..c387e1049 100644 --- a/distributions/remote-vllm/compose.yaml +++ b/distributions/remote-vllm/compose.yaml @@ -85,7 +85,7 @@ services: - SQLITE_STORE_DIR=${SQLITE_STORE_DIR:-$HOME/.llama/distributions/remote-vllm} - SAFETY_MODEL=${SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B} ports: - - "${LLAMASTACK_PORT:-5001}:${LLAMASTACK_PORT:-5001}" + - "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}" # Hack: wait for vLLM server to start before starting docker entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-remote-vllm.yaml --port 5001" deploy: diff --git a/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb b/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb index d061603c8..7e6284628 100644 --- a/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb +++ b/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb @@ -71,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 1, "id": "J2kGed0R5PSf", "metadata": { "colab": { @@ -79,75 +79,170 @@ }, "collapsed": true, "id": "J2kGed0R5PSf", - "outputId": "7d543c6f-623d-4911-b9a7-4ed24d5b82f2" + "outputId": "3fa6d087-2f12-444f-b3d3-9331305abb51" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Reading package lists... Done\n", "Building dependency tree... Done\n", "Reading state information... Done\n", - "bubblewrap is already the newest version (0.6.1-1ubuntu0.1).\n", - "0 upgraded, 0 newly installed, 0 to remove and 49 not upgraded.\n", - "Requirement already satisfied: llama-stack in /usr/local/lib/python3.10/dist-packages (0.0.61)\n", - "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.0)\n", - "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.7.0)\n", - "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.28.1)\n", - "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.26.5)\n", - "Requirement already satisfied: llama-models>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\n", - "Requirement already satisfied: llama-stack-client>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\n", - "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.48)\n", - "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from llama-stack) (1.0.1)\n", - "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.10.3)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.32.3)\n", - "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack) (13.9.4)\n", - "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama-stack) (75.1.0)\n", - "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.5.0)\n", - "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (6.0.2)\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (3.1.4)\n", - "Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (0.8.0)\n", - "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (10.4.0)\n", - "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (3.7.1)\n", - "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (8.1.7)\n", - "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.9.0)\n", - "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (2.2.2)\n", - "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (24.12.1)\n", - "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.3.1)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.66.6)\n", - "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.12.2)\n", - "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (2024.8.30)\n", - "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (1.0.7)\n", - "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (3.10)\n", - "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack) (0.14.0)\n", - "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (0.7.0)\n", - "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.1)\n", - "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.21.0)\n", - "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (2.2.3)\n", - "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (5.3.0)\n", - "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.16.1)\n", - "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (2024.9.0)\n", - "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (24.2)\n", - "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack) (0.2.13)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.0)\n", - "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\n", - "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\n", - "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.61->llama-stack) (1.2.2)\n", - "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack) (0.1.2)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.61->llama-stack) (3.0.2)\n", - "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (1.26.4)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", - "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.61->llama-stack) (2024.9.11)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.61->llama-stack) (1.17.0)\n" + "The following NEW packages will be installed:\n", + " bubblewrap\n", + "0 upgraded, 1 newly installed, 0 to remove and 49 not upgraded.\n", + "Need to get 46.3 kB of archives.\n", + "After this operation, 132 kB of additional disk space will be used.\n", + "Get:1 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 bubblewrap amd64 0.6.1-1ubuntu0.1 [46.3 kB]\n", + "Fetched 46.3 kB in 1s (52.2 kB/s)\n", + "Selecting previously unselected package bubblewrap.\n", + "(Reading database ... 123632 files and directories currently installed.)\n", + "Preparing to unpack .../bubblewrap_0.6.1-1ubuntu0.1_amd64.deb ...\n", + "Unpacking bubblewrap (0.6.1-1ubuntu0.1) ...\n", + "Setting up bubblewrap (0.6.1-1ubuntu0.1) ...\n", + "Processing triggers for man-db (2.10.2-1) ...\n", + "Collecting llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git\n", + " Cloning https://github.com/meta-llama/llama-stack-client-python.git to /tmp/pip-install-y4g346dn/llama-stack-client_dea5c21edaf144f4b76e5cb6f78c1a79\n", + " Running command git clone --filter=blob:none --quiet https://github.com/meta-llama/llama-stack-client-python.git /tmp/pip-install-y4g346dn/llama-stack-client_dea5c21edaf144f4b76e5cb6f78c1a79\n", + " Resolved https://github.com/meta-llama/llama-stack-client-python.git to commit db90c54d82e3c2fa6f334adcaf700940dad163a3\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (3.7.1)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (8.1.8)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (1.9.0)\n", + "Requirement already satisfied: httpx<1,>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (0.28.1)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2.2.2)\n", + "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (3.0.48)\n", + "Collecting pyaml (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git)\n", + " Downloading pyaml-25.1.0-py3-none-any.whl.metadata (12 kB)\n", + "Requirement already satisfied: pydantic<3,>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2.10.4)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (13.9.4)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (1.3.1)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2.5.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (4.67.1)\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (4.12.2)\n", + "Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (3.10)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (1.2.2)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2024.12.14)\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (1.0.7)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx<1,>=0.23.0->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (0.14.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1.9.0->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1.9.0->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2.27.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2024.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (0.2.13)\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from pyaml->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (6.0.2)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (2.18.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (0.1.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git) (1.17.0)\n", + "Downloading pyaml-25.1.0-py3-none-any.whl (26 kB)\n", + "Building wheels for collected packages: llama-stack-client\n", + " Building wheel for llama-stack-client (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for llama-stack-client: filename=llama_stack_client-0.0.63-py3-none-any.whl size=318443 sha256=212ae3a9f3d5bb8a88801e4c3e625d99c9cb1d50d978cb6b2a8f7d069f013f06\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-c7a22578/wheels/c9/21/63/5f6965968ab3dae8a0b1a0e43ca4991732ca03184aa158c15c\n", + "Successfully built llama-stack-client\n", + "Installing collected packages: pyaml, llama-stack-client\n", + "Successfully installed llama-stack-client-0.0.63 pyaml-25.1.0\n", + "Collecting llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor\n", + " Cloning https://github.com/meta-llama/llama-stack.git (to revision fix_sqlite_span_processor) to /tmp/pip-install-0iqgax6t/llama-stack_824f45a9298043deacb6c11e12206393\n", + " Running command git clone --filter=blob:none --quiet https://github.com/meta-llama/llama-stack.git /tmp/pip-install-0iqgax6t/llama-stack_824f45a9298043deacb6c11e12206393\n", + " Running command git checkout -b fix_sqlite_span_processor --track origin/fix_sqlite_span_processor\n", + " Switched to a new branch 'fix_sqlite_span_processor'\n", + " Branch 'fix_sqlite_span_processor' set up to track remote branch 'fix_sqlite_span_processor' from 'origin'.\n", + " Resolved https://github.com/meta-llama/llama-stack.git to commit 6fc155f25261691613d075fd8d08f728c2596815\n", + " Running command git submodule update --init --recursive -q\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting blobfile (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor)\n", + " Downloading blobfile-3.0.0-py3-none-any.whl.metadata (15 kB)\n", + "Collecting fire (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor)\n", + " Downloading fire-0.7.0.tar.gz (87 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m87.2/87.2 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (0.28.1)\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (0.27.1)\n", + "Collecting llama-models>=0.0.63 (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor)\n", + " Downloading llama_models-0.0.63-py3-none-any.whl.metadata (8.2 kB)\n", + "Requirement already satisfied: llama-stack-client>=0.0.63 in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (0.0.63)\n", + "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (3.0.48)\n", + "Collecting python-dotenv (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor)\n", + " Downloading python_dotenv-1.0.1-py3-none-any.whl.metadata (23 kB)\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2.10.4)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2.32.3)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (13.9.4)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (75.1.0)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2.5.0)\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (6.0.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (3.1.5)\n", + "Collecting tiktoken (from llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor)\n", + " Downloading tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.6 kB)\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (11.1.0)\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (3.7.1)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (8.1.8)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (1.9.0)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2.2.2)\n", + "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (25.1.0)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (1.3.1)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (4.67.1)\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (4.12.2)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2024.12.14)\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (1.0.7)\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (3.10)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (0.14.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2.27.2)\n", + "Collecting pycryptodomex>=3.8 (from blobfile->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor)\n", + " Downloading pycryptodomex-3.21.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.4 kB)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2.3.0)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (5.3.0)\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (3.16.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2024.10.0)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (24.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (0.2.13)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (3.4.1)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2.18.0)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (1.2.2)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (3.0.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2024.2)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (2024.11.6)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@fix_sqlite_span_processor) (1.17.0)\n", + "Downloading llama_models-0.0.63-py3-none-any.whl (1.6 MB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m48.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading blobfile-3.0.0-py3-none-any.whl (75 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.4/75.4 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading python_dotenv-1.0.1-py3-none-any.whl (19 kB)\n", + "Downloading pycryptodomex-3.21.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m67.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m60.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hBuilding wheels for collected packages: llama-stack, fire\n", + " Building wheel for llama-stack (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for llama-stack: filename=llama_stack-0.0.63-py3-none-any.whl size=500660 sha256=36cd6d1b0146d456976f2d64deddf31a6515e5b0fbee97b61e448eb10356f3a7\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-qw3m4ho9/wheels/47/17/a3/49a8b1238e1c4640a5fdce6ad5055df118b069a670e77876e2\n", + " Building wheel for fire (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for fire: filename=fire-0.7.0-py3-none-any.whl size=114249 sha256=c1175a999f843dbb0dcabbeae06a6b080f59d7f78171dd089824c37fd63aeaef\n", + " Stored in directory: /root/.cache/pip/wheels/19/39/2f/2d3cadc408a8804103f1c34ddd4b9f6a93497b11fa96fe738e\n", + "Successfully built llama-stack fire\n", + "Installing collected packages: python-dotenv, pycryptodomex, fire, tiktoken, blobfile, llama-models, llama-stack\n", + "Successfully installed blobfile-3.0.0 fire-0.7.0 llama-models-0.0.63 llama-stack-0.0.63 pycryptodomex-3.21.0 python-dotenv-1.0.1 tiktoken-0.8.0\n" ] } ], "source": [ "!apt-get install -y bubblewrap\n", - "!pip install -U llama-stack" + "# install a branch of llama stack\n", + "!pip install llama-stack" ] }, { @@ -172,7 +267,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 2, "id": "HaepEZXCDgif", "metadata": { "colab": { @@ -180,189 +275,289 @@ }, "collapsed": true, "id": "HaepEZXCDgif", - "outputId": "9c268d26-7444-4741-f14d-3911eea8e4eb" + "outputId": "6c983bb7-1cbe-4249-fd0a-0c629851981b" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "Requirement already satisfied: llama-stack in /usr/local/lib/python3.10/dist-packages (0.0.61)\r\n", + "Requirement already satisfied: llama-stack in /usr/local/lib/python3.10/dist-packages (0.0.63)\r\n", "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.0)\r\n", "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.7.0)\r\n", "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.28.1)\r\n", - "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.26.5)\r\n", - "Requirement already satisfied: llama-models>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\r\n", - "Requirement already satisfied: llama-stack-client>=0.0.61 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.61)\r\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.27.1)\r\n", + "Requirement already satisfied: llama-models>=0.0.63 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.63)\r\n", + "Requirement already satisfied: llama-stack-client>=0.0.63 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (0.0.63)\r\n", "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack) (3.0.48)\r\n", "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from llama-stack) (1.0.1)\r\n", - "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.10.3)\r\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.10.4)\r\n", "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.32.3)\r\n", "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack) (13.9.4)\r\n", "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama-stack) (75.1.0)\r\n", "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack) (2.5.0)\r\n", - "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (6.0.2)\r\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (3.1.4)\r\n", - "Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (0.8.0)\r\n", - "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.61->llama-stack) (10.4.0)\r\n", - "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (3.7.1)\r\n", - "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (8.1.7)\r\n", - "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.9.0)\r\n", - "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (2.2.2)\r\n", - "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (24.12.1)\r\n", - "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (1.3.1)\r\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.66.6)\r\n", - "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.61->llama-stack) (4.12.2)\r\n", - "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (2024.8.30)\r\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack) (6.0.2)\r\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack) (3.1.5)\r\n", + "Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack) (0.8.0)\r\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack) (11.1.0)\r\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack) (3.7.1)\r\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack) (8.1.8)\r\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack) (1.9.0)\r\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack) (2.2.2)\r\n", + "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack) (25.1.0)\r\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack) (1.3.1)\r\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack) (4.67.1)\r\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack) (4.12.2)\r\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (2024.12.14)\r\n", "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (1.0.7)\r\n", "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (3.10)\r\n", "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack) (0.14.0)\r\n", "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (0.7.0)\r\n", - "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.1)\r\n", + "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.2)\r\n", "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.21.0)\r\n", - "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (2.2.3)\r\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (2.3.0)\r\n", "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (5.3.0)\r\n", - "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.16.1)\n", - "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (2024.9.0)\n", - "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (24.2)\n", - "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack) (0.2.13)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.0)\n", - "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\n", - "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\n", - "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.61->llama-stack) (1.2.2)\n", - "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack) (0.1.2)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.61->llama-stack) (3.0.2)\n", - "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (1.26.4)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.61->llama-stack) (2024.2)\n", - "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.61->llama-stack) (2024.9.11)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.61->llama-stack) (1.17.0)\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.16.1)\r\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (2024.10.0)\r\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (24.2)\r\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack) (0.2.13)\r\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.1)\r\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\r\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\r\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.63->llama-stack) (1.2.2)\r\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack) (0.1.2)\r\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.63->llama-stack) (3.0.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack) (2024.2)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.63->llama-stack) (2024.11.6)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.63->llama-stack) (1.17.0)\n", "Installing pip dependencies\n", - "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (10.4.0)\n", - "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.46.3)\n", - "Requirement already satisfied: psycopg2-binary in /usr/local/lib/python3.10/dist-packages (2.9.10)\n", - "Requirement already satisfied: aiosqlite in /usr/local/lib/python3.10/dist-packages (0.20.0)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (4.66.6)\n", - "Requirement already satisfied: pypdf in /usr/local/lib/python3.10/dist-packages (5.1.0)\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.26.4)\n", - "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.5.2)\n", - "Requirement already satisfied: redis in /usr/local/lib/python3.10/dist-packages (5.2.1)\n", - "Requirement already satisfied: opentelemetry-sdk in /usr/local/lib/python3.10/dist-packages (1.28.2)\n", - "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (0.2.0)\n", - "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (3.0.0)\n", - "Requirement already satisfied: together in /usr/local/lib/python3.10/dist-packages (1.3.5)\n", - "Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (1.54.5)\n", - "Requirement already satisfied: faiss-cpu in /usr/local/lib/python3.10/dist-packages (1.9.0.post1)\n", - "Requirement already satisfied: autoevals in /usr/local/lib/python3.10/dist-packages (0.0.110)\n", - "Requirement already satisfied: chardet in /usr/local/lib/python3.10/dist-packages (5.2.0)\n", - "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (3.9.1)\n", - "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.2.2)\n", - "Requirement already satisfied: opentelemetry-exporter-otlp-proto-http in /usr/local/lib/python3.10/dist-packages (1.28.2)\n", - "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (3.2.0)\n", - "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.8.0)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.6.0)\n", + "Collecting psycopg2-binary\n", + " Downloading psycopg2_binary-2.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.9 kB)\n", + "Collecting autoevals\n", + " Downloading autoevals-0.0.115-py3-none-any.whl.metadata (12 kB)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (1.13.1)\n", - "Requirement already satisfied: chromadb-client in /usr/local/lib/python3.10/dist-packages (0.5.23)\n", - "Requirement already satisfied: fastapi in /usr/local/lib/python3.10/dist-packages (0.115.6)\n", + "Collecting pypdf\n", + " Downloading pypdf-5.1.0-py3-none-any.whl.metadata (7.2 kB)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.2.2)\n", + "Collecting datasets\n", + " Downloading datasets-3.2.0-py3-none-any.whl.metadata (20 kB)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (4.67.1)\n", + "Requirement already satisfied: opentelemetry-sdk in /usr/local/lib/python3.10/dist-packages (1.29.0)\n", + "Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (1.59.4)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (2.32.3)\n", + "Collecting opentelemetry-exporter-otlp-proto-http\n", + " Downloading opentelemetry_exporter_otlp_proto_http-1.29.0-py3-none-any.whl.metadata (2.2 kB)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.26.4)\n", + "Collecting together\n", + " Downloading together-1.3.11-py3-none-any.whl.metadata (11 kB)\n", + "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.47.1)\n", + "Requirement already satisfied: chardet in /usr/local/lib/python3.10/dist-packages (5.2.0)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.10.0)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (11.1.0)\n", + "Collecting faiss-cpu\n", + " Downloading faiss_cpu-1.9.0.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.4 kB)\n", + "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (0.2.0)\n", + "Collecting redis\n", + " Downloading redis-5.2.1-py3-none-any.whl.metadata (9.1 kB)\n", + "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (3.9.1)\n", + "Collecting chromadb-client\n", + " Downloading chromadb_client-0.6.2-py3-none-any.whl.metadata (2.4 kB)\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (3.0.0)\n", + "Collecting aiosqlite\n", + " Downloading aiosqlite-0.20.0-py3-none-any.whl.metadata (4.3 kB)\n", + "Collecting fastapi\n", + " Downloading fastapi-0.115.6-py3-none-any.whl.metadata (27 kB)\n", "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (0.7.0)\n", "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (0.28.1)\n", - "Requirement already satisfied: uvicorn in /usr/local/lib/python3.10/dist-packages (0.32.1)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.16.1)\n", - "Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.26.5)\n", - "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (24.2)\n", - "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.2)\n", - "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2024.9.11)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.32.3)\n", - "Requirement already satisfied: tokenizers<0.21,>=0.20 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.20.3)\n", - "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.5)\n", - "Requirement already satisfied: typing_extensions>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiosqlite) (4.12.2)\n", + "Collecting uvicorn\n", + " Downloading uvicorn-0.34.0-py3-none-any.whl.metadata (6.5 kB)\n", "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)\n", "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n", - "Requirement already satisfied: async-timeout>=4.0.3 in /usr/local/lib/python3.10/dist-packages (from redis) (4.0.3)\n", - "Requirement already satisfied: opentelemetry-api==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (1.28.2)\n", - "Requirement already satisfied: opentelemetry-semantic-conventions==0.49b2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (0.49b2)\n", - "Requirement already satisfied: deprecated>=1.2.6 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.28.2->opentelemetry-sdk) (1.2.15)\n", - "Requirement already satisfied: importlib-metadata<=8.5.0,>=6.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.28.2->opentelemetry-sdk) (8.5.0)\n", - "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile) (3.21.0)\n", - "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile) (2.2.3)\n", - "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile) (5.3.0)\n", - "Requirement already satisfied: aiohttp<4.0.0,>=3.9.3 in /usr/local/lib/python3.10/dist-packages (from together) (3.11.10)\n", - "Requirement already satisfied: click<9.0.0,>=8.1.7 in /usr/local/lib/python3.10/dist-packages (from together) (8.1.7)\n", - "Requirement already satisfied: eval-type-backport<0.3.0,>=0.1.3 in /usr/local/lib/python3.10/dist-packages (from together) (0.2.0)\n", - "Requirement already satisfied: pyarrow>=10.0.1 in /usr/local/lib/python3.10/dist-packages (from together) (17.0.0)\n", - "Requirement already satisfied: pydantic<3.0.0,>=2.6.3 in /usr/local/lib/python3.10/dist-packages (from together) (2.10.3)\n", - "Requirement already satisfied: rich<14.0.0,>=13.8.1 in /usr/local/lib/python3.10/dist-packages (from together) (13.9.4)\n", - "Requirement already satisfied: tabulate<0.10.0,>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from together) (0.9.0)\n", - "Requirement already satisfied: typer<0.14,>=0.9 in /usr/local/lib/python3.10/dist-packages (from together) (0.13.1)\n", - "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from openai) (3.7.1)\n", - "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from openai) (1.9.0)\n", - "Requirement already satisfied: jiter<1,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from openai) (0.8.2)\n", - "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from openai) (1.3.1)\n", - "Requirement already satisfied: chevron in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.14.0)\n", - "Requirement already satisfied: levenshtein in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.26.1)\n", - "Requirement already satisfied: braintrust_core==0.0.54 in /usr/local/lib/python3.10/dist-packages (from autoevals) (0.0.54)\n", + "Collecting chevron (from autoevals)\n", + " Downloading chevron-0.14.0-py3-none-any.whl.metadata (4.9 kB)\n", + "Collecting levenshtein (from autoevals)\n", + " Downloading levenshtein-0.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.2 kB)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from autoevals) (6.0.2)\n", + "Collecting braintrust_core==0.0.57 (from autoevals)\n", + " Downloading braintrust_core-0.0.57-py3-none-any.whl.metadata (669 bytes)\n", "Requirement already satisfied: jsonschema in /usr/local/lib/python3.10/dist-packages (from autoevals) (4.23.0)\n", + "Requirement already satisfied: typing_extensions>=4.0 in /usr/local/lib/python3.10/dist-packages (from pypdf) (4.12.2)\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)\n", "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.16.1)\n", + "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (17.0.0)\n", + "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n", + " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n", + "Collecting xxhash (from datasets)\n", + " Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n", + "Collecting multiprocess<0.70.17 (from datasets)\n", + " Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n", + "Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets)\n", + " Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.11.11)\n", + "Requirement already satisfied: huggingface-hub>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.27.1)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.2)\n", + "Requirement already satisfied: opentelemetry-api==1.29.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (1.29.0)\n", + "Requirement already satisfied: opentelemetry-semantic-conventions==0.50b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (0.50b0)\n", + "Requirement already satisfied: deprecated>=1.2.6 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.29.0->opentelemetry-sdk) (1.2.15)\n", + "Requirement already satisfied: importlib-metadata<=8.5.0,>=6.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.29.0->opentelemetry-sdk) (8.5.0)\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from openai) (3.7.1)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from openai) (1.9.0)\n", + "Requirement already satisfied: jiter<1,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from openai) (0.8.2)\n", + "Requirement already satisfied: pydantic<3,>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from openai) (2.10.4)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from openai) (1.3.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests) (2.3.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests) (2024.12.14)\n", "Requirement already satisfied: googleapis-common-protos~=1.52 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.66.0)\n", - "Requirement already satisfied: opentelemetry-exporter-otlp-proto-common==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.28.2)\n", - "Requirement already satisfied: opentelemetry-proto==1.28.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.28.2)\n", - "Requirement already satisfied: protobuf<6.0,>=5.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-proto==1.28.2->opentelemetry-exporter-otlp-proto-http) (5.29.1)\n", - "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.8)\n", - "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.5.0)\n", - "Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.16)\n", - "Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0)\n", + "Collecting opentelemetry-exporter-otlp-proto-common==1.29.0 (from opentelemetry-exporter-otlp-proto-http)\n", + " Downloading opentelemetry_exporter_otlp_proto_common-1.29.0-py3-none-any.whl.metadata (1.8 kB)\n", + "Collecting opentelemetry-proto==1.29.0 (from opentelemetry-exporter-otlp-proto-http)\n", + " Downloading opentelemetry_proto-1.29.0-py3-none-any.whl.metadata (2.3 kB)\n", + "Collecting protobuf<6.0,>=5.0 (from opentelemetry-proto==1.29.0->opentelemetry-exporter-otlp-proto-http)\n", + " Downloading protobuf-5.29.3-cp38-abi3-manylinux2014_x86_64.whl.metadata (592 bytes)\n", + "Requirement already satisfied: click<9.0.0,>=8.1.7 in /usr/local/lib/python3.10/dist-packages (from together) (8.1.8)\n", + "Requirement already satisfied: eval-type-backport<0.3.0,>=0.1.3 in /usr/local/lib/python3.10/dist-packages (from together) (0.2.2)\n", + "Collecting pillow\n", + " Downloading pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (9.2 kB)\n", + "Requirement already satisfied: rich<14.0.0,>=13.8.1 in /usr/local/lib/python3.10/dist-packages (from together) (13.9.4)\n", + "Requirement already satisfied: tabulate<0.10.0,>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from together) (0.9.0)\n", + "Requirement already satisfied: typer<0.16,>=0.9 in /usr/local/lib/python3.10/dist-packages (from together) (0.15.1)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2024.11.6)\n", + "Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.21.0)\n", + "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.5.1)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.3.1)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.55.3)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.7)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.2.0)\n", - "Requirement already satisfied: opentelemetry-exporter-otlp-proto-grpc>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (1.28.2)\n", - "Requirement already satisfied: overrides>=7.3.1 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (7.7.0)\n", - "Requirement already satisfied: posthog>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (3.7.4)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.8)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.2.1)\n", + "Requirement already satisfied: async-timeout>=4.0.3 in /usr/local/lib/python3.10/dist-packages (from redis) (4.0.3)\n", + "Collecting opentelemetry-exporter-otlp-proto-grpc>=1.2.0 (from chromadb-client)\n", + " Downloading opentelemetry_exporter_otlp_proto_grpc-1.29.0-py3-none-any.whl.metadata (2.2 kB)\n", + "Collecting overrides>=7.3.1 (from chromadb-client)\n", + " Downloading overrides-7.7.0-py3-none-any.whl.metadata (5.8 kB)\n", + "Collecting posthog>=2.4.0 (from chromadb-client)\n", + " Downloading posthog-3.7.5-py2.py3-none-any.whl.metadata (2.0 kB)\n", "Requirement already satisfied: tenacity>=8.2.3 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (9.0.0)\n", - "Requirement already satisfied: orjson>=3.9.12 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (3.10.12)\n", - "Requirement already satisfied: starlette<0.42.0,>=0.40.0 in /usr/local/lib/python3.10/dist-packages (from fastapi) (0.41.3)\n", + "Requirement already satisfied: orjson>=3.9.12 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (3.10.13)\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile) (3.21.0)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile) (5.3.0)\n", + "Collecting starlette<0.42.0,>=0.40.0 (from fastapi)\n", + " Downloading starlette-0.41.3-py3-none-any.whl.metadata (6.0 kB)\n", "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from fire) (2.5.0)\n", - "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx) (2024.8.30)\n", "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx) (1.0.7)\n", - "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx) (3.10)\n", "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx) (0.14.0)\n", - "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (2.4.4)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (1.3.1)\n", - "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (24.2.0)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (1.5.0)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (6.1.0)\n", - "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (0.2.1)\n", - "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (1.18.3)\n", + "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (2.4.4)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.2)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (24.3.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.5.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.1.0)\n", + "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (0.2.1)\n", + "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.18.3)\n", "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->openai) (1.2.2)\n", - "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.6->opentelemetry-api==1.28.2->opentelemetry-sdk) (1.17.0)\n", - "Requirement already satisfied: grpcio<2.0.0,>=1.63.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb-client) (1.68.1)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.6->opentelemetry-api==1.29.0->opentelemetry-sdk) (1.17.0)\n", + "Requirement already satisfied: grpcio<2.0.0,>=1.63.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb-client) (1.69.0)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (1.17.0)\n", - "Requirement already satisfied: monotonic>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (1.6)\n", - "Requirement already satisfied: backoff>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (2.2.1)\n", - "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3.0.0,>=2.6.3->together) (0.7.0)\n", - "Requirement already satisfied: pydantic-core==2.27.1 in /usr/local/lib/python3.10/dist-packages (from pydantic<3.0.0,>=2.6.3->together) (2.27.1)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4.0)\n", + "Collecting monotonic>=1.5 (from posthog>=2.4.0->chromadb-client)\n", + " Downloading monotonic-1.6-py2.py3-none-any.whl.metadata (1.5 kB)\n", + "Collecting backoff>=1.10.0 (from posthog>=2.4.0->chromadb-client)\n", + " Downloading backoff-2.2.1-py3-none-any.whl.metadata (14 kB)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1.9.0->openai) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1.9.0->openai) (2.27.2)\n", "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.8.1->together) (3.0.0)\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.8.1->together) (2.18.0)\n", - "Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from typer<0.14,>=0.9->together) (1.5.4)\n", + "Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from typer<0.16,>=0.9->together) (1.5.4)\n", "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (2024.10.1)\n", "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (0.35.1)\n", "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (0.22.3)\n", - "Requirement already satisfied: rapidfuzz<4.0.0,>=3.9.0 in /usr/local/lib/python3.10/dist-packages (from levenshtein->autoevals) (3.10.1)\n", - "Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<=8.5.0,>=6.0->opentelemetry-api==1.28.2->opentelemetry-sdk) (3.21.0)\n", + "Collecting rapidfuzz<4.0.0,>=3.9.0 (from levenshtein->autoevals)\n", + " Downloading rapidfuzz-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)\n", + "Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<=8.5.0,>=6.0->opentelemetry-api==1.29.0->opentelemetry-sdk) (3.21.0)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.8.1->together) (0.1.2)\n", + "Downloading psycopg2_binary-2.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m84.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading autoevals-0.0.115-py3-none-any.whl (41 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m41.1/41.1 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading braintrust_core-0.0.57-py3-none-any.whl (4.4 kB)\n", + "Downloading pypdf-5.1.0-py3-none-any.whl (297 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m298.0/298.0 kB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading datasets-3.2.0-py3-none-any.whl (480 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m37.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading opentelemetry_exporter_otlp_proto_http-1.29.0-py3-none-any.whl (17 kB)\n", + "Downloading opentelemetry_exporter_otlp_proto_common-1.29.0-py3-none-any.whl (18 kB)\n", + "Downloading opentelemetry_proto-1.29.0-py3-none-any.whl (55 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m55.8/55.8 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading together-1.3.11-py3-none-any.whl (70 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m70.6/70.6 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl (4.5 MB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m105.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading faiss_cpu-1.9.0.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.5 MB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m27.5/27.5 MB\u001b[0m \u001b[31m78.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading redis-5.2.1-py3-none-any.whl (261 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m261.5/261.5 kB\u001b[0m \u001b[31m23.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading chromadb_client-0.6.2-py3-none-any.whl (604 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m604.2/604.2 kB\u001b[0m \u001b[31m47.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading aiosqlite-0.20.0-py3-none-any.whl (15 kB)\n", + "Downloading fastapi-0.115.6-py3-none-any.whl (94 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m94.8/94.8 kB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading uvicorn-0.34.0-py3-none-any.whl (62 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m62.3/62.3 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m18.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading opentelemetry_exporter_otlp_proto_grpc-1.29.0-py3-none-any.whl (18 kB)\n", + "Downloading overrides-7.7.0-py3-none-any.whl (17 kB)\n", + "Downloading posthog-3.7.5-py2.py3-none-any.whl (54 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m54.9/54.9 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading starlette-0.41.3-py3-none-any.whl (73 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m73.2/73.2 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading chevron-0.14.0-py3-none-any.whl (11 kB)\n", + "Downloading levenshtein-0.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m162.6/162.6 kB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading backoff-2.2.1-py3-none-any.whl (15 kB)\n", + "Downloading monotonic-1.6-py2.py3-none-any.whl (8.2 kB)\n", + "Downloading protobuf-5.29.3-cp38-abi3-manylinux2014_x86_64.whl (319 kB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m319.7/319.7 kB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading rapidfuzz-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", + "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m102.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: monotonic, chevron, xxhash, uvicorn, redis, rapidfuzz, pypdf, psycopg2-binary, protobuf, pillow, overrides, fsspec, faiss-cpu, dill, braintrust_core, backoff, aiosqlite, starlette, posthog, opentelemetry-proto, multiprocess, levenshtein, opentelemetry-exporter-otlp-proto-common, fastapi, together, autoevals, opentelemetry-exporter-otlp-proto-http, opentelemetry-exporter-otlp-proto-grpc, datasets, chromadb-client\n", + " Attempting uninstall: protobuf\n", + " Found existing installation: protobuf 4.25.5\n", + " Uninstalling protobuf-4.25.5:\n", + " Successfully uninstalled protobuf-4.25.5\n", + " Attempting uninstall: pillow\n", + " Found existing installation: pillow 11.1.0\n", + " Uninstalling pillow-11.1.0:\n", + " Successfully uninstalled pillow-11.1.0\n", + " Attempting uninstall: fsspec\n", + " Found existing installation: fsspec 2024.10.0\n", + " Uninstalling fsspec-2024.10.0:\n", + " Successfully uninstalled fsspec-2024.10.0\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\n", + "tensorflow 2.17.1 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3, but you have protobuf 5.29.3 which is incompatible.\n", + "tensorflow-metadata 1.13.1 requires protobuf<5,>=3.20.3, but you have protobuf 5.29.3 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed aiosqlite-0.20.0 autoevals-0.0.115 backoff-2.2.1 braintrust_core-0.0.57 chevron-0.14.0 chromadb-client-0.6.2 datasets-3.2.0 dill-0.3.8 faiss-cpu-1.9.0.post1 fastapi-0.115.6 fsspec-2024.9.0 levenshtein-0.26.1 monotonic-1.6 multiprocess-0.70.16 opentelemetry-exporter-otlp-proto-common-1.29.0 opentelemetry-exporter-otlp-proto-grpc-1.29.0 opentelemetry-exporter-otlp-proto-http-1.29.0 opentelemetry-proto-1.29.0 overrides-7.7.0 pillow-10.4.0 posthog-3.7.5 protobuf-5.29.3 psycopg2-binary-2.9.10 pypdf-5.1.0 rapidfuzz-3.11.0 redis-5.2.1 starlette-0.41.3 together-1.3.11 uvicorn-0.34.0 xxhash-3.5.0\n", "sentence-transformers --no-deps\n", - "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (3.2.1)\n", + "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (3.3.1)\n", "torch --index-url https://download.pytorch.org/whl/cpu\n", "Looking in indexes: https://download.pytorch.org/whl/cpu\n", "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.5.1+cu121)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.16.1)\n", "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.12.2)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.4.2)\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.4)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.5)\n", "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2024.9.0)\n", "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.10/dist-packages (from torch) (1.13.1)\n", "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy==1.13.1->torch) (1.3.0)\n", @@ -390,204 +585,330 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 3, "id": "E1UFuJC570Tk", "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 1000 + "height": 1000, + "referenced_widgets": [ + "88f0c88612bb45d59f07e93567cc0e14", + "9b24a82117e1482a8f6665978e84089c", + "8e75bf7cac454eeabd5ce47a1e981c68", + "fc272883566541108f83117ccd146a21", + "2e27a025a416434f8ab3b63049626d11", + "3a46a46bc8124a92b27aef43cbc009b6", + "4ad6bc0cca62446d8faf19a341bfa86f", + "6437c99289f947449f7d2964288973e5", + "e2f7dea8fc744537b42d0f1a85a73eb4", + "1377d2160344430da8f29a50d113a288", + "0c0b30e126724f9282ac5acbcb4581db", + "895efd0b6d9f4b319159703d965d1966", + "dece6dff65394a5f93585c73359d4dad", + "1030c0848635497681cc9ff0c344fb1a", + "fa6ecaab432347de8427b9b5ac3d4524", + "5effefa8e3764e3aaff57fe0197a7c96", + "1756eceba2c34c1ca182b7db465e95ce", + "0fd62e56e0bb41a996c04e63381d2a29", + "29badfc2eb0345d38d7cfc6c7f8bb1a8", + "e64cedb4560a43d8a43f36002087ac30", + "45aadb26b382460eb5b6b147509fb75a", + "130f2f5840764e8dbd573cc8a6ea6f5f", + "9ee45247ec144bb3aafe4208f316063f", + "da330e0999cb4c3c91a1cb1026304568", + "ff58a5381fb74cb1b9efc10f5c2738d6", + "18ed62b1d4594ed9a2651fa5df046efc", + "4004cda1d84949f5a380536f8a9d0274", + "54bddcf41c5641b7a56c981aadb62ef1", + "a9a0d8415d9d4e98a3f02ae8ec1053da", + "cceff1126242494bab432205c7ac7345", + "e6e53c439dab4639adc1c3c873602476", + "95db8eab3f964edf99038ad53f41fabc", + "52f1d69c6cd04816b6f34657893ae32b", + "b79a1dfcf2904bcba332569dbf351f34", + "7363b1a9a1b54a57bf15357e897128fd", + "3ac596104cdc4439b3980f7ce66ad080", + "5c9ec25994914acd8e13866b3eb943e1", + "38a958036c6e4155815a8169f1be1e53", + "cf5113a647ce45c4a3a523361aa3b5af", + "da8c20a65ba541bda058614849d5cfe2", + "40e9f20d74374b0e82c653caa0559d04", + "f46cfc9237e64db6be2ec6529b61ec88", + "dc04575da46540d4ad3a708e58f0de6a", + "24c0be775e474517a7be49d187822bd0", + "111184729957441d9d1f3d404bd82757", + "be060f9d7a664c17a80510f447c0bee3", + "228445132e5f4b2ca793f4beeeca4426", + "b96a2e34a2af435b9705550fe564591d", + "1f1cdac013af4559889f15eebac5256a", + "834ae2d249b94be6bbe5349509536a4b", + "509863a58de74b07b813aa83ffa4a507", + "48a5b775a4324da791603b83d61be7d1", + "02b60dad91c7482ba70cf8bb954bc4eb", + "2bfb0fb5506d4285918a9c94af9ab5d1", + "0f699b0f99484a8ba2eb17bb1d621c5a", + "c6f34317390e4f90b16235f2ae84a981", + "3da95c8814f34472a181ce7687f9e15e", + "4d1c2de4c1354ef0b84c54c447141707", + "31ab98e0e375416b83b36a98d4958f57", + "8b9ebe06b4e045a29269128ec97d9f62", + "53a46fe254924e78876db6dd2e1b7123", + "f2ce01983f0a4f12b318e6d29f1dd4a1", + "1b7af9f7204547b8b4a718a780af0ded", + "a4bb5a59d1324585b0a34c9bb2820b7f", + "90c2e0e012a94521b9f5cb24924771d8", + "2563a4677dde47d0a2f7fba5c5dde358", + "5023c2b8cf9846069d116237826fed7f", + "960c2f44166b4ac7910af6512832186f", + "309ea9620a674088a5207206d9a52d54", + "1c86d856083c4ef99976849c7a1c9100", + "5d9bf2102da143c1b9e1483e05add4e5", + "85569eaf3ae3488b808131cd460f6514", + "3015bc3ce98a4221a9dd3be92481435d", + "4d7b0983b97f48b2a333d5b2a4ec50a8", + "e834a64e49534c3586cb77f4ec5eab2d", + "67f82b82ebb74d0fb3c68b9c8c57d690", + "b710cb57f19d4490a740c060e8a83b90", + "713c09d1275a43b0af7c2ae8e126517f", + "b62fe08114f549ea99808e8df95c7cad", + "af722d177320422e97c679b24cb754f6", + "487477e023b64947bf42f83dc6275ef1", + "bcf0d3af3bc0439e97023937852941e9", + "d83a1e1e678e4efd83115f9aee0ffc8d", + "f210583576594e759387fc704695ad09", + "91e103573c034ceda689047c61294b17", + "b9eac61fb55342f4bf9834f321899836", + "a92a7bce961e4291b126fda3c540636b", + "01b3e7803d1946118d27acda0c067da2", + "f097b32928f246de9b01fea6f9b092f7", + "35e10db3906248ffa8ab955d2f53bd75", + "80e884cae6ea42eaa37f028120963355", + "25821e7aef4e481bbdf3b4698ce3c277", + "916190b4615e4c5c9f3e55c0804a3502", + "1f1dc0d20cae46feb372203aea6458a0", + "43feace0290a47c0b06c3a1c08cc70a9", + "9f185162847f4cb2828af81c92116582", + "3a649adc22694036b35bab04ff03d338", + "7daef1502e2a4140ac021b3b3a6aa12d", + "1307ef0325bb433d8a1bcc653c7fb291", + "f01d7a1404a943a08c84adce14a262c7", + "f15cdedf8e7b4a44993644a5ff070e78", + "b7f9a3c97f2043f380bdc1827961c649", + "0b64892a98d14a3b85b128df77d8e7d6", + "8de1cba3a7c0422eb2a21e3f8b2059c7", + "a0639d5360044f97ac5b9374c735ff4b", + "9b11eaf2d50a447384b75eb7f73829eb", + "8ab411217bfd486ca3fb8b885fff4690", + "c80ea8c54211427087712b5500e26edf", + "542aa4a847cf4a66a4b3fc93c241363b", + "8c0d69b735c94b719160d39256c643cc", + "3c868641db934c67a44e1d26e1a17756", + "a72d01788b484bbeb4375aac3ceadf34", + "366add01dc734455a384460c97491215", + "70accb92e645435b8f1e0c48538f7473", + "628848757fcf443e806a8f25013cc2b5", + "ebf411690c844daf89b87c120e3cb67e", + "79b9fb75dc1d486c9fc881a90b6f1060", + "0f3bbf28fbed4e97b660bbf3c66a214a", + "a4b2220ed47f4f85b3f991c92de98964", + "b6a505e6c863409db1b906423f99125a", + "d9560d20106a42ec904e7e315f99ff01" + ] }, "collapsed": true, "id": "E1UFuJC570Tk", - "outputId": "bac7c9ec-ad49-4040-af43-8869f0afe5ac" + "outputId": "0000e930-550b-4bf6-ebc6-184e517f930a" }, "outputs": [ { - "name": "stderr", "output_type": "stream", + "name": "stdout", "text": [ - "INFO:llama_stack.distribution.resolver:Resolved 24 providers\n", - "INFO:llama_stack.distribution.resolver: inner-inference => together\n", - "INFO:llama_stack.distribution.resolver: inner-memory => faiss\n", - "INFO:llama_stack.distribution.resolver: models => __routing_table__\n", - "INFO:llama_stack.distribution.resolver: inference => __autorouted__\n", - "INFO:llama_stack.distribution.resolver: inner-safety => llama-guard\n", - "INFO:llama_stack.distribution.resolver: shields => __routing_table__\n", - "INFO:llama_stack.distribution.resolver: safety => __autorouted__\n", - "INFO:llama_stack.distribution.resolver: memory_banks => __routing_table__\n", - "INFO:llama_stack.distribution.resolver: memory => __autorouted__\n", - "INFO:llama_stack.distribution.resolver: agents => meta-reference\n", - "INFO:llama_stack.distribution.resolver: inner-datasetio => huggingface\n", - "INFO:llama_stack.distribution.resolver: inner-datasetio => localfs\n", - "INFO:llama_stack.distribution.resolver: datasets => __routing_table__\n", - "INFO:llama_stack.distribution.resolver: datasetio => __autorouted__\n", - "INFO:llama_stack.distribution.resolver: telemetry => meta-reference\n", - "INFO:llama_stack.distribution.resolver: inner-scoring => basic\n", - "INFO:llama_stack.distribution.resolver: inner-scoring => llm-as-judge\n", - "INFO:llama_stack.distribution.resolver: inner-scoring => braintrust\n", - "INFO:llama_stack.distribution.resolver: scoring_functions => __routing_table__\n", - "INFO:llama_stack.distribution.resolver: scoring => __autorouted__\n", - "INFO:llama_stack.distribution.resolver: inner-eval => meta-reference\n", - "INFO:llama_stack.distribution.resolver: eval_tasks => __routing_table__\n", - "INFO:llama_stack.distribution.resolver: eval => __autorouted__\n", - "INFO:llama_stack.distribution.resolver: inspect => __builtin__\n", - "INFO:llama_stack.distribution.resolver:\n", - "WARNING:opentelemetry.trace:Overriding of current TracerProvider is not allowed\n", - "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.1-405B-Instruct-FP8 served by together\n", - "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.1-70B-Instruct served by together\n", - "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.1-8B-Instruct served by together\n", - "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.2-11B-Vision-Instruct served by together\n", - "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.2-3B-Instruct served by together\n", - "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-3.2-90B-Vision-Instruct served by together\n", - "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-Guard-3-11B-Vision served by together\n", - "INFO:llama_stack.distribution.stack:Models: meta-llama/Llama-Guard-3-8B served by together\n", - "INFO:llama_stack.distribution.stack:Shields: meta-llama/Llama-Guard-3-8B served by llama-guard\n", - "INFO:llama_stack.distribution.stack:Memory_banks: memory_bank_66f7043b-b6c8-44de-a453-068bd50811c4 served by faiss\n", - "INFO:llama_stack.distribution.stack:Memory_banks: memory_bank_edf0d763-95bc-40d3-93a7-95b517162cfb served by faiss\n", - "INFO:llama_stack.distribution.stack:Scoring_fns: basic::equality served by basic\n", - "INFO:llama_stack.distribution.stack:Scoring_fns: basic::regex_parser_multiple_choice_answer served by basic\n", - "INFO:llama_stack.distribution.stack:Scoring_fns: basic::subset_of served by basic\n", - "INFO:llama_stack.distribution.stack:Scoring_fns: braintrust::answer-correctness served by braintrust\n", - "INFO:llama_stack.distribution.stack:Scoring_fns: braintrust::factuality served by braintrust\n", - "INFO:llama_stack.distribution.stack:Scoring_fns: llm-as-judge::405b-simpleqa served by llm-as-judge\n", - "INFO:llama_stack.distribution.stack:Scoring_fns: llm-as-judge::base served by llm-as-judge\n", - "INFO:llama_stack.distribution.stack:\n" + "Removed handler StreamHandler from root logger\n" ] }, { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", "data": { + "text/plain": [ + "modules.json: 0%| | 0.00/349 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "88f0c88612bb45d59f07e93567cc0e14" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config_sentence_transformers.json: 0%| | 0.00/116 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "895efd0b6d9f4b319159703d965d1966" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "README.md: 0%| | 0.00/10.7k [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "9ee45247ec144bb3aafe4208f316063f" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "sentence_bert_config.json: 0%| | 0.00/53.0 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "b79a1dfcf2904bcba332569dbf351f34" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config.json: 0%| | 0.00/612 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "111184729957441d9d1f3d404bd82757" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "model.safetensors: 0%| | 0.00/90.9M [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c6f34317390e4f90b16235f2ae84a981" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "tokenizer_config.json: 0%| | 0.00/350 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "5023c2b8cf9846069d116237826fed7f" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "vocab.txt: 0%| | 0.00/232k [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "713c09d1275a43b0af7c2ae8e126517f" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "tokenizer.json: 0%| | 0.00/466k [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f097b32928f246de9b01fea6f9b092f7" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "special_tokens_map.json: 0%| | 0.00/112 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f01d7a1404a943a08c84adce14a262c7" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "1_Pooling/config.json: 0%| | 0.00/190 [00:00, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "3c868641db934c67a44e1d26e1a17756" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Using config \u001b[34mtogether\u001b[0m:\n" + ], "text/html": [ "
Using config together:\n",
"
\n"
- ],
- "text/plain": [
- "Using config \u001b[34mtogether\u001b[0m:\n"
]
},
- "metadata": {},
- "output_type": "display_data"
+ "metadata": {}
},
{
+ "output_type": "display_data",
"data": {
- "text/html": [
- "apis:\n", - "- agents\n", - "- datasetio\n", - "- eval\n", - "- inference\n", - "- memory\n", - "- safety\n", - "- scoring\n", - "- telemetry\n", - "conda_env: together\n", - "datasets: []\n", - "docker_image: null\n", - "eval_tasks: []\n", - "image_name: together\n", - "memory_banks: []\n", - "metadata_store:\n", - " db_path: /root/.llama/distributions/together/registry.db\n", - " namespace: null\n", - " type: sqlite\n", - "models:\n", - "- metadata: {}\n", - " model_id: meta-llama/Llama-3.1-8B-Instruct\n", - " provider_id: null\n", - " provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n", - "- metadata: {}\n", - " model_id: meta-llama/Llama-3.1-70B-Instruct\n", - " provider_id: null\n", - " provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n", - "- metadata: {}\n", - " model_id: meta-llama/Llama-3.1-405B-Instruct-FP8\n", - " provider_id: null\n", - " provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n", - "- metadata: {}\n", - " model_id: meta-llama/Llama-3.2-3B-Instruct\n", - " provider_id: null\n", - " provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n", - "- metadata: {}\n", - " model_id: meta-llama/Llama-3.2-11B-Vision-Instruct\n", - " provider_id: null\n", - " provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n", - "- metadata: {}\n", - " model_id: meta-llama/Llama-3.2-90B-Vision-Instruct\n", - " provider_id: null\n", - " provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n", - "- metadata: {}\n", - " model_id: meta-llama/Llama-Guard-3-8B\n", - " provider_id: null\n", - " provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n", - "- metadata: {}\n", - " model_id: meta-llama/Llama-Guard-3-11B-Vision\n", - " provider_id: null\n", - " provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n", - "providers:\n", - " agents:\n", - " - config:\n", - " persistence_store:\n", - " db_path: /root/.llama/distributions/together/agents_store.db\n", - " namespace: null\n", - " type: sqlite\n", - " provider_id: meta-reference\n", - " provider_type: inline::meta-reference\n", - " datasetio:\n", - " - config: {}\n", - " provider_id: huggingface\n", - " provider_type: remote::huggingface\n", - " - config: {}\n", - " provider_id: localfs\n", - " provider_type: inline::localfs\n", - " eval:\n", - " - config: {}\n", - " provider_id: meta-reference\n", - " provider_type: inline::meta-reference\n", - " inference:\n", - " - config:\n", - " api_key: <...>\n", - " url: https://api.together.xyz/v1\n", - " provider_id: together\n", - " provider_type: remote::together\n", - " memory:\n", - " - config:\n", - " kvstore:\n", - " db_path: /root/.llama/distributions/together/faiss_store.db\n", - " namespace: null\n", - " type: sqlite\n", - " provider_id: faiss\n", - " provider_type: inline::faiss\n", - " safety:\n", - " - config: {}\n", - " provider_id: llama-guard\n", - " provider_type: inline::llama-guard\n", - " scoring:\n", - " - config: {}\n", - " provider_id: basic\n", - " provider_type: inline::basic\n", - " - config: {}\n", - " provider_id: llm-as-judge\n", - " provider_type: inline::llm-as-judge\n", - " - config:\n", - " openai_api_key: ''\n", - " provider_id: braintrust\n", - " provider_type: inline::braintrust\n", - " telemetry:\n", - " - config:\n", - " service_name: llama-stack\n", - " sinks: sqlite\n", - " sqlite_db_path: /root/.llama/distributions/together/trace_store.db\n", - " provider_id: meta-reference\n", - " provider_type: inline::meta-reference\n", - "scoring_fns: []\n", - "shields:\n", - "- params: null\n", - " provider_id: null\n", - " provider_shield_id: null\n", - " shield_id: meta-llama/Llama-Guard-3-8B\n", - "version: '2'\n", - "\n", - "\n" - ], "text/plain": [ "apis:\n", "- agents\n", @@ -598,6 +919,7 @@ "- safety\n", "- scoring\n", "- telemetry\n", + "- tool_runtime\n", "conda_env: together\n", "datasets: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "docker_image: null\n", @@ -611,36 +933,65 @@ "models:\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct\n", - " provider_id: null\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct\n", - " provider_id: null\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-FP8\n", - " provider_id: null\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct\n", - " provider_id: null\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct\n", - " provider_id: null\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct\n", - " provider_id: null\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", - " provider_id: null\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision\n", - " provider_id: null\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", " provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", + "- metadata:\n", + " embedding_dimension: \u001b[1;36m384\u001b[0m\n", + " model_id: all-MiniLM-L6-v2\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - embedding\n", + " provider_id: sentence-transformers\n", + " provider_model_id: null\n", "providers:\n", " agents:\n", " - config:\n", @@ -663,10 +1014,13 @@ " provider_type: inline::meta-reference\n", " inference:\n", " - config:\n", - " api_key: <...>\n", + " api_key: \u001b[32m'********'\u001b[0m\n", " url: \u001b[4;94mhttps://api.together.xyz/v1\u001b[0m\n", " provider_id: together\n", " provider_type: remote::together\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: sentence-transformers\n", + " provider_type: inline::sentence-transformers\n", " memory:\n", " - config:\n", " kvstore:\n", @@ -687,7 +1041,7 @@ " provider_id: llm-as-judge\n", " provider_type: inline::llm-as-judge\n", " - config:\n", - " openai_api_key: \u001b[32m''\u001b[0m\n", + " openai_api_key: \u001b[32m'********'\u001b[0m\n", " provider_id: braintrust\n", " provider_type: inlin\u001b[1;92me::b\u001b[0mraintrust\n", " telemetry:\n", @@ -697,18 +1051,229 @@ " sqlite_db_path: \u001b[35m/root/.llama/distributions/together/\u001b[0m\u001b[95mtrace_store.db\u001b[0m\n", " provider_id: meta-reference\n", " provider_type: inline::meta-reference\n", + " tool_runtime:\n", + " - config:\n", + " api_key: \u001b[32m'********'\u001b[0m\n", + " max_results: \u001b[1;36m3\u001b[0m\n", + " provider_id: brave-search\n", + " provider_type: remot\u001b[1;92me::b\u001b[0mrave-search\n", + " - config:\n", + " api_key: \u001b[32m'********'\u001b[0m\n", + " max_results: \u001b[1;36m3\u001b[0m\n", + " provider_id: tavily-search\n", + " provider_type: remote::tavily-search\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: code-interpreter\n", + " provider_type: inlin\u001b[1;92me::c\u001b[0mode-interpreter\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: memory-runtime\n", + " provider_type: inline::memory-runtime\n", "scoring_fns: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "shields:\n", "- params: null\n", " provider_id: null\n", " provider_shield_id: null\n", " shield_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "tool_groups:\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: tavily-search\n", + " toolgroup_id: builtin::websearch\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: memory-runtime\n", + " toolgroup_id: builtin::memory\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: code-interpreter\n", + " toolgroup_id: builtin::code_interpreter\n", "version: \u001b[32m'2'\u001b[0m\n", "\n" + ], + "text/html": [ + "
apis:\n", + "- agents\n", + "- datasetio\n", + "- eval\n", + "- inference\n", + "- memory\n", + "- safety\n", + "- scoring\n", + "- telemetry\n", + "- tool_runtime\n", + "conda_env: together\n", + "datasets: []\n", + "docker_image: null\n", + "eval_tasks: []\n", + "image_name: together\n", + "memory_banks: []\n", + "metadata_store:\n", + " db_path: /root/.llama/distributions/together/registry.db\n", + " namespace: null\n", + " type: sqlite\n", + "models:\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-3.1-8B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-3.1-70B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-3.1-405B-Instruct-FP8\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-3.2-3B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-3.2-11B-Vision-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-3.2-90B-Vision-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-3.3-70B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-Guard-3-8B\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n", + "- metadata: {}\n", + " model_id: meta-llama/Llama-Guard-3-11B-Vision\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n", + "- metadata:\n", + " embedding_dimension: 384\n", + " model_id: all-MiniLM-L6-v2\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - embedding\n", + " provider_id: sentence-transformers\n", + " provider_model_id: null\n", + "providers:\n", + " agents:\n", + " - config:\n", + " persistence_store:\n", + " db_path: /root/.llama/distributions/together/agents_store.db\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " datasetio:\n", + " - config: {}\n", + " provider_id: huggingface\n", + " provider_type: remote::huggingface\n", + " - config: {}\n", + " provider_id: localfs\n", + " provider_type: inline::localfs\n", + " eval:\n", + " - config: {}\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " inference:\n", + " - config:\n", + " api_key: '********'\n", + " url: https://api.together.xyz/v1\n", + " provider_id: together\n", + " provider_type: remote::together\n", + " - config: {}\n", + " provider_id: sentence-transformers\n", + " provider_type: inline::sentence-transformers\n", + " memory:\n", + " - config:\n", + " kvstore:\n", + " db_path: /root/.llama/distributions/together/faiss_store.db\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: faiss\n", + " provider_type: inline::faiss\n", + " safety:\n", + " - config: {}\n", + " provider_id: llama-guard\n", + " provider_type: inline::llama-guard\n", + " scoring:\n", + " - config: {}\n", + " provider_id: basic\n", + " provider_type: inline::basic\n", + " - config: {}\n", + " provider_id: llm-as-judge\n", + " provider_type: inline::llm-as-judge\n", + " - config:\n", + " openai_api_key: '********'\n", + " provider_id: braintrust\n", + " provider_type: inline::braintrust\n", + " telemetry:\n", + " - config:\n", + " service_name: llama-stack\n", + " sinks: sqlite\n", + " sqlite_db_path: /root/.llama/distributions/together/trace_store.db\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " tool_runtime:\n", + " - config:\n", + " api_key: '********'\n", + " max_results: 3\n", + " provider_id: brave-search\n", + " provider_type: remote::brave-search\n", + " - config:\n", + " api_key: '********'\n", + " max_results: 3\n", + " provider_id: tavily-search\n", + " provider_type: remote::tavily-search\n", + " - config: {}\n", + " provider_id: code-interpreter\n", + " provider_type: inline::code-interpreter\n", + " - config: {}\n", + " provider_id: memory-runtime\n", + " provider_type: inline::memory-runtime\n", + "scoring_fns: []\n", + "shields:\n", + "- params: null\n", + " provider_id: null\n", + " provider_shield_id: null\n", + " shield_id: meta-llama/Llama-Guard-3-8B\n", + "tool_groups:\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: tavily-search\n", + " toolgroup_id: builtin::websearch\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: memory-runtime\n", + " toolgroup_id: builtin::memory\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: code-interpreter\n", + " toolgroup_id: builtin::code_interpreter\n", + "version: '2'\n", + "\n", + "\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -718,7 +1283,7 @@ "os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n", "\n", "from llama_stack.distribution.library_client import LlamaStackAsLibraryClient\n", - "client = LlamaStackAsLibraryClient(\"together\")\n", + "client = LlamaStackAsLibraryClient(\"together\", provider_data = {\"tavily_search_api_key\": userdata.get('TAVILY_SEARCH_API_KEY')})\n", "_ = client.initialize()" ] }, @@ -736,7 +1301,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 4, "id": "ruO9jQna_t_S", "metadata": { "colab": { @@ -744,22 +1309,24 @@ }, "collapsed": true, "id": "ruO9jQna_t_S", - "outputId": "ee73b87a-10bf-4837-c77d-e619352d7321" + "outputId": "52edefba-301c-43d6-f3e2-6be8086dc7f5" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Available models:\n", - "meta-llama/Llama-3.1-405B-Instruct-FP8 (provider's alias: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo) \n", - "meta-llama/Llama-3.1-70B-Instruct (provider's alias: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo) \n", "meta-llama/Llama-3.1-8B-Instruct (provider's alias: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo) \n", - "meta-llama/Llama-3.2-11B-Vision-Instruct (provider's alias: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo) \n", + "meta-llama/Llama-3.1-70B-Instruct (provider's alias: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo) \n", + "meta-llama/Llama-3.1-405B-Instruct-FP8 (provider's alias: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo) \n", "meta-llama/Llama-3.2-3B-Instruct (provider's alias: meta-llama/Llama-3.2-3B-Instruct-Turbo) \n", + "meta-llama/Llama-3.2-11B-Vision-Instruct (provider's alias: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo) \n", "meta-llama/Llama-3.2-90B-Vision-Instruct (provider's alias: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo) \n", - "meta-llama/Llama-Guard-3-11B-Vision (provider's alias: meta-llama/Llama-Guard-3-11B-Vision-Turbo) \n", + "meta-llama/Llama-3.3-70B-Instruct (provider's alias: meta-llama/Llama-3.3-70B-Instruct-Turbo) \n", "meta-llama/Llama-Guard-3-8B (provider's alias: meta-llama/Meta-Llama-Guard-3-8B) \n", + "meta-llama/Llama-Guard-3-11B-Vision (provider's alias: meta-llama/Llama-Guard-3-11B-Vision-Turbo) \n", + "all-MiniLM-L6-v2 (provider's alias: all-MiniLM-L6-v2) \n", "----\n", "Available shields (safety models):\n", "meta-llama/Llama-Guard-3-8B\n", @@ -794,7 +1361,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 5, "id": "LINBvv8lwTJh", "metadata": { "colab": { @@ -802,21 +1369,21 @@ "height": 35 }, "id": "LINBvv8lwTJh", - "outputId": "36ff2845-26ad-4f1d-9d8a-a83cfdbc8dba" + "outputId": "5b1fe71f-51cf-4633-92a6-277c3cb5bf59" }, "outputs": [ { + "output_type": "execute_result", "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - }, "text/plain": [ "'meta-llama/Llama-3.1-70B-Instruct'" - ] + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } }, - "execution_count": 47, "metadata": {}, - "output_type": "execute_result" + "execution_count": 5 } ], "source": [ @@ -839,22 +1406,24 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 6, "id": "77c29dba", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "77c29dba", - "outputId": "cf4e9ef4-828a-4137-84c3-67515b420464" + "outputId": "cc2e8f7e-1164-49be-d432-0a24e763fa83" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "With gentle eyes and a gentle pace,\n", - "The llama roams, a peaceful face.\n" + "Here's a short poem about a llama:\n", + "\n", + "In the Andes, a llama does roam,\n", + "With soft fur and eyes that are gentle at home.\n" ] } ], @@ -886,17 +1455,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "9496f75c", "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 373 + "base_uri": "https://localhost:8080/" }, "id": "9496f75c", - "outputId": "fb9a0610-896d-4ec1-8aac-691222db5ca0" + "outputId": "7d93a4cf-a5d4-4741-b6eb-6bce3a27ff66" }, - "outputs": [], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "User> write a haiku about machines that learn\n", + "> Response: Metal minds awake\n", + "Learning, adapting fast pace\n", + "Intelligence born\n", + "User> write a haiku about meta\n", + "> Response: Beyond the screen wall\n", + "Reflections of our desire\n", + "Virtual dreams rise\n", + "User> no meta that company\n", + "> Response: Algorithms dance\n", + "Connecting all, they collect\n", + "Data's endless sea\n", + "User> bye\n", + "Ending conversation. Goodbye!\n" + ] + } + ], "source": [ "from termcolor import cprint\n", "\n", @@ -920,6 +1509,7 @@ " assistant_message = {\n", " \"role\": \"assistant\", # was user\n", " \"content\": response.completion_message.content,\n", + " \"stop_reason\": response.completion_message.stop_reason,\n", " }\n", " conversation_history.append(assistant_message)\n", "\n", @@ -940,38 +1530,38 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 9, "id": "d119026e", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "d119026e", - "outputId": "881cd9ce-0def-47fc-aa3a-74ae20b36892" + "outputId": "ebd6dc2b-8542-4370-b08a-e3a7dede6d17" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "User> Write me a sonnet about llama green\n", - "Assistant> In Andean fields, where sunbeams dance and play,\n", - "A gentle creature roams, with softest gaze,\n", - "The llama, calm and steady, steps its way,\n", - "A symbol of serenity in tranquil days.\n", + "Assistant> Amidst the Andes' windswept, rugged land,\n", + "A creature roams with gentle, watchful eyes,\n", + "The llama, soft and quiet, takes its stand,\n", + "Its fleece a warm and vibrant, wavy guise.\n", "\n", - "Its fur, a soft and lustrous coat of brown,\n", - "Shines in the sunlight, with a subtle sheen,\n", - "Its ears, alert and perked, as if to crown\n", - "Its noble head, a beauty to be seen.\n", + "Its ears, so delicate and finely tuned,\n", + "Catch every sound that whispers through the air,\n", + "Its steps, a soft and careful, measured pace,\n", + "A steadfast friend, with loyalty to share.\n", "\n", - "Its eyes, like pools of calm and peaceful night,\n", - "Reflect the stillness of its gentle soul,\n", - "As it grazes on, with quiet, easy might,\n", - "A peaceful presence, that makes the heart whole.\n", + "Its face, a vision of calm serenity,\n", + "Untroubled by the world's wild stormy tides,\n", + "The llama's heart beats strong with quiet peace,\n", + "A reflection of its steadfast, gentle pride.\n", "\n", - "And when it hums, its soft and gentle sound,\n", - "Echoes through the Andes, all around.\n" + "And when it speaks, its soft and soothing voice,\n", + "Echoes whispers of a gentle, loving choice.\n" ] } ], @@ -1009,37 +1599,50 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 10, "id": "axdQIRaJCYAV", "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 100 + "height": 239 }, "id": "axdQIRaJCYAV", - "outputId": "d4e056e9-3b46-4942-f92d-848b4e3cedbd" + "outputId": "a5ef1f54-37df-446e-e21b-cddddaf95f84" }, "outputs": [ { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/pydantic/main.py:426: UserWarning: Pydantic serializer warnings:\n", + " PydanticSerializationUnexpectedValue: Expected `str` but got `list` with value `['Michael Jordan was born...ut\", \"type\": \"object\"}']` - serialized value may not be as expected\n", + " PydanticSerializationUnexpectedValue: PydanticSerializationUnexpectedValue: Expected `ImageContentItem` but got `list` with value `['Michael Jordan was born...ut\", \"type\": \"object\"}']` - serialized value may not be as expected\n", + "PydanticSerializationUnexpectedValue: Expected `TextContentItem` but got `list` with value `['Michael Jordan was born...ut\", \"type\": \"object\"}']` - serialized value may not be as expected\n", + " PydanticSerializationUnexpectedValue: PydanticSerializationUnexpectedValue: Expected `ImageContentItem` but got `str` with value `'Michael Jordan was born ...tion into JSON for me. '` - serialized value may not be as expected\n", + "PydanticSerializationUnexpectedValue: Expected `TextContentItem` but got `str` with value `'Michael Jordan was born ...tion into JSON for me. '` - serialized value may not be as expected\n", + " return self.__pydantic_serializer__.to_python(\n" + ] + }, + { + "output_type": "display_data", "data": { + "text/plain": [ + "\u001b[1;35mCompletionResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mcontent\u001b[0m=\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"name\": \"Michael Jordan\", \"year_born\": \"1963\", \"year_retired\": \"2003\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mstop_reason\u001b[0m=\u001b[32m'end_of_turn'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mlogprobs\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ], "text/html": [ "
CompletionResponse(\n", - "β content='{ \"name\": \"Michael Jordan\", \"year_born\": \"1963\", \"year_retired\": \"2003\" }',\n", + "β content='{\"name\": \"Michael Jordan\", \"year_born\": \"1963\", \"year_retired\": \"2003\"}',\n", "β stop_reason='end_of_turn',\n", "β logprobs=None\n", ")\n", "\n" - ], - "text/plain": [ - "\u001b[1;35mCompletionResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[33mcontent\u001b[0m=\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m \"name\": \"Michael Jordan\", \"year_born\": \"1963\", \"year_retired\": \"2003\" \u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ \u001b[0m\u001b[33mstop_reason\u001b[0m=\u001b[32m'end_of_turn'\u001b[0m,\n", - "\u001b[2;32mβ \u001b[0m\u001b[33mlogprobs\u001b[0m=\u001b[3;35mNone\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -1076,72 +1679,82 @@ "source": [ "### 2.1. Safety API\n", "\n", - "Llama Stack provides Safety guardrails which can be applied at multiple touchpoints within an agentic application. " + "Llama Stack provides Safety guardrails which can be applied at multiple touchpoints within an agentic application." ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 11, "id": "sUJKJxvAFCaI", "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 368 + "height": 360 }, "id": "sUJKJxvAFCaI", - "outputId": "efa3711d-9707-4c60-a88a-3b8b20eca871" + "outputId": "04163c2c-7e9b-463a-e394-412bb94ec28f" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Available Shields: ['meta-llama/Llama-Guard-3-8B']\n", - "Running on input : What is the most famous murder case in the US?\n" + "Checking if input is safe: What is the most famous murder case in the US?\n" ] }, { + "output_type": "display_data", "data": { + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" + ], "text/html": [ "
RunShieldResponse(violation=None)\n", "\n" - ], - "text/plain": [ - "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "Running on input : Tell me 3 signs that an email is a scam\n" + "Checking if input is safe: Tell me 3 signs that an email is a scam\n" ] }, { + "output_type": "display_data", "data": { + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" + ], "text/html": [ "
RunShieldResponse(violation=None)\n", "\n" - ], - "text/plain": [ - "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "Running on input : What's the most effective way to kidnap someone?\n" + "Checking if input is safe: What's the most effective way to kidnap someone?\n" ] }, { + "output_type": "display_data", "data": { + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S1'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32mβ β \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", + "\u001b[2;32mβ β \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ], "text/html": [ "
RunShieldResponse(\n", "β violation=SafetyViolation(\n", @@ -1151,29 +1764,29 @@ "β )\n", ")\n", "\n" - ], + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Checking if input is safe: How do I make cocaine?\n" + ] + }, + { + "output_type": "display_data", + "data": { "text/plain": [ "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", "\u001b[2;32mβ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S1'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32mβ β \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S2'\u001b[0m\u001b[1m}\u001b[0m,\n", "\u001b[2;32mβ β \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", "\u001b[2;32mβ β \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", "\u001b[2;32mβ \u001b[0m\u001b[1m)\u001b[0m\n", "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Running on input : How do I make cocaine?\n" - ] - }, - { - "data": { + ], "text/html": [ "
RunShieldResponse(\n", "β violation=SafetyViolation(\n", @@ -1183,19 +1796,9 @@ "β )\n", ")\n", "\n" - ], - "text/plain": [ - "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S2'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -1250,286 +1853,113 @@ }, { "cell_type": "markdown", - "id": "fN5jaAaax2Aq", - "metadata": { - "id": "fN5jaAaax2Aq" - }, "source": [ - "### 2.1. RAG Agent\n", - "\n", - "In this example, we will index some documentation and ask questions about that documentation." - ] + "### 2.1. List available tool groups on the provider" + ], + "metadata": { + "id": "lYDAkMsL9xSk" + }, + "id": "lYDAkMsL9xSk" }, { "cell_type": "code", - "execution_count": null, - "id": "GvLWltzZCNkg", + "source": [ + "from rich.pretty import pprint\n", + "for toolgroup in client.toolgroups.list():\n", + " pprint(toolgroup)" + ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 541, - "referenced_widgets": [ - "2082554eed6644a996f0e31545789e08", - "a0be415018644c3cac098ab9b19c2391", - "6ede3649e8c24015b3ca77490568bfcd", - "116139bfe7a44f969a2c97490c224d31", - "243d13828d854880a6adb861ea867734", - "e4b1dfe159304c5f88766b33e85a5c19", - "2100363a158b4488a58620983aa5bdd4", - "f10237315e794539a00ca82bfff930be", - "ca09d2207b00456da4c37b5a782a190c", - "ab1f339cba094c918fc5507f8361de5c", - "a6a1eb412f204578b80e5b6717c1e3a5", - "5afdb88e0159462e98773560e3dad439", - "f7bc4df675a141e380d965138552a142", - "d7bf8b49145843ac98a6de424e628729", - "8fb17faf68524de2b73321d71b80b407", - "45b569d733f944d29cefae8a5d13b215", - "fdd057a4506f4f119d945bab5b930799", - "53865d3f918e468ab53504133b127973", - "17603dd7fedf4798a74533fbfd5bb421", - "5f19dab8c6da4050bc47fd78838f7530", - "277101c35a784e6caf455a13cd9b8e59", - "d06666f765764f949e1876f2d5d67242", - "457374ae3035496eb943ad21484f76a0", - "bcf4679dda2d4767a0a24cbf236ca76e", - "6e4ce98853c84beca11471e7ea9d97df", - "186682be50c148c0826fa7c314087562", - "e1ef246e3e6c4359b7b61c341119e121", - "bbb93c771a9c453bb90e729b1f73b931", - "351928faa62543128e0bd29bf89bbf79", - "a0ac7ee92d994c7b9b74e580ab2acdf7", - "118b359b83304ae59fad57e28f621645", - "1f427d4273e04e19b1bdb13388736c01", - "38897429b7cf4077aea3a981593ca866", - "2924814bab5748ddbeeedc70d324195e", - "4738bccc6b384da5a20a8bcd61ecec59", - "044d6d8dda1c4935b1752a9c71c6ee4a", - "9277709ad9154d7b8f37d08db84ee425", - "f3f1f2487d6f455caeb6ec71a2d51ee2", - "66c92a8a89234a61a8c688cf1c3e29a1", - "ee1f4a0c85e44a3b849283337743a8d4", - "63f34c3d43bb4fdd9faeb6161fd77285", - "5cb841b49eaa429e8616ec4b78f501e9", - "a447ea9af3e14e5e94eb14ed8dd3c0de", - "0243626d7ef44ef2b90e8fed5c13183d", - "425c6c0eaed741669551b9af77096c6f", - "d124b09896934d289df649375f455a8e", - "554cff1a83d44bd2bbd36fd43acac7e2", - "d0381718fc8b49a6ac7e7fe85cabba90", - "fd3daaf9093d45d8a9d39b87835f4582", - "753dbe7891a143118b55eccf8c252e03", - "ce7de1af99434ad38a9382e7253dbfc0", - "6c60c8291e734f549e6c5a46b427b974", - "de88640505c24928904a3c76bda31c70", - "fc086d0dd1a745308c59ae219ae135c5", - "15d3ff07f1c54e58b51d452caca01209", - "0640b57408644741970dd958ca0e21e6", - "6259ffc3ef674df985fd3fa4334f9c8e", - "3d0376d2e574410eb4ef963d51cac0a6", - "b66984cc5de541a5801a1e6e54d40daf", - "92135b9cb201475681ee0886887c84a8", - "4a405d391b974e58a2c4fe00d4bb5815", - "2958af7c9cdb46038e0336d6b7c6773e", - "9054d3825edb49cb9c35d24023f50c03", - "3978f618c4f8467eb83c63a8f5aef98a", - "efd68f6dc0b3428e8f5fc830c1bf2341", - "4ad57f5d8a824afab639e8606ee43ca6" - ] + "height": 401 }, - "id": "GvLWltzZCNkg", - "outputId": "26689a4a-6a3a-4d8e-e469-6642e5b39b69" + "id": "MpMXiMCv97X5", + "outputId": "9d33b122-2a80-4d1e-d7ea-e9ec972a4ecd" }, + "id": "MpMXiMCv97X5", + "execution_count": 13, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "User> I am attaching documentation for Torchtune. Help me answer questions I will ask next.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:httpx:HTTP Request: GET https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst \"HTTP/1.1 200 OK\"\n" - ] - }, - { + "output_type": "display_data", "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2082554eed6644a996f0e31545789e08", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ - "Batches: 0%| | 0/1 [00:00, ?it/s]" + "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::websearch'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'tavily-search'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::websearch'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ], + "text/html": [ + "
ToolGroup(\n", + "β identifier='builtin::websearch',\n", + "β provider_id='tavily-search',\n", + "β provider_resource_id='builtin::websearch',\n", + "β type='tool_group',\n", + "β args=None,\n", + "β mcp_endpoint=None\n", + ")\n", + "\n" ] }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:httpx:HTTP Request: GET https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/llama3.rst \"HTTP/1.1 200 OK\"\n" - ] + "metadata": {} }, { + "output_type": "display_data", "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5afdb88e0159462e98773560e3dad439", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ - "Batches: 0%| | 0/1 [00:00, ?it/s]" + "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::memory'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'memory-runtime'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::memory'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ], + "text/html": [ + "
ToolGroup(\n", + "β identifier='builtin::memory',\n", + "β provider_id='memory-runtime',\n", + "β provider_resource_id='builtin::memory',\n", + "β type='tool_group',\n", + "β args=None,\n", + "β mcp_endpoint=None\n", + ")\n", + "\n" ] }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:httpx:HTTP Request: GET https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/datasets.rst \"HTTP/1.1 404 Not Found\"\n" - ] + "metadata": {} }, { + "output_type": "display_data", "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "457374ae3035496eb943ad21484f76a0", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ - "Batches: 0%| | 0/1 [00:00, ?it/s]" + "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'code-interpreter'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32mβ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ], + "text/html": [ + "
ToolGroup(\n", + "β identifier='builtin::code_interpreter',\n", + "β provider_id='code-interpreter',\n", + "β provider_resource_id='builtin::code_interpreter',\n", + "β type='tool_group',\n", + "β args=None,\n", + "β mcp_endpoint=None\n", + ")\n", + "\n" ] }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:httpx:HTTP Request: GET https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/lora_finetune.rst \"HTTP/1.1 200 OK\"\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2924814bab5748ddbeeedc70d324195e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Batches: 0%| | 0/1 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "425c6c0eaed741669551b9af77096c6f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Batches: 0%| | 0/1 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "memory_retrieval> fetched 10158 bytes from ['memory_bank_edf0d763-95bc-40d3-93a7-95b517162cfb']\n", - "inference> I've retrieved the documentation for Torchtune and it seems like you're looking to fine-tune a Llama2 model with LoRA (Low-Rank Adaptation) using Torchtune. You've provided the necessary context and examples.\n", - "\n", - "Please go ahead and ask your questions, and I'll do my best to help you understand the documentation and provide guidance on fine-tuning a Llama2 model with LoRA using Torchtune.\n", - "User> What are the top 5 topics that were explained? Only list succinct bullet points.\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0640b57408644741970dd958ca0e21e6", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Batches: 0%| | 0/1 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "memory_retrieval> fetched 10372 bytes from ['memory_bank_edf0d763-95bc-40d3-93a7-95b517162cfb']\n", - "inference> Here are the top 5 topics explained in the documentation:\n", - "\n", - "* What is LoRA and how does it work?\n", - "* LoRA and its application to Llama2 models\n", - "* Fine-tuning Llama2 with LoRA using torchtune\n", - "* LoRA recipe in torchtune and setting up experiments\n", - "* Trading off memory and model performance with LoRA\n" - ] + "metadata": {} } - ], - "source": [ - "from llama_stack_client.lib.agents.agent import Agent\n", - "from llama_stack_client.lib.agents.event_logger import EventLogger\n", - "from llama_stack_client.types.agent_create_params import AgentConfig\n", - "from llama_stack_client.types import Attachment\n", - "from termcolor import cprint\n", - "\n", - "urls = [\"chat.rst\", \"llama3.rst\", \"datasets.rst\", \"lora_finetune.rst\"]\n", - "attachments = [\n", - " Attachment(\n", - " content=f\"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}\",\n", - " mime_type=\"text/plain\",\n", - " )\n", - " for i, url in enumerate(urls)\n", - "]\n", - "\n", - "agent_config = AgentConfig(\n", - " model=model_id,\n", - " instructions=\"You are a helpful assistant\",\n", - " tools=[{\"type\": \"memory\"}], # enable Memory aka RAG\n", - " enable_session_persistence=False,\n", - ")\n", - "\n", - "rag_agent = Agent(client, agent_config)\n", - "session_id = rag_agent.create_session(\"test-session\")\n", - "user_prompts = [\n", - " (\n", - " \"I am attaching documentation for Torchtune. Help me answer questions I will ask next.\",\n", - " attachments,\n", - " ),\n", - " (\n", - " \"What are the top 5 topics that were explained? Only list succinct bullet points.\",\n", - " None,\n", - " ),\n", - "]\n", - "for prompt, attachments in user_prompts:\n", - " cprint(f'User> {prompt}', 'green')\n", - " response = rag_agent.create_turn(\n", - " messages=[{\"role\": \"user\", \"content\": prompt}],\n", - " attachments=attachments,\n", - " session_id=session_id,\n", - " )\n", - " for log in EventLogger().log(response):\n", - " log.print()" ] }, { @@ -1550,52 +1980,39 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "HZPPv6nfytK7", - "metadata": { - "id": "HZPPv6nfytK7" - }, - "outputs": [], - "source": [ - "search_tool = {\n", - " \"type\": \"brave_search\",\n", - " \"engine\": \"tavily\",\n", - " \"api_key\": userdata.get(\"TAVILY_SEARCH_API_KEY\")\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 16, "id": "WS8Gu5b0APHs", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WS8Gu5b0APHs", - "outputId": "48c3df89-4103-468a-f6f6-fc116d177380" + "outputId": "ec38efab-ca5b-478f-94b6-fd65a3cb3bb9" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "User> Hello\n", - "inference> Hello! How can I assist you today?\n", + "inference> Hello. How can I assist you today?\n", "User> Which teams played in the NBA western conference finals of 2024\n", "inference> brave_search.call(query=\"NBA Western Conference Finals 2024 teams\")\n", "tool_execution> Tool:brave_search Args:{'query': 'NBA Western Conference Finals 2024 teams'}\n", - "tool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\", \"url\": \"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\", \"content\": \"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\", \"score\": 0.9991768, \"raw_content\": null}, {\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\u010di\\u0107 (635) TRB: Luka Don\\u010di\\u0107 (208) AST: Luka Don\\u010di\\u0107 (178) WS: Derrick White (2.9) More playoffs info\", \"score\": 0.99827254, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\", \"score\": 0.9981969, \"raw_content\": null}, {\"title\": \"2024-25 NBA Playoffs Bracket - ESPN\", \"url\": \"https://www.espn.com/nba/playoff-bracket\", \"content\": \"Visit ESPN to view the 2024-25 NBA Playoffs bracket for live scores and results. ... Teams. Odds. NBA Cup Bracket ... Western Conference. OKC wins series 4-0. 1. Thunder. 97. 8.\", \"score\": 0.99584997, \"raw_content\": null}, {\"title\": \"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\", \"url\": \"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\", \"content\": \"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\", \"score\": 0.99273914, \"raw_content\": null}]}\n", - "shield_call> No Violation\n", + "tool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\u010di\\u0107 (635) TRB: Luka Don\\u010di\\u0107 (208) AST: Luka Don\\u010di\\u0107 (178) WS: Derrick White (2.9) More playoffs info\", \"score\": 0.9310187, \"raw_content\": null}, {\"title\": \"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\", \"url\": \"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\", \"content\": \"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\", \"score\": 0.8914433, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\", \"score\": 0.8884594, \"raw_content\": null}, {\"title\": \"NBA Conference Finals Schedule: Full List of Games & Results\", \"url\": \"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\", \"content\": \"The 2024 NBA conference finals matchups are set. Here's the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\", \"score\": 0.850382, \"raw_content\": null}, {\"title\": \"2024 NBA Western Conference playoff bracket - Basketnews.com\", \"url\": \"https://basketnews.com/news-204687-2024-nba-western-conference-playoff-bracket.html\", \"content\": \"In the 2024 NBA Western Conference playoffs, the Oklahoma City Thunder clinched the No. 1 seed. Every team from the Western Conference played their final game of the regular season, and two playoff pairs have been confirmed. The Los Angeles Lakers beat the New Orleans Pelicans, 110-106, in the Play-In Tournament to secure the 7th seed to set up a first-round matchup with the Denver Nuggets. Meanwhile, the Sacramento Kings will host the Golden State Warriors in the second Western Conference NBA Play-In Tournament game. The winners secure the No. 8 seed in the NBA playoffs for its conference. EuroLeague Play-In: Baskonia-Virtus game schedule announced\", \"score\": 0.8473754, \"raw_content\": null}]}\n", "inference> The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\n" ] } ], "source": [ + "from llama_stack_client.lib.agents.agent import Agent\n", + "from llama_stack_client.lib.agents.event_logger import EventLogger\n", + "from llama_stack_client.types.agent_create_params import AgentConfig\n", + "\n", "agent_config = AgentConfig(\n", " model=model_id,\n", " instructions=\"You are a helpful assistant\",\n", - " tools=[search_tool],\n", + " toolgroups=[\"builtin::websearch\"],\n", " input_shields=[],\n", " output_shields=[],\n", " enable_session_persistence=False,\n", @@ -1622,6 +2039,242 @@ " log.print()\n" ] }, + { + "cell_type": "markdown", + "id": "fN5jaAaax2Aq", + "metadata": { + "id": "fN5jaAaax2Aq" + }, + "source": [ + "### 2.3. RAG Agent\n", + "\n", + "In this example, we will index some documentation and ask questions about that documentation.\n", + "\n", + "The tool we use is the memory tool. Given a list of memory banks,the tools can help the agent query and retireve relevent chunks. In this example, we first create a memory bank and add some documents to it. Then configure the agent to use the memory tool. The difference here from the websearch example is that we pass along the memory bank as an argument to the tool. A toolgroup can be provided to the agent as just a plain name, or as a dict with both name and arguments needed for the toolgroup. These args get injected by the agent for every tool call that happens for the corresponding toolgroup." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "GvLWltzZCNkg", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 351, + "referenced_widgets": [ + "edc4d84302f746d39a43e8107af6b67b", + "980292182c7144e194604c13ac544a26", + "8dee873065a047799a04e49ab791e449", + "29683ef34d5646c687118a2a0cdec6d4", + "3ec694106303491ea112a257309bc69c", + "288c9da81b3c4d80a4959753da973f58", + "cf453a1ed54645aba656f9a3f1461e69", + "ec747bd7c37c45298896c513634cd59a", + "5a620017a5384af1a056de687b2670db", + "8d370762fafd4d7887ff68ea8279d083", + "b6a0eb553b024a71b737ff47ca8f7633", + "2eff72cbd9bb4f1ca77213602caa9417", + "e82b5196209f4b9f919c7abb402a4504", + "fe34706489c14253a5015ff6332ec4e0", + "2574b07e4af24715aa89d048cc84e358", + "10bc8be68b5545fd8609824b02499ebf", + "d2473b7a6c5b4483981516af2fc59bde", + "4282ee7d947e426ba863df9970e82f3f", + "cfe6be8fd8254bc084a81b1d06e86ae1", + "1817f6732a5f44c7adc75a644b1acef2", + "7551b282ef3a4387a801637de2d5c76e", + "69e5263c812c4542a9e5c31fefaa37fe", + "7cc356ed20e94401b72a0e138ad0f5df", + "acd39276db17439798a97abc56460b0f", + "bda474c3b8184597a6a9bc6da0672a50", + "20a66f9de4ed41c7ac9a8e817898ed9e", + "e662ba10fbae49d9b66172125dfc0717", + "d452b32c54e14e41a17fd7d51862ba8e", + "d1f8f4568a444248b69022d58e3f1af0", + "0c2e30d78c234b1b8098d879442d3bac", + "9bb8bf12010f42b2b17c10c7ccaa7bf8", + "2b2046db907349798e3ae774c15b25d2", + "3c18f449359f422f950543bd976fe323", + "472b1acc4c5a4c48b2ec62be42d1830c", + "44e34588d6854737b0fb14b4b6a62a95", + "03402ad03418435ca7a550e3246cd300", + "811f115733b14ab4b242a8b11526016c", + "e61fdef1dc4b4d809168c0b441b0e6ac", + "631c9a95127244c79875c829a7637df6", + "d25492ad867141bfa8d957d2464b8639", + "9df914248c214597bed7d7980c7a0afe", + "4709067f3f554b93b3ef35e3f58cbf85", + "02baf670942347d69c290452de8641e4", + "7611cfc7965649ba88ca57c1a9f9ccf3", + "15ae23892b634a9f821a8fcee14e500b", + "b28d46c2ecdd46b9b3f2da871afbf1cb", + "4b83e3caa8ec47169dca04ee9599adeb", + "c83c23161674484e81f0db9856c23eb6", + "3ded85d9c34246e88f8ce693eb8025e5", + "0ac8e976a32c4f5989392b8088546e00", + "ed4b0035752546cc81688a7a77ba27c0", + "269b1ad9dc7b4ebb94d7364c75f3f324", + "2256ddab0ae1408abb10ba211a08f794", + "42335bcbc6ee40a79d36c5159cc7da06", + "cf694e1b797246b096ae588973dc985f" + ] + }, + "id": "GvLWltzZCNkg", + "outputId": "ef5f3ec4-edaf-4705-fb1b-b86659d7143c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Batches: 0%| | 0/1 [00:00, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "edc4d84302f746d39a43e8107af6b67b" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Batches: 0%| | 0/1 [00:00, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "2eff72cbd9bb4f1ca77213602caa9417" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Batches: 0%| | 0/1 [00:00, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "7cc356ed20e94401b72a0e138ad0f5df" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Batches: 0%| | 0/1 [00:00, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "472b1acc4c5a4c48b2ec62be42d1830c" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "User> What are the top 5 topics that were explained? Only list succinct bullet points.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Batches: 0%| | 0/1 [00:00, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "15ae23892b634a9f821a8fcee14e500b" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tool_execution> Tool:query_memory Args:{}\n", + "tool_execution> fetched 10848 bytes from memory\n", + "inference> Here are the top 5 topics explained:\n", + "\n", + "β’ Fine-tuning on a custom chat dataset\n", + "β’ Tokenizing prompt templates & special tokens\n", + "β’ Template changes from Llama2 to Llama3\n", + "β’ When to use a prompt template\n", + "β’ Fine-tuning Llama3 with chat data\n" + ] + } + ], + "source": [ + "from llama_stack_client.lib.agents.agent import Agent\n", + "from llama_stack_client.lib.agents.event_logger import EventLogger\n", + "from llama_stack_client.types.agent_create_params import AgentConfig\n", + "from termcolor import cprint\n", + "from llama_stack_client.types.memory_insert_params import Document\n", + "\n", + "urls = [\"chat.rst\", \"llama3.rst\", \"datasets.rst\", \"lora_finetune.rst\"]\n", + "documents = [\n", + " Document(\n", + " document_id=f\"num-{i}\",\n", + " content=f\"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}\",\n", + " mime_type=\"text/plain\",\n", + " metadata={},\n", + " )\n", + " for i, url in enumerate(urls)\n", + "]\n", + "memory_bank_id = \"test-memory-bank\"\n", + "client.memory_banks.register(\n", + " memory_bank_id=memory_bank_id,\n", + " params={\n", + " \"memory_bank_type\": \"vector\",\n", + " \"embedding_model\": \"all-MiniLM-L6-v2\",\n", + " \"chunk_size_in_tokens\": 512,\n", + " \"overlap_size_in_tokens\": 64,\n", + " },\n", + ")\n", + "client.memory.insert(\n", + " bank_id=memory_bank_id,\n", + " documents=documents,\n", + ")\n", + "agent_config = AgentConfig(\n", + " model=model_id,\n", + " instructions=\"You are a helpful assistant\",\n", + " enable_session_persistence=False,\n", + " toolgroups = [\n", + " {\n", + " \"name\": \"builtin::memory\",\n", + " \"args\" : {\n", + " \"memory_bank_ids\": [memory_bank_id],\n", + " }\n", + " }\n", + " ],\n", + ")\n", + "rag_agent = Agent(client, agent_config)\n", + "session_id = rag_agent.create_session(\"test-session\")\n", + "user_prompts = [\n", + " \"What are the top 5 topics that were explained? Only list succinct bullet points.\",\n", + "]\n", + "for prompt in user_prompts:\n", + " cprint(f'User> {prompt}', 'green')\n", + " response = rag_agent.create_turn(\n", + " messages=[{\"role\": \"user\", \"content\": prompt}],\n", + " session_id=session_id,\n", + " )\n", + " for log in EventLogger().log(response):\n", + " log.print()" + ] + }, { "cell_type": "markdown", "id": "yRzRwu8qxyl0", @@ -1629,14 +2282,14 @@ "id": "yRzRwu8qxyl0" }, "source": [ - "### 2.3. Code Execution Agent\n", + "### 2.4. Code Execution Agent\n", "\n", "In this example, we will show how multiple tools can be called by the model - including web search and code execution. It will use bubblewrap that we installed earlier to execute the generated code." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "id": "GvVRuhO-GOov", "metadata": { "colab": { @@ -1644,160 +2297,118 @@ }, "collapsed": true, "id": "GvVRuhO-GOov", - "outputId": "cb988aa9-568b-4966-d500-575b7b24578f" + "outputId": "39395e26-bb7d-4616-d51d-036c8bf41427" }, "outputs": [ { + "output_type": "stream", "name": "stdout", - "output_type": "stream", - "text": [ - "User> ('Here is a csv, can you describe it ?', [Attachment(content='https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv', mime_type='test/csv')])\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:httpx:HTTP Request: GET https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv \"HTTP/1.1 200 OK\"\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", "text": [ + "User> Here is a csv, can you describe it?\n", "inference> import pandas as pd\n", - "\n", - "# Read the CSV file\n", - "df = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\n", - "\n", - "# Describe the CSV\n", - "print(df.describe())\n", - "tool_execution> Tool:code_interpreter Args:{'code': \"import pandas as pd\\n\\n# Read the CSV file\\ndf = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\\n\\n# Describe the CSV\\nprint(df.describe())\"}\n", + "# Load data\n", + "df = pd.read_csv(\"/tmp/tmpvzjigv7g/n2OzlTWhinflation.csv\")\n", + "# Rows\n", + "print(\"Number of rows and columns in the data:\", df.shape)\n", + "# Columns\n", + "print(\"Columns of the data are:\", len(df.columns))\n", + "# Column names\n", + "print(\"Columns of the data are:\", df.columns)\n", + "# Column dtypes\n", + "print(\"Datatype of the columns are:\", df.dtypes)\n", + "tool_execution> Tool:code_interpreter Args:{'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"/tmp/tmpvzjigv7g/n2OzlTWhinflation.csv\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'}\n", "tool_execution> Tool:code_interpreter Response:completed\n", "[stdout]\n", - "Year Jan Feb Mar ... Sep Oct Nov Dec\n", - "count 10.00000 10.000000 10.000000 10.000000 ... 10.000000 10.000000 10.000000 10.000000\n", - "mean 2018.50000 2.700000 2.730000 2.760000 ... 2.850000 2.850000 2.850000 2.890000\n", - "std 3.02765 1.667999 1.743591 1.757018 ... 1.593912 1.577093 1.551523 1.569466\n", - "min 2014.00000 1.400000 1.300000 1.600000 ... 1.700000 1.600000 1.600000 1.600000\n", - "25% 2016.25000 1.650000 1.725000 1.850000 ... 1.750000 1.825000 1.775000 1.875000\n", - "50% 2018.50000 2.200000 2.150000 2.050000 ... 2.200000 2.100000 2.150000 2.200000\n", - "75% 2020.75000 2.300000 2.375000 2.175000 ... 3.600000 3.575000 3.575000 3.500000\n", - "max 2023.00000 6.000000 6.400000 6.500000 ... 6.600000 6.300000 6.000000 5.700000\n", - "\n", - "[8 rows x 13 columns]\n", + "Number of rows and columns in the data: (10, 13)\n", + "Columns of the data are: 13\n", + "Columns of the data are: Index(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',\n", + " 'Oct', 'Nov', 'Dec'],\n", + " dtype='object')\n", + "Datatype of the columns are: Year int64\n", + "Jan float64\n", + "Feb float64\n", + "Mar float64\n", + "Apr float64\n", + "May float64\n", + "Jun float64\n", + "Jul float64\n", + "Aug float64\n", + "Sep float64\n", + "Oct float64\n", + "Nov float64\n", + "Dec float64\n", + "dtype: object\n", "[/stdout]\n", - "shield_call> No Violation\n", - "inference> The CSV file appears to be a dataset with 10 rows and 13 columns. The columns represent various economic indicators, such as inflation rates for each month from January to December, as well as year (yearly inflation rate).\n", - "\n", - "Here is a brief description of the data:\n", - "\n", - "* The `Year` column contains the year for which the inflation rate is reported.\n", - "* The `Jan`, `Feb`, `Mar`, etc. columns contain the inflation rate for each month (January to December).\n", - "* The `count` column is the count of non-null values in each column.\n", - "* The `mean` column is the mean of the non-null values in each column.\n", - "* The `std` column is the standard deviation of the non-null values in each column.\n", - "* The `min` column is the minimum value in each column.\n", - "* The `25%` column is the 25th percentile (25th percentile) of the non-null values in each column.\n", - "* The `50%` column is the 50th percentile (50th percentile) of the non-null values in each column.\n", - "* The `75%` column is the 75th percentile (75th percentile) of the non-null values in each column.\n", - "* The `max` column is the maximum value in each column.\n", - "\n", - "This dataset could be used for various applications, such as analyzing historical inflation rates, forecasting future inflation rates, or comparing inflation rates across different months or years.\n", - "User> ('Which year ended with the highest inflation ?', None)\n", - "inference> According to the data, the year with the highest inflation was 2023. The inflation rate for 2023 is 6.600%.\n", - "User> ('What macro economic situations that led to such high inflation in that period?', None)\n", - "inference> The high inflation rate in 2023 is likely attributed to a combination of macroeconomic factors, including:\n", - "\n", - "1. **Supply chain disruptions**: The COVID-19 pandemic and subsequent lockdowns led to supply chain disruptions, resulting in shortages and price increases for various goods and services.\n", - "2. **Economic growth**: The rapid economic growth in the preceding years created demand for goods and services, leading to higher production costs and, subsequently, higher prices.\n", - "3. **Monetary policy**: The central bank's easy-money policies, such as quantitative easing and low interest rates, increased the money supply and led to inflationary pressures.\n", - "4. **Commodity price shocks**: Increases in global commodity prices, such as oil and food prices, contributed to higher production costs and inflation.\n", - "5. **Labor market tightness**: The labor market has been tight, leading to higher wages and, subsequently, higher production costs, which have been passed on to consumers.\n", - "6. **Trade wars and tariffs**: The ongoing trade tensions and tariffs imposed by various countries have disrupted global supply chains, leading to higher prices for imported goods.\n", - "7. **Climate change and extreme weather events**: The increasing frequency and severity of extreme weather events, such as heatwaves and droughts, have disrupted agricultural production and supply chains.\n", - "8. **Currency devaluation**: A devaluation of the currency can make imports more expensive, leading to higher inflation.\n", - "9. **Government spending and fiscal policy**: Government spending and fiscal policy decisions, such as tax cuts and increased government spending, can inject more money into the economy, leading to inflation.\n", - "10. **Monetary policy mistakes**: Mistakes in monetary policy, such as premature interest rate hikes or overly aggressive quantitative easing, can lead to inflationary pressures.\n", - "\n", - "It's worth noting that the specific factors contributing to the high inflation rate in 2023 may vary depending on the region, country, or even specific economy.\n", - "User> ('Plot average yearly inflation as a time series', None)\n", + "inference> The csv file contains 10 rows and 13 columns. The columns are named 'Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'. The data types of the columns are all float64, indicating that the data is numeric. The 'Year' column is of type int64, suggesting that it contains integer values. The remaining 12 columns contain floating point numbers.\n", + "User> Plot average yearly inflation as a time series\n", "inference> import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", - "# Read the CSV file\n", - "df = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\n", + "# Load data\n", + "df = pd.read_csv(\"/tmp/tmpvzjigv7g/n2OzlTWhinflation.csv\")\n", "\n", - "# Extract the year and inflation rate from the CSV file\n", - "df['Year'] = pd.to_datetime(df['Year'], format='%Y')\n", - "df = df.rename(columns={'Jan': 'Jan Rate', 'Feb': 'Feb Rate', 'Mar': 'Mar Rate', 'Apr': 'Apr Rate', 'May': 'May Rate', 'Jun': 'Jun Rate', 'Jul': 'Jul Rate', 'Aug': 'Aug Rate', 'Sep': 'Sep Rate', 'Oct': 'Oct Rate', 'Nov': 'Nov Rate', 'Dec': 'Dec Rate'})\n", + "# Calculate average yearly inflation\n", + "df['Average'] = df[['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']].mean(axis=1)\n", "\n", - "# Calculate the average yearly inflation rate\n", - "df['Yearly Inflation'] = df[['Jan Rate', 'Feb Rate', 'Mar Rate', 'Apr Rate', 'May Rate', 'Jun Rate', 'Jul Rate', 'Aug Rate', 'Sep Rate', 'Oct Rate', 'Nov Rate', 'Dec Rate']].mean(axis=1)\n", - "\n", - "# Plot the average yearly inflation rate as a time series\n", - "plt.figure(figsize=(10, 6))\n", - "plt.plot(df['Year'], df['Yearly Inflation'], marker='o')\n", - "plt.title('Average Yearly Inflation Rate')\n", + "# Plot average yearly inflation as a time series\n", + "plt.figure(figsize=(10,6))\n", + "plt.plot(df['Year'], df['Average'])\n", + "plt.title('Average Yearly Inflation')\n", "plt.xlabel('Year')\n", - "plt.ylabel('Inflation Rate (%)')\n", + "plt.ylabel('Average Inflation')\n", "plt.grid(True)\n", "plt.show()\n", - "tool_execution> Tool:code_interpreter Args:{'code': \"import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Read the CSV file\\ndf = pd.read_csv('/tmp/tmpco0s0o4_/LOdZoVp1inflation.csv')\\n\\n# Extract the year and inflation rate from the CSV file\\ndf['Year'] = pd.to_datetime(df['Year'], format='%Y')\\ndf = df.rename(columns={'Jan': 'Jan Rate', 'Feb': 'Feb Rate', 'Mar': 'Mar Rate', 'Apr': 'Apr Rate', 'May': 'May Rate', 'Jun': 'Jun Rate', 'Jul': 'Jul Rate', 'Aug': 'Aug Rate', 'Sep': 'Sep Rate', 'Oct': 'Oct Rate', 'Nov': 'Nov Rate', 'Dec': 'Dec Rate'})\\n\\n# Calculate the average yearly inflation rate\\ndf['Yearly Inflation'] = df[['Jan Rate', 'Feb Rate', 'Mar Rate', 'Apr Rate', 'May Rate', 'Jun Rate', 'Jul Rate', 'Aug Rate', 'Sep Rate', 'Oct Rate', 'Nov Rate', 'Dec Rate']].mean(axis=1)\\n\\n# Plot the average yearly inflation rate as a time series\\nplt.figure(figsize=(10, 6))\\nplt.plot(df['Year'], df['Yearly Inflation'], marker='o')\\nplt.title('Average Yearly Inflation Rate')\\nplt.xlabel('Year')\\nplt.ylabel('Inflation Rate (%)')\\nplt.grid(True)\\nplt.show()\"}\n", + "tool_execution> Tool:code_interpreter Args:{'code': 'import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv(\"/tmp/tmpvzjigv7g/n2OzlTWhinflation.csv\")\\n\\n# Calculate average yearly inflation\\ndf[\\'Average\\'] = df[[\\'Jan\\', \\'Feb\\', \\'Mar\\', \\'Apr\\', \\'May\\', \\'Jun\\', \\'Jul\\', \\'Aug\\', \\'Sep\\', \\'Oct\\', \\'Nov\\', \\'Dec\\']].mean(axis=1)\\n\\n# Plot average yearly inflation as a time series\\nplt.figure(figsize=(10,6))\\nplt.plot(df[\\'Year\\'], df[\\'Average\\'])\\nplt.title(\\'Average Yearly Inflation\\')\\nplt.xlabel(\\'Year\\')\\nplt.ylabel(\\'Average Inflation\\')\\nplt.grid(True)\\nplt.show()'}\n", "tool_execution> Tool:code_interpreter Response:completed\n", - "shield_call> No Violation\n", - "inference> This code reads the CSV file, extracts the year and inflation rate, calculates the average yearly inflation rate, and plots the average yearly inflation rate as a time series. The resulting plot shows the average inflation rate over the years.\n" + "inference> This code calculates the average inflation for each year by taking the mean of the 12 monthly inflation rates. It then plots this average yearly inflation as a time series using matplotlib. The x-axis represents the year and the y-axis represents the average inflation. The plot shows the trend of average yearly inflation over the years.\n" ] } ], "source": [ + "from llama_stack_client.types.agents.turn_create_params import Document\n", + "\n", "agent_config = AgentConfig(\n", - " model=model_id,\n", + " sampling_params = {\n", + " \"max_tokens\" : 4096,\n", + " \"temperature\": 0.0\n", + " },\n", + " model=\"meta-llama/Llama-3.1-8B-Instruct\",\n", " instructions=\"You are a helpful assistant\",\n", - " tools=[\n", - " search_tool,\n", - " {\n", - " \"type\": \"code_interpreter\",\n", - " }\n", + " toolgroups=[\n", + " \"builtin::code_interpreter\",\n", + " \"builtin::websearch\"\n", " ],\n", - " tool_choice=\"required\",\n", + " tool_choice=\"auto\",\n", " input_shields=[],\n", " output_shields=[],\n", " enable_session_persistence=False,\n", ")\n", - "\n", "codex_agent = Agent(client, agent_config)\n", "session_id = codex_agent.create_session(\"test-session\")\n", "\n", - "user_prompts = [\n", - " (\n", - " \"Here is a csv, can you describe it ?\",\n", - " [\n", - " Attachment(\n", - " content=\"https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv\",\n", - " mime_type=\"test/csv\",\n", - " )\n", - " ],\n", - " ),\n", - " (\"Which year ended with the highest inflation ?\", None),\n", - " (\n", - " \"What macro economic situations that led to such high inflation in that period?\",\n", - " None,\n", - " ),\n", - " (\"Plot average yearly inflation as a time series\", None),\n", + "\n", + "inflation_doc = Document(\n", + " content=\"https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv\",\n", + " mime_type=\"text/csv\",\n", + ")\n", + "\n", + "user_input = [\n", + " {\"prompt\": \"Here is a csv, can you describe it?\", \"documents\": [inflation_doc]},\n", + " {\"prompt\": \"Plot average yearly inflation as a time series\"},\n", "]\n", "\n", - "for prompt in user_prompts:\n", - " cprint(f'User> {prompt}', 'green')\n", + "for input in user_input:\n", + " cprint(f'User> {input[\"prompt\"]}', 'green')\n", " response = codex_agent.create_turn(\n", + "\n", " messages=[\n", " {\n", " \"role\": \"user\",\n", - " \"content\": prompt[0],\n", + " \"content\": input[\"prompt\"],\n", " }\n", " ],\n", - " attachments=prompt[1],\n", " session_id=session_id,\n", + " documents=input.get(\"documents\", None)\n", " )\n", " # for chunk in response:\n", " # print(chunk)\n", @@ -1808,61 +2419,57 @@ }, { "cell_type": "markdown", - "id": "9GHJHfLmIQQi", "metadata": { "id": "9GHJHfLmIQQi" }, "source": [ "- Now, use the generated response from agent to view the plot" - ] + ], + "id": "9GHJHfLmIQQi" }, { "cell_type": "code", - "execution_count": null, - "id": "JqBBVLKdIHHq", + "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 564 }, "id": "JqBBVLKdIHHq", - "outputId": "4563e803-8385-426b-ec6c-e8b19e2ee6e6" + "outputId": "3c89c303-e7c0-4ae2-c271-f34a4d296a85" }, "outputs": [ { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIjCAYAAADFthA8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+WklEQVR4nO3dd3hUZdrH8d+k90BCGiSE0AkBpFdFVJoUscGiKCq6rmt3XffVVQFdd3Vd265tbdjAguIKKiACgvReQi+hh4QQSCGkzZz3j5BITIBkmJkzyXw/15ULcubknPvcmYG553nO/VgMwzAEAAAAAB7Cy+wAAAAAAMCVKIIAAAAAeBSKIAAAAAAehSIIAAAAgEehCAIAAADgUSiCAAAAAHgUiiAAAAAAHoUiCAAAAIBHoQgCAAAA4FEoggAAbu3yyy/X5ZdfbnYYFT755BO1bdtWvr6+atCggSTnxDhp0iRZLBaHHhMAUIYiCIDHevPNN2WxWNSzZ0+zQ3Eby5cvl5eXlx5//PFqH3/hhRdksVj0/fffuzgyx7FYLLrvvvvs+tnt27frtttuU4sWLfTuu+/qnXfeuahYCgoKNGnSJP38888XdRxHs1gslb7CwsLUv3//i/q9T5s2Ta+++qrjggSAi0ARBMBjTZ06Vc2aNdOqVau0e/dus8NxC71799bdd9+tl156SVu2bKn02P79+/XMM8/oxhtv1LBhw0yK0Fw///yzbDabXnvtNd12220aPXr0RR2voKBAkydPrrYIevLJJ3X69OmLOv7FGDhwoD755BN9/PHHeuyxx7R7926NGDFCc+fOtet4FEEA3AlFEACPlJaWpmXLlunll19WVFSUpk6d6vIYbDabCgsLXX7eC3n++efVqFEj3X333TIMo2L7/fffL19fX7322msuiaOgoMAl56mNzMxMSaqYBudMPj4+CggIcPp5zqV169YaN26cbrnlFj355JP66aefZBiGy37/AOBMFEEAPNLUqVPVsGFDDRs2TDfccEOlIqikpEQRERG6/fbbq/xcbm6uAgIC9Oijj1ZsKyoq0sSJE9WyZUv5+/srISFBjz32mIqKiir9bPk0rKlTp6p9+/by9/fXnDlzJEn/+te/1KdPH0VGRiowMFBdu3bVV199VeX8p0+f1gMPPKBGjRopNDRUI0eO1OHDh2WxWDRp0qRK+x4+fFh33HGHYmJi5O/vr/bt2+uDDz64YG7Cw8P12muvaenSpXrvvfckSd98841mzZql559/XnFxcbLZbHr11VfVvn17BQQEKCYmRnfffbdOnDhR6Vjffvuthg0bpsaNG8vf318tWrTQs88+K6vVWmm/yy+/XCkpKVq7dq0uu+wyBQUF6YknnqgSW35+voKDg/Xggw9WeezQoUPy9vbWP/7xjwte49l+/vlnWSwWffnll3ruuecUHx+vgIAAXXnllZVGCJs1a6aJEydKkqKioqrNebni4mI9/fTT6tq1q8LDwxUcHKxLL71UCxcurNhn3759ioqKkiRNnjy5YupZ+TGruyeotLRUzz77rFq0aCF/f381a9ZMTzzxRJXnWrNmzTR8+HAtWbJEPXr0UEBAgJo3b66PP/64Vrk5W7t27dSoUSPt2bOn0vaa/I4vv/xyff/999q/f3/FdTZr1qzi8Zq+hgDAYQwA8EBt27Y1JkyYYBiGYSxevNiQZKxatari8TvuuMNo0KCBUVRUVOnnPvroI0OSsXr1asMwDMNqtRqDBg0ygoKCjIceesj473//a9x3332Gj4+Pcc0111T6WUlGu3btjKioKGPy5MnGG2+8Yaxfv94wDMOIj483/vjHPxqvv/668fLLLxs9evQwJBnfffddpWOMHj3akGTccsstxhtvvGGMHj3a6NSpkyHJmDhxYsV+R48eNeLj442EhATjmWeeMd566y1j5MiRhiTjlVdeqVGOhg0bZjRs2NDYs2ePkZCQYPTp08ew2WyGYRjGnXfeafj4+Bh33XWX8fbbbxt/+ctfjODgYKN79+5GcXFxxTFGjRpljB492njxxReNt956y7jxxhsNScajjz5a6Vz9+/c3YmNjjaioKOP+++83/vvf/xr/+9//Kh7r379/xb4333yzERMTY5SWllY6xj//+U/DYrEY+/fvP+91STLuvffeiu8XLlxoSDI6d+5sdO3a1XjllVeMSZMmGUFBQUaPHj0q9vvmm2+Ma6+91pBkvPXWW8Ynn3xibNy4sdoYjx07ZsTFxRmPPPKI8dZbbxn//Oc/jTZt2hi+vr4Vv/P8/HzjrbfeMiQZ1157rfHJJ59UOubEiRON3/43PX78eEOSccMNNxhvvPGGceuttxqSjFGjRlXaLzEx0WjTpo0RExNjPPHEE8brr79udOnSxbBYLEZqaup581NdjgzDME6ePGl4e3sbPXv2rLS9Jr/jH3/80bjkkkuMRo0aVVznN998YxhG7V5DAOAoFEEAPM6aNWsMSca8efMMwzAMm81mxMfHGw8++GDFPnPnzjUkGbNmzar0s1dffbXRvHnziu8/+eQTw8vLy/jll18q7ff2228bkoylS5dWbJNkeHl5GVu2bKkSU0FBQaXvi4uLjZSUFOOKK66o2LZ27VpDkvHQQw9V2ve2226rUgRNmDDBiIuLM7Kysirt+7vf/c4IDw+vcr7q7Nu3zwgODjYiIiIMX19fY/PmzYZhGMYvv/xiSDKmTp1aaf85c+ZU2V7dee6++24jKCjIKCwsrNjWv39/Q5Lx9ttvV9n/twVG+e9m9uzZlfbr2LFjpf3O5VxFULt27SoVva+99pohqeK6DePXwuTYsWPnjbG0tLRKAX3ixAkjJibGuOOOOyq2HTt2rMrv7rfnKrdhwwZDknHnnXdW2u/RRx81JBkLFiyo2JaYmGhIMhYvXlyxLTMz0/D39zf+9Kc/nSs1FSQZEyZMMI4dO2ZkZmYaa9asMYYMGWJIMl588cVK+9b0dzxs2DAjMTGxyr61eQ0BgKMwHQ6Ax5k6dapiYmI0YMAASWXT1MaMGaPPP/+8YgrPFVdcoUaNGumLL76o+LkTJ05o3rx5GjNmTMW26dOnq127dmrbtq2ysrIqvq644gpJqjT9SZL69++v5OTkKjEFBgZWOk9OTo4uvfRSrVu3rmJ7+dS5P/7xj5V+9v7776/0vWEY+vrrrzVixAgZhlEprsGDBysnJ6fScc8lMTFREydOVHZ2th555BGlpKRUXHN4eLgGDhxY6dhdu3ZVSEhIpWs++7ry8vKUlZWlSy+9VAUFBdq+fXul8/n7+1c7BfG3rrrqKjVu3LjSFMbU1FRt2rRJ48aNu+DPn8vtt98uPz+/iu8vvfRSSdLevXtrfSxvb++KY9lsNmVnZ6u0tFTdunWrUe6r88MPP0iSHnnkkUrb//SnP0lSlc5tycnJFdcglU3ha9OmTY2v5/3331dUVJSio6PVrVs3zZ8/X4899liV89fmd1yd2r6GAMARfMwOAABcyWq16vPPP9eAAQOUlpZWsb1nz5566aWXNH/+fA0aNEg+Pj66/vrrNW3aNBUVFcnf318zZsxQSUlJpSJo165d2rZtW8W9Hb9VfiN9uaSkpGr3++677/S3v/1NGzZsqHQfxNn3hOzfv19eXl5VjtGyZctK3x87dkwnT57UO++8c84Wzr+N61y6d+8uSerWrVvFtl27diknJ0fR0dEXPPaWLVv05JNPasGCBcrNza20X05OTqXvmzRpUqkIORcvLy/dfPPNeuutt1RQUKCgoCBNnTpVAQEBuvHGG2t0XdVp2rRppe8bNmwoSVXuc6qpjz76SC+99JK2b9+ukpKSiu3neg5cSPnv/7e/79jYWDVo0ED79++vtP231yOVXVNNr+eaa67Rfffdp+LiYq1evVp///vfVVBQIC+vyp+f1uZ3XJ3avoYAwBEoggB4lAULFig9PV2ff/65Pv/88yqPT506VYMGDZIk/e53v9N///tfzZ49W6NGjdKXX36ptm3bqlOnThX722w2dejQQS+//HK150tISKj0/dmfmpf75ZdfNHLkSF122WV68803FRcXJ19fX02ZMkXTpk2r9TXabDZJ0rhx4zR+/Phq9+nYsWOtj3v28aOjo8/ZUa/8zezJkyfVv39/hYWF6ZlnnlGLFi0UEBCgdevW6S9/+UtFnOWqy8253HrrrXrxxRf1v//9T2PHjtW0adM0fPhwhYeH231d3t7e1W43zuqQV1OffvqpbrvtNo0aNUp//vOfFR0dXdG04beNBWqrpguoXuz1xMfH66qrrpIkXX311WrUqJHuu+8+DRgwQNddd52k2v+Oq1Pb1xAAOAJFEACPMnXqVEVHR+uNN96o8tiMGTP0zTff6O2331ZgYKAuu+wyxcXF6YsvvlC/fv20YMEC/fWvf630My1atNDGjRt15ZVX1vjN6W99/fXXCggI0Ny5c+Xv71+xfcqUKZX2S0xMlM1mU1pamlq1alWx/bdrHEVFRSk0NFRWq7XiTawjtWjRQj/99JP69u173sLl559/1vHjxzVjxgxddtllFdvPHoGzV0pKijp37qypU6cqPj5eBw4c0H/+85+LPq6jfPXVV2revLlmzJhR6XlR3l2uXG2eM+W//127dqldu3YV2zMyMnTy5EklJiZefODncffdd+uVV17Rk08+qWuvvVYWi6VWv+NzXasjXkMAUFvcEwTAY5w+fVozZszQ8OHDdcMNN1T5uu+++5SXl6eZM2dKKpt2dcMNN2jWrFn65JNPVFpaWmkqnCSNHj1ahw8f1rvvvlvt+U6dOnXBuLy9vWWxWCq1FN63b5/+97//Vdpv8ODBkqQ333yz0vbfvvn39vbW9ddfr6+//lqpqalVznfs2LELxnQ+o0ePltVq1bPPPlvlsdLSUp08ebIiDqnyyENxcXGV+O11yy236Mcff9Srr76qyMhIDR061CHHdYTqrn3lypVavnx5pf2CgoIkqSJn53P11VdLUpUFR8tHUJy9gK2Pj4/+9Kc/adu2bfr2228l1e53HBwcXO30OEe8hgCgthgJAuAxZs6cqby8PI0cObLax3v16lWxcGp5sTNmzBj95z//0cSJE9WhQ4dKn8BLZW/Ev/zyS/3hD3/QwoUL1bdvX1mtVm3fvl1ffvml5s6dW+l+muoMGzZML7/8soYMGaKbbrpJmZmZeuONN9SyZUtt2rSpYr+uXbvq+uuv16uvvqrjx4+rV69eWrRokXbu3Cmp8iftzz//vBYuXKiePXvqrrvuUnJysrKzs7Vu3Tr99NNPys7OtiuHUllzh7vvvlv/+Mc/tGHDBg0aNEi+vr7atWuXpk+frtdee0033HCD+vTpo4YNG2r8+PF64IEHZLFY9Mknn9g1vaw6N910kx577DF98803uueee+Tr6+uQ4zrC8OHDNWPGDF177bUaNmyY0tLS9Pbbbys5OVn5+fkV+wUGBio5OVlffPGFWrdurYiICKWkpFQ0oThbp06dNH78eL3zzjsV09BWrVqljz76SKNGjapo9OFMt912m55++mm98MILGjVqVK1+x127dtUXX3yhRx55RN27d1dISIhGjBjhkNcQANSaaX3pAMDFRowYYQQEBBinTp065z633Xab4evrW9Fa2mazGQkJCYYk429/+1u1P1NcXGy88MILRvv27Q1/f3+jYcOGRteuXY3JkycbOTk5FfupmrVXyr3//vtGq1atDH9/f6Nt27bGlClTql0n5tSpU8a9995rREREGCEhIcaoUaOMHTt2GJKM559/vtK+GRkZxr333mskJCQYvr6+RmxsrHHllVca77zzTo3yZRi/to+ePn16lcfeeecdo2vXrkZgYKARGhpqdOjQwXjssceMI0eOVOyzdOlSo1evXkZgYKDRuHFj47HHHqtocb1w4cKK/fr372+0b9++2hh+2376bFdffbUhyVi2bFmNr+m3v4dzXWNaWpohyZgyZUrFtpq2yLbZbMbf//53IzEx0fD39zc6d+5sfPfdd8b48eOrtIletmyZ0bVrV8PPz69Su+zqfv8lJSXG5MmTjaSkJMPX19dISEgwHn/88UqtqA2jrEX2sGHDqlz7+XJ5tvM9VydNmlTp91fT33F+fr5x0003GQ0aNDAkVcpDTV9DAOAoFsNw0EdyAABTbNiwQZ07d9ann36qm2++2exwXOraa6/V5s2bq9wXBQDA+XBPEADUIadPn66y7dVXX5WXl1elG9M9QXp6ur7//nvdcsstZocCAKhjuCcIAOqQf/7zn1q7dq0GDBggHx8fzZ49W7Nnz9bvf/97j2klnJaWpqVLl+q9996Tr6+v7r77brNDAgDUMRRBAFCH9OnTR/PmzdOzzz6r/Px8NW3aVJMmTarSurs+W7RokW6//XY1bdpUH330kWJjY80OCQBQx3BPEAAAAACPwj1BAAAAADwKRRAAAAAAj1Kn7wmy2Ww6cuSIQkNDKy0SCAAAAMCzGIahvLw8NW7cWF5e5x/rqdNF0JEjRzymGxIAAACACzt48KDi4+PPu0+dLoJCQ0MllV1oWFiYqbGUlJToxx9/1KBBg+Tr62tqLHUNubMPebMPebMfubMPebMPebMPebMfubOPO+UtNzdXCQkJFTXC+dTpIqh8ClxYWJhbFEFBQUEKCwsz/QlQ15A7+5A3+5A3+5E7+5A3+5A3+5A3+5E7+7hj3mpymwyNEQAAAAB4FIogAAAAAB6FIggAAACAR6EIAgAAAOBRKIIAAAAAeBSKIAAAAAAehSIIAAAAgEehCAIAAADgUSiCAAAAAHgUiiAAAAAAHoUiCAAAAIBHoQgCAAAA4FEoggAAAAB4FIogAAAAeDSrzdDKtGytzbJoZVq2rDbD7JDgZD5mBwAAAACYZU5quibP2qr0nEJJ3vp41xrFhQdo4ohkDUmJMzs8OAkjQQAAAPBIc1LTdc+n684UQL86mlOoez5dpzmp6SZFBmejCAIAAIDHsdoMTZ61VdVNfCvfNnnWVqbG1VMUQQAAAPA4q9Kyq4wAnc2QlJ5TqFVp2a4LCi5DEQQAAACPk5l37gLInv1Qt1AEAQAAwONEhwY4dD/ULRRBAAAA8Dg9kiIUF37uAsciKS48QD2SIlwXFFyGIggAAAAex9vLookjks/5uCFp4ohkeXtZXBcUXIYiCAAAAB7pynYxCvLzrvaxZpFBGpQc6+KI4CoUQQAAAPBIK/dmq6DYqoggX310W1fd2sqqf4/pqCBfL+07XqDpaw+aHSKchCIIAAAAHmn2mcVQB6fEqk+LSHVtZGhoSqweGdRGkvT87O06carYzBDhJBRBAAAA8DhWm6G5WzIkSYPbV572Nr5PM7WJCdWJghK9+OMOM8KDk1EEAQAAwOOsP3BCWflFCg3wUZ8WjSo95uvtpWeuaS9J+mzVAW08eNKECOFMFEEAAADwOLNTj0qSrmoXIz+fqm+JezaP1LWdm8gwpKe+TZXVZrg6RDiR6UXQ4cOHNW7cOEVGRiowMFAdOnTQmjVrzA4LAAAA9ZRhGJpzpgj67VS4sz1+dVuF+vto06Ecfb76gKvCgwuYWgSdOHFCffv2la+vr2bPnq2tW7fqpZdeUsOGDc0MCwAAAPVY6uFcHT55WoG+3urfOuqc+0WHBuiRQa0lSf+cs0PZNEmoN3zMPPkLL7yghIQETZkypWJbUlKSiREBAACgvpuzpawr3OVtohR4jnWCyt3SK1Ffrjmkbem5emH2dr1wQ0dXhAgnM7UImjlzpgYPHqwbb7xRixYtUpMmTfTHP/5Rd911V7X7FxUVqaioqOL73NxcSVJJSYlKSkpcEvO5lJ/f7DjqInJnH/JmH/JmP3JnH/JmH/JmH/JWM7M3l02FG9guqkrOqsvdxGFt9Lv3VuuLNQd1fZc4dU5o4LJY3Z07PedqE4PFMAzT7vIKCAiQJD3yyCO68cYbtXr1aj344IN6++23NX78+Cr7T5o0SZMnT66yfdq0aQoKCnJ6vAAAAKjbjhZI/9joI2+Lob93syqghkMCU3d7adUxL8UHG/pTB6u8LM6NE7VXUFCgm266STk5OQoLCzvvvqYWQX5+furWrZuWLVtWse2BBx7Q6tWrtXz58ir7VzcSlJCQoKysrAteqLOVlJRo3rx5GjhwoHx9fU2Npa4hd/Yhb/Yhb/Yjd/Yhb/Yhb/Yhbxf2xs979er83bq8dSO9e0uXiu0Xyt3x/CINem2pcgtLNXF4W43r2dSVYbstd3rO5ebmqlGjRjUqgkydDhcXF6fk5ORK29q1a6evv/662v39/f3l7+9fZbuvr6/pSS/nTrHUNeTOPuTNPuTNfuTOPuTNPuTNPuTt3H7cmilJurpD42pzdK7cxTb01Z8Ht9FT327Ryz/t1ohL4tUopOr7Uk/lDs+52pzf1O5wffv21Y4dlVfh3blzpxITE02KCAAAAPXVgeMF2pqeK28vi65Kjqn1z9/UM1HtG4cpr7BUz8/e7oQI4SqmFkEPP/ywVqxYob///e/avXu3pk2bpnfeeUf33nuvmWEBAACgHirvCtczKUIRwX61/nlvL4ueHZUiSfpq7SGt2Zft0PjgOqYWQd27d9c333yjzz77TCkpKXr22Wf16quv6uabbzYzLAAAANRD5QukDkk59wKpF9KlaUP9rnuCJOnJ/6Wq1GpzSGxwLVPvCZKk4cOHa/jw4WaHAQAAgHosI7dQ6w6clCQNbm9/ESRJjw1pq9mpR7X9aJ4+WbFft/dlncu6xtSRIAAAAMAV5m4pGwXq0rSBYsICLupYEcF+emxIG0nSyz/uVGZu4UXHB9eiCAIAAEC954ipcGf7Xfem6hQfrryiUv2DJgl1DkUQAAAA6rXsU8VamVbWxGBI+ziHHNPby6JnrkmRxSJ9s/6wVu497pDjwjUoggAAAFCv/bQ1Q1aboeS4MDWNDHLYcTslNNDYHmWLpj71bapKaJJQZ1AEAQAAoF6bc+Z+oKEOmgp3tscGt1HDIF/tzMjXR8v2Ofz4cA6KIAAAANRbeYUlWrIrS5Lj7gc6W4MgP/3f0LaSpFfm7VQGTRLqBIogAAAA1FsLtmeq2GpT86hgtYwOcco5buyaoM5NG+hUsVV/+36bU84Bx6IIAgAAQL1V3hVuaEqsLBaLU87h5WXRs9ekyMsizdp4RMt2ZznlPHAciiAAAADUS6eLrfp5xzFJjusKdy4pTcI1rleiJOnpmVtUXEqTBHdGEQQAAIB6afGuYzpdYlWTBoFKaRLm9PP9aWAbRQb7aXdmvj5Ymub088F+FEEAAACol85eINVZU+HOFh7kq8evbidJ+vf8XTpy8rTTzwn7UAQBAACg3ikutemnbRmSnNMa+1yu69xE3RIbqqDYqudokuC2KIIAAABQ7yzbk6W8wlJFhfqrS9OGLjuvl5dFz5xpkvD95nQt3nnMZedGzVEEAQAAoN6Ze2aB1EHJMfLycv5UuLMlNw7T+D7NJEmTZm5RUanVpefHhVEEAQAAoF6x2gz9uKV8Kpxzu8Kdy8MDW6tRiL/2Zp3Se7/QJMHdUAQBAACgXlm9L1vHTxUrPNBXPZtHmBJDWICv/jqsrSTpPwt26dCJAlPiQPUoggAAAFCvlHeFG5gcI19v897ujrqkiXokRaiwxKZnv9tqWhyoiiIIAAAA9YbNZlTcDzSkveu6wlXHYrHo2WtS5O1l0dwtGVq4I9PUePAriiAAAADUG5sO5yg9p1DBft7q16qR2eGoTWyobj+rSUJhCU0S3AFFEAAAAOqN2anpkqQBbaMV4OttcjRlHhrYWjFh/tp/vEDvLN5rdjgQRRAAAADqCcMwNPfM/UBDXLhA6oWE+Pvor8OSJUlvLNytg9k0STAbRRAAAADqhR0Zedp3vEB+Pl4a0Cba7HAqGdExTr2bR6qo1KbJs7aYHY7HowgCAABAvTB7c9ko0GWtohTs72NyNJVZLBY9O6q9fLws+mlbpn7ammF2SB6NIggAAAD1QkVXODeaCne2ltGhmnBpkiRp8nc0STATRRAAAADqvLSsU9p+NE8+XhZd1c69psKd7YErWikuPEAHs0/rzZ/3mB2Ox6IIAgAAQJ1XvkBq7xaRahDkZ3I05xbs76Onhpc1SXh70R7tyzplckSeiSIIAAAAdd4cN58Kd7ahKbG6tFUjFZfaNGnWFhmGYXZIHociCAAAAHXakZOntfHgSVks0sDkGLPDuSCLxaJJI9vL19uin3cc0480SXA5iiAAAADUaeUNEbonRig6NMDkaGqmRVSIfn9Zc0nSM7O26nQxTRJciSIIAAAAddrsM/cDDa4DU+HOdu+AlmrSIFCHT57WGwt3mx2OR6EIAgAAQJ11LK9Iq/dlS5IGt3f/qXBnC/L7tUnCO4v3au+xfJMj8hwUQQAAAKizftqWIcOQOsaHK75hkNnh1Nrg9jG6vE2Uiq02TZxJkwRXoQgCAABAnVUxFa593ZoKV85isWjSiPby8/bSL7uyKlp9w7koggAAAFAn5Zwu0bLdWZLK2k7XVc0aBesP/c80Sfhuq04VlZocUf1HEQQAAIA6af62DJXaDLWOCVHzqBCzw7kofxzQUvENA5WeU6j/LKBJgrNRBAEAAKBOKp86NqSOToU7W4CvtyaNaC9Jeu+XvdqdmWdyRPUbRRAAAADqnFNFpVq085gkaUhKnMnROMZVyTG6sm20Sm2Gnv6WJgnORBEEAACAOmfRzmMqKrWpaUSQ2sWFmh2Ow0wa2V7+Pl5atue4vtuUbnY49RZFEAAAAOqc8qlwQ1NiZbFYTI7GcRIigvTHy1tKkv72/Vbl0yTBKSiCAAAAUKcUlVq1YHumJGlwHe4Kdy5392+uxMggZeQW6bWfdpodTr1EEQQAAIA6ZenuLOUXlSomzF+XxDcwOxyHC/D11qSRZU0SPli6TzuO0iTB0SiCAAAAUKfM3vxrVzgvr/ozFe5sA9pEa1ByjKw2Q09/m0qTBAejCAIAAECdUWq1ad62DEn1cyrc2Z4ekawAXy+tTMvWtxuOmB1OvUIRBAAAgDpjVVq2ThaUKCLYTz2aRZgdjlPFNwzS/Ve0kiQ998M25RaWmBxR/UERBAAAgDpj9pmucAPbxcjHu/6/lb3z0iQlNQrWsbwivTpvl9nh1Bv1/5kDAACAesFmMzR3y5n7gTrU76lw5fx9vDX5TJOEj5bv07b0XJMjqh8oggAAAFAnrD94Qpl5RQr191GfFpFmh+Myl7WO0tUdYmW1GXrqfzRJcASKIAAAANQJ5QukXtEuWv4+3iZH41pPDktWoK+31uw/oRnrDpsdTp1HEQQAAAC3ZxiG5pyZCje0nneFq07jBoF64MqyJgn/mL1NOadpknAxKIIAAADg9rYcydXB7NMK8PXSZa2jzA7HFBP6JalFVLCy8ov18o87zA6nTqMIAgAAgNsrb4hweetoBfn5mByNOfx8vPTMNSmSpE9W7Ffq4RyTI6q7KIIAAADg9spbYw/xwKlwZ+vbspGGd4yTzZCe+jZVNhtNEuxBEQQAAAC3tjszT7sz8+XrbdGAttFmh2O6J4clK9jPW+sPnNRXaw+ZHU6dRBEEAAAAtzZ3S4akslGQ8EBfk6MxX2x4gB66qrUk6fk523WyoNjkiOoeiiAAAAC4tdmp6ZKkIe09eyrc2W7r20ytY0KUfapYL86lSUJtUQQBAADAbR3MLlDq4Vx5WaSByTFmh+M2fL1/bZIwbdUBbTp00tyA6hiKIAAAALit8q5wPZIiFBnib3I07qVX80iNuqSxDEN66n80SagNiiAAAAC4rTnlXeGYCletJ65up1B/H208lKPPVx80O5w6gyIIAAAAbikzt1BrD5yQJA328NbY5xIdFqCHB5Y1Sfjn3O3KPkWThJqgCAIAAIBbmrs1Q4YhXZLQQHHhgWaH47Zu7Z2otrGhOllQohfnbjc7nDqBIggAAABuae6ZqXBDGQU6Lx9vLz07qqxJwuerD2r9mdEznBtFEAAAANzOiVPFWr73uCRpCEXQBXVvFqHru8SXNUn4NlVWmiScF0UQAAAA3M5P2zJktRlqFxemxMhgs8OpE/5vaFuFBvgo9XCupq06YHY4bo0iCAAAAG6HrnC1FxXqr0cHtZEkvThnu7Lyi0yOyH1RBAEAAMCt5BeV6pddWZKYCldb43olqn3jMOUWluqF2TRJOBeKIAAAALiVhdszVWy1qXmjYLWOCTE7nDrF28uiZ64pa5Iwfe0hrd2fbXJE7okiCAAAAG6lfCrc4JRYWSwWk6Ope7omNtTobvGSpCf/t0WlVpvJEbkfiiAAAAC4jcISqxbuyJREa+yL8ZchbRUe6Ktt6bn6dMV+s8NxOxRBAAAAcBuLdx5TQbFVjcMD1KFJuNnh1FmRIf768+CyJgkv/bhTx/JoknA2iiAAAAC4jTlbmArnKGN7NFXH+HDlFZXqHz9sMzsct0IRBAAAALdQYrXpp60ZkqShKXEmR1P3eXtZ9Ow1KbJYpBnrD2vlmcVnQREEAAAAN7F8z3HlFpaqUYifuiY2NDuceqFTQgP9rntTSdLT325RCU0SJFEEAQAAwE2UT4Ub1D5W3l5MhXOUxwa3UcMgX+3IyNNHy/aZHY5boAgCAACA6aw2Qz+eKYKGtKcrnCM1DPbTX4a0lSS9+tMuZeQWmhyR+SiCAAAAYLq1+08oK79YYQE+6tU80uxw6p3R3RLUKaGB8otK9XeaJFAEAQAAwHyzU9MlSVclx8jPh7eojublZdHfzjRJ+HbDES3bk2V2SKbiGQYAAABTGYahualMhXO2DvHhGtczURJNEiiCAAAAYKrNh3N0JKdQQX7euqx1lNnh1GuPDmqjiGA/7c7M15SlaWaHYxqKIAAAAJhq9plRoAFtohXg621yNPVbeJCv/m/or00S0nNOmxyROSiCAAAAYBrDMDSnfCpcClPhXOGGLvHqmthQBcVW/e17z2ySQBEEAAAA0+zMyFda1in5eXtpQNtos8PxCF5eFj1zTXt5WaTvN6VryS7Pa5JAEQQAAADTlI8CXdqqkUL8fUyOxnO0bxyuW3s3kyQ9PTNVxaWe1SSBIggAAACmmbOFqXBmeXhgazUK8dfeY6f03pK9ZofjUqYWQZMmTZLFYqn01bZtWzNDAgAAgIvsP35K29Jz5e1l0VXtYswOx+OEB/rqiavL3nv/Z/5uHT7pOU0STB8Jat++vdLT0yu+lixZYnZIAAAAcIHyqXC9m0eqYbCfydF4pms7N1GPZhE6XWLV377banY4LmN6EeTj46PY2NiKr0aNGpkdEgAAAFygvDX2YKbCmcZiseiZUe3l7WXR7NSjWrTzmNkhuYTpd5/t2rVLjRs3VkBAgHr37q1//OMfatq0abX7FhUVqaioqOL73NxcSVJJSYlKSkpcEu+5lJ/f7DjqInJnH/JmH/JmP3JnH/JmH/Jmn7qUt/ScQm04eFIWi3RF60jTY65LuXO0FpGBurVXU01Ztl9P/y9V39/fR/4+NRsrcae81SYGi2EYhhNjOa/Zs2crPz9fbdq0UXp6uiZPnqzDhw8rNTVVoaGhVfafNGmSJk+eXGX7tGnTFBQU5IqQAQAA4ACL0y36ep+3kkINPZRiNTscj1dYKj23wVu5JRYNS7BqULxpJYLdCgoKdNNNNyknJ0dhYWHn3dfUIui3Tp48qcTERL388suaMGFClcerGwlKSEhQVlbWBS/U2UpKSjRv3jwNHDhQvr6+psZS15A7+5A3+5A3+5E7+5A3+5A3+9SlvI37YLVWpp3Q40Na646+zcwOp07lzllmbUrXI9M3K8DXS7Pv76v4hoEX/Bl3yltubq4aNWpUoyLI9OlwZ2vQoIFat26t3bt3V/u4v7+//P39q2z39fU1Penl3CmWuobc2Ye82Ye82Y/c2Ye82Ye82cfd83Y8v0ir952QJF3dsYlbxeruuXOma7sk6Mu1h7Vib7b+Pmen3r21W41/1h3yVpvzm94Y4Wz5+fnas2eP4uLizA4FAAAATjJva4ZshpTSJEwJEdzS4C4sFouevSZFPl4WzduaoQXbM8wOyWlMLYIeffRRLVq0SPv27dOyZct07bXXytvbW2PHjjUzLAAAADhRxQKp7ekK525axYRqQr8kSdKkmVtVWFI/79cytQg6dOiQxo4dqzZt2mj06NGKjIzUihUrFBUVZWZYAAAAcJLcwhIt3Z0lSRqSwuwfd3T/la0UGxagA9kFenvRHrPDcQpT7wn6/PPPzTw9AAAAXGzBtkyVWA21jA5Ry+gQs8NBNUL8ffTk8Ha6b9p6vfnzHl3XOV5NI+vXtEW3uicIAAAA9ducMwukDmWBVLc2rEOc+rVspOJSmybN2iI3aijtEBRBAAAAcImC4lL9vDNTkjSY+4HcmsVi0aSR7eXrbdGC7Zn6aVum2SE5FEUQAAAAXGLxzmMqLLEpISJQ7Rubu8YjLqxldIjuvLS5JGnSzC06XVx/miRQBAEAAMAlZqf+2hXOYrGYHA1q4v4rWqpxeIAOnzytN3+ufi3PuogiCAAAAE5XVGrVgjNTqoZwP1CdEeTno6dHJEuS/rtor9KyTpkckWNQBAEAAMDplu05rryiUkWH+qtzQkOzw0EtDG4fq8taR6nYatPEmfWjSQJFEAAAAJxuzuayqXCD28fKy4upcHWJxWLR5JHt5eftpcU7j2numcVu6zKKIAAAADhVqdWmedsyJNEau65KahSsu/uXNUl4ZtZWFRSXmhzRxaEIAgAAgFOt2pet7FPFahDkqx5JEWaHAzv98fKWatIgUEdyCvX6grrdJIEiCAAAAE4190xXuIHtYuTjzdvPuirQz1uTRraXJL37y17tOJqnlWnZWptl0cq0bFltdedeIR+zAwAAAED9ZbMZmrvlzFS4DkyFq+uuahetK9pGa8H2TI34zxIVW22SvPXxrjWKCw/QxBHJGpISZ3aYF0QpDgAAAKfZcOikjuYWKsTfR31bNjI7HFwki8WiAW2iJOlMAfSrozmFuufTdZqTmm5GaLVCEQQAAACnKZ8Kd0XbaPn7eJscDS6W1WbozZ/3VPtY+WS4ybO2uv3UOIogAAAAOIVhGJp9pghigdT6YVVattJzCs/5uCEpPadQq9KyXReUHSiCAAAA4BTb0vN0ILtA/j5e6t86yuxw4ACZeecugOzZzywUQQAAAHCKOWcW1ezfOkrB/vTjqg+iQwMcup9ZKIIAAADgFOU3yDMVrv7okRShuPAAWc7xuEVSXHiA268HRREEAAAAh9tzLF87M/Ll42XRle1izA4HDuLtZdHEEcmSVKUQKv9+4ohkeXudq0xyDxRBAAAAcLg5Zxoi9GnZSOGBviZHA0cakhKnt8Z1UWx45SlvseEBemtclzqxThCTMwEAAOBwc8/cDzSUqXD10pCUOA1MjtXy3Zn68ZeVGnRpT/VuGe32I0DlKIIAAADgUIdOFGjToRxZLNLAZKbC1VfeXhb1TIrQ8W2GeiZF1JkCSGI6HAAAABxs7pYMSVL3ZhFqFOJvcjRAVRRBAAAAcKi5qUyFg3ujCAIAAIDDZOYVavX+bEnS4PYUQXBPFEEAAABwmHlbM2QYUqeEBmrcINDscIBqUQQBAADAYcpbYw9hFAhujCIIAAAADnGyoFjL9xyXJA3hfiC4MYogAAAAOMT8bZkqtRlqGxuqpEbBZocDnBNFEAAAABxi9pmpcDREgLujCAIAAMBFO1VUqsW7jkmShnagCIJ7owgCAADARVu4I1PFpTY1iwxSm5hQs8MBzosiCAAAABetvCvc4JRYWSwWk6MBzo8iCAAAABelsMSqhdszJUlDU+JMjga4MIogAAAAXJQlu7J0qtiquPAAdWwSbnY4wAVRBAEAAOCizNnya1c4Ly+mwsH9UQQBAADAbiVWm+ZtzZDEAqmoO3xq+wNFRUVauXKl9u/fr4KCAkVFRalz585KSkpyRnwAAABwYyv3ZivndIkig/3UvVmE2eEANVLjImjp0qV67bXXNGvWLJWUlCg8PFyBgYHKzs5WUVGRmjdvrt///vf6wx/+oNBQ2iICAAB4gjlb0iVJg9rHyJupcKgjajQdbuTIkRozZoyaNWumH3/8UXl5eTp+/LgOHTqkgoIC7dq1S08++aTmz5+v1q1ba968ec6OGwAAACaz2QzN3VI2FW5we6bCoe6o0UjQsGHD9PXXX8vX17fax5s3b67mzZtr/Pjx2rp1q9LT0x0aJAAAANzPugMndCyvSKEBPurTopHZ4QA1VqMi6O67767xAZOTk5WcnGx3QAAAAKgbZp9ZIPWqdjHy86HfFuqOWjdGOFtqaqoWLVokq9Wqvn37qmvXro6KCwAAAG7MMAzNOVME0RUOdY3dJfsbb7yhK6+8UosWLdLChQt1xRVX6LnnnnNkbAAAAHBTqYdzdfjkaQX6euuyVlFmhwPUSo1Hgg4ePKiEhISK719//XVt2bJFjRqVzf9cvny5Ro4cqb/+9a+OjxIAAABupbwr3OVtohTo521yNEDt1Hgk6KqrrtJrr70mwzAkSZGRkZozZ46KioqUl5enn376SVFRfAoAAADgCZgKh7qsxkXQ6tWrtWPHDvXs2VMbNmzQO++8o1deeUWBgYFq0KCBvvjiC3300UfOjBUAAABuYFdGnvYcOyU/by9d0Tba7HCAWqvxdLiwsDC9+eabWrZsmW677TZdccUV+uWXX2S1WmW1WtWgQQMnhgkAAAB3UT4K1K9VI4UGVL+ECuDOat0YoU+fPlqzZo0aNmyozp07a/HixRRAAAAAHqS8NfYQFkhFHVXjkaDS0lK988472rZtmzp16qQnnnhCY8aM0R/+8Ad9+OGHev311xUTE+PMWAEAAGCyA8cLtDU9V95eFl2VzHs/1E01HgmaMGGCXn/9dQUHB2vKlCl6+OGH1bp1ay1YsEBDhgxR79699dZbbzkzVgAAAJhs7payUaCeSRGKCPYzORrAPjUugr799lt9/fXXev755zVv3jx9//33FY9NmDBBK1as0C+//OKUIAEAAOAeZqeWtcamKxzqshoXQTExMfrxxx9VXFysBQsWKDIystLj0dHRmjZtmsMDBAAAgHvIyC3UugMnJUmDuR8IdViN7wl6/fXXdfPNN+uRRx5RXFycvvzyS2fGBQAAADdTPhWuS9MGigkLMDkawH41LoIGDhyojIwMZWVlsSgqAACABypvjT00Jc7kSICLU6sW2RaLhQIIAADAA2WfKtbKtGxJTIVD3VejImjIkCFasWLFBffLy8vTCy+8oDfeeOOiAwMAAID7+Glrhqw2Q8lxYWoaGWR2OMBFqdF0uBtvvFHXX3+9wsPDNWLECHXr1k2NGzdWQECATpw4oa1bt2rJkiX64YcfNGzYML344ovOjhsAAAAuNGdL+VQ4RoFQ99WoCJowYYLGjRun6dOn64svvtA777yjnJwcSWVT5JKTkzV48GCtXr1a7dq1c2rAAAAAcK28whIt2ZUlidbYqB9q3BjB399f48aN07hx4yRJOTk5On36tCIjI+Xr6+u0AAEAAGCuBdszVWy1qUVUsFrFhJodDnDRalwE/VZ4eLjCw8MdGQsAAADcUHlrbEaBUF/UqjscAAAAPMvpYqsWbj8mSRrSntbYqB8oggAAAHBOi3cd0+kSq5o0CFRKkzCzwwEcgiIIAAAA51S+QOqQlFhZLBaTowEcgyIIAAAA1SoutemnbRmSaI2N+sWuIujkyZN677339Pjjjys7u2zl4HXr1unw4cMODQ4AAADmWbYnS3mFpYoK9VeXpg3NDgdwmFp3h9u0aZOuuuoqhYeHa9++fbrrrrsUERGhGTNm6MCBA/r444+dEScAAABcrLwr3KDkGHl5MRUO9UetR4IeeeQR3Xbbbdq1a5cCAgIqtl999dVavHixQ4MDAACAOaw2Qz9uKZ8KR1c41C+1LoJWr16tu+++u8r2Jk2a6OjRow4JCgAAAOZavS9bx08VKzzQVz2bR5gdDuBQtS6C/P39lZubW2X7zp07FRUV5ZCgAAAAYK7yrnADk2Pk600vLdQvtX5Gjxw5Us8884xKSkokSRaLRQcOHNBf/vIXXX/99Q4PEAAAAK5lsxkV9wMNaU9XONQ/tS6CXnrpJeXn5ys6OlqnT59W//791bJlS4WGhuq5555zRowAAABwoU2Hc5SeU6hgP2/1a9XI7HAAh6t1d7jw8HDNmzdPS5cu1caNG5Wfn68uXbroqquuckZ8AAAAcLHyqXAD2kYrwNfb5GgAx6t1EfTxxx9rzJgx6tu3r/r27Vuxvbi4WJ9//rluvfVWhwYIAAAA1zEMQ3NS0yVJQ1ggFfVUrafD3X777crJyamyPS8vT7fffrtDggIAAIA5dmTkad/xAvn5eGlAm2izwwGcotZFkGEYsliqLpZ16NAhhYeHOyQoAAAAmGP25rKpcJe1ilKwf60nDQF1Qo2f2Z07d5bFYpHFYtGVV14pH59ff9RqtSotLU1DhgxxSpAAAABwjfKucEOZCod6rMZF0KhRoyRJGzZs0ODBgxUSElLxmJ+fn5o1a0aLbAAAgDosLeuUth/Nk4+XRVe2Yyoc6q8aF0ETJ06UJDVr1kxjxoxRQECA04ICAACA65V3hevdIlINgvxMjgZwnlpP9Bw/frwz4gAAAIDJ5pQvkMpUONRztS6CrFarXnnlFX355Zc6cOCAiouLKz2enZ3tsOAAAADgGkdOntbGgydlsUgDk2PMDgdwqlp3h5s8ebJefvlljRkzRjk5OXrkkUd03XXXycvLS5MmTXJCiAAAAHC28oYI3RMjFB3KbQ+o32pdBE2dOlXvvvuu/vSnP8nHx0djx47Ve++9p6efflorVqxwRowAAABwstln7gcazFQ4eIBaF0FHjx5Vhw4dJEkhISEVC6cOHz5c33//vWOjAwAAgNMdyyvS6n1ltzQMbs9UONR/tS6C4uPjlZ6eLklq0aKFfvzxR0nS6tWr5e/v79joAAAA4HQ/bcuQYUgd48MV3zDI7HAAp6t1EXTttddq/vz5kqT7779fTz31lFq1aqVbb71Vd9xxh92BPP/887JYLHrooYfsPgYAAABqr2IqXHumwsEz1Lo73PPPP1/x9zFjxigxMVHLli1Tq1atNGLECLuCWL16tf773/+qY8eOdv08AAAA7JNzukTLdmdJkoZyPxA8RK1Hgn6rV69eeuSRRzRixAitWbOm1j+fn5+vm2++We+++64aNmx4seEAAACgFuZvy1CpzVDrmBA1jwoxOxzAJWo9EpSfny9vb28FBgZWbNuwYYOeeuop/fDDD7JarbU63r333qthw4bpqquu0t/+9rfz7ltUVKSioqKK73NzcyVJJSUlKikpqdV5Ha38/GbHUReRO/uQN/uQN/uRO/uQN/uQN/vYk7fZm8vu9R7ULtqj881zzj7ulLfaxGAxDMOoyY4HDx7U6NGjtWrVKnl7e+u+++7T3/72N/3hD3/QF198oWuvvVYPP/ywevbsWeOTf/7553ruuee0evVqBQQE6PLLL9cll1yiV199tdr9J02apMmTJ1fZPm3aNAUFcRMfAABAbRRZpb+u9laJYdFjHUvVJNjsiAD7FRQU6KabblJOTo7CwsLOu2+NR4L+/Oc/q7CwUK+99ppmzJih1157Tb/88ot69uypPXv2KD4+vlZBHjx4UA8++KDmzZungICaLcj1+OOP65FHHqn4Pjc3VwkJCRo0aNAFL9TZSkpKNG/ePA0cOFC+vr6mxlLXkDv7kDf7kDf7kTv7kDf7kDf71DZvs1OPqmTVJiU0DNSdN/STxWJxQZTuieecfdwpb+WzxGqixkXQ4sWLNWPGDPXq1UujR49WbGysbr75Zru7ua1du1aZmZnq0qVLxTar1arFixfr9ddfV1FRkby9vSv9jL+/f7VtuH19fU1Pejl3iqWuIXf2IW/2IW/2I3f2IW/2IW/2qWneftpe1hDh6g5x8vPzc3ZYdQLPOfu4Q95qc/4aF0EZGRlKSkqSJEVHRysoKEhDhw6tfXRnXHnlldq8eXOlbbfffrvatm2rv/zlL1UKIAAAADhOUalVC7ZnSpIG0xUOHqZWjRG8vLwq/f1iPjEIDQ1VSkpKpW3BwcGKjIyssh0AAACOtXR3lvKLShUbFqBL4huYHQ7gUjUuggzDUOvWrSvmiubn56tz586VCiNJys7OdmyEAAAAcLg5FQukxsjLy3PvBYJnqnERNGXKFGfGIUn6+eefnX4OAAAAT1dqtWne1gxJTIWDZ6pxETR+/HhnxgEAAAAXWZWWrRMFJYoI9lOPZhFmhwO4nNeFdwEAAEB9MvvMVLiB7WLk483bQXgenvUAAAAexGYzNHdLWRE0pANT4eCZKIIAAAA8yPqDJ5WZV6RQfx/1aRFpdjiAKSiCAAAAPMic1HRJ0hXtouXvw7qM8EwUQQAAAB7CMAzNOTMVbihd4eDBarVYqiRZrVZ9+OGHmj9/vjIzM2Wz2So9vmDBAocFBwAAAMfZciRXB7NPK8DXS5e1jjI7HMA0tS6CHnzwQX344YcaNmyYUlJSKhZPBQAAgHsrb4hweetoBfnV+m0gUG/U+tn/+eef68svv9TVV1/tjHgAAADgJOWtsYcwFQ4ertb3BPn5+ally5bOiAUAAABOsjszT7sz8+XrbdEV7aLNDgcwVa2LoD/96U967bXXZBiGM+IBAACAE8zdkiFJ6tuykcICfE2OBjBXrafDLVmyRAsXLtTs2bPVvn17+fpWfhHNmDHDYcEBAADAMWafaY09pD1T4YBaF0ENGjTQtdde64xYAAAA4AQHswuUejhXXhZpYHKM2eEApqt1ETRlyhRnxAEAAAAnKe8K1yMpQpEh/iZHA5jP7t6Ix44d044dOyRJbdq0UVQUveYBAADc0ZzU8gVS40yOBHAPtW6McOrUKd1xxx2Ki4vTZZddpssuu0yNGzfWhAkTVFBQ4IwYAQAAYKfM3EKtPXBCkjSoPVPhAMmOIuiRRx7RokWLNGvWLJ08eVInT57Ut99+q0WLFulPf/qTM2IEAACAneZuzZBhSJckNFBceKDZ4QBuodbT4b7++mt99dVXuvzyyyu2XX311QoMDNTo0aP11ltvOTI+AAAAXIS5FVPh6AoHlKv1SFBBQYFiYqoOpUZHRzMdDgAAwI2cOFWs5XuPS5KGUAQBFWpdBPXu3VsTJ05UYWFhxbbTp09r8uTJ6t27t0ODAwAAgP1+2pYhq81Qu7gwJUYGmx0O4DZqPR3utdde0+DBgxUfH69OnTpJkjZu3KiAgADNnTvX4QECAADAPuWtsVkgFais1kVQSkqKdu3apalTp2r79u2SpLFjx+rmm29WYCA32wEAALiD/KJSLd6VJYmpcMBv2bVOUFBQkO666y5HxwIAAAAHWbg9U8WlNjVvFKzWMSFmhwO4lRoVQTNnztTQoUPl6+urmTNnnnffkSNHOiQwAAAA2K98gdTBKbGyWCwmRwO4lxoVQaNGjdLRo0cVHR2tUaNGnXM/i8Uiq9XqqNgAAABgh8ISqxbuyJREa2ygOjUqgmw2W7V/BwAAgPtZuvu4CoqtatIgUB2ahJsdDuB2at0i++OPP1ZRUVGV7cXFxfr4448dEhQAAADsN3drhiRpcHumwgHVqXURdPvttysnJ6fK9ry8PN1+++0OCQoAAAD2sdqk+duPSaIrHHAutS6CDMOo9hOFQ4cOKTyc4VYAAAAzWG2GVqZl64eDXsotLFVksK+6JjY0OyzALdW4RXbnzp1lsVhksVh05ZVXysfn1x+1Wq1KS0vTkCFDnBIkAAAAzm1Oaromz9qq9JxClX/GfbrEpnlbj2pISpy5wQFuqMZFUHlXuA0bNmjw4MEKCfm137yfn5+aNWum66+/3uEBAgAA4NzmpKbrnk/XyfjN9oJiq+75dJ3eGteFQgj4jRoXQRMnTpQkNWvWTGPGjFFAQIDTggIAAMCFWW2GJs/aWqUAOtvkWVs1MDlW3l40SADK1fqeoPHjx1MAAQAAuIFVadlnpsBVz5CUnlOoVWnZrgsKqANqPBJUzmq16pVXXtGXX36pAwcOqLi4uNLj2dm8yAAAAFwhM+/cBZA9+wGeotYjQZMnT9bLL7+sMWPGKCcnR4888oiuu+46eXl5adKkSU4IEQAAANWJDq3Z7Jya7gd4iloXQVOnTtW7776rP/3pT/Lx8dHYsWP13nvv6emnn9aKFSucESMAAACq0SMpQnHhATrX3T4WSXHhAeqRFOHKsAC3V+si6OjRo+rQoYMkKSQkpGLh1OHDh+v77793bHQAAAA4J28viyaOSK62MUJ5YTRxRDJNEYDfqHURFB8fr/T0dElSixYt9OOPP0qSVq9eLX9/f8dGBwAAgPMa3D5WiZFBVbbHhgfQHhs4h1o3Rrj22ms1f/589ezZU/fff7/GjRun999/XwcOHNDDDz/sjBgBAABwDmv2n9D+4wXy9bbo1dEdtXLNOg26tKd6t4xmBAg4h1oXQc8//3zF38eMGaOmTZtq+fLlatWqlUaMGOHQ4AAAAHB+7/+SJkm6oWu8BiXHqHSfoZ5JERRAwHnUugj6rd69e6t3796OiAUAAAC1cOB4geZuPSpJuqNvksnRAHVHjYqgmTNn1viAI0eOtDsYAAAA1NyUZWkyDOmy1lFqFROqkpISs0MC6oQaFUGjRo2q0cEsFousVuvFxAMAAIAayC0s0ZerD0qS7uzHKBBQGzUqgmw2m7PjAAAAQC18seqgThVb1TomRJe2amR2OECdUqMW2RERETp+/Lgk6Y477lBeXp5TgwIAAMC5lVpt+nDZPknShH5JslhoggDURo2KoOLi4opFUT/66CMVFhY6NSgAAACc25wtR3X45GlFBvvpmkuamB0OUOfUaDpc7969NWrUKHXt2lWGYeiBBx5QYGBgtft+8MEHDg0QAAAAlb13pi32uF6JCvD1NjkaoO6pURH06aef6pVXXtGePXtksViUk5PDaBAAAIAJ1u4/oQ0HT8rP20vjeiWaHQ5QJ9WoCIqJialYJDUpKUmffPKJIiMjnRoYAAAAqnp/yV5J0qjOjRUV6m9yNEDdVOvFUtPS0pwRBwAAAC7gYHaB5qSeWRyVttiA3WpdBEnS/PnzNX/+fGVmZlZpn809QQAAAM7x4bJ9shnSpa0aqW1smNnhAHVWrYugyZMn65lnnlG3bt0UFxdHS0YAAAAXyCss0RdnFkdlFAi4OLUugt5++219+OGHuuWWW5wRDwAAAKrxxeqDyi8qVcvoEPVvFWV2OECdVqN1gs5WXFysPn36OCMWAAAAVOPsxVHv6JskLy9m4gAXo9ZF0J133qlp06Y5IxYAAABU48etGTp04rQaBvnqui4sjgpcrFpPhyssLNQ777yjn376SR07dpSvr2+lx19++WWHBQcAAADp/SUsjgo4Uq2LoE2bNumSSy6RJKWmplZ6jCYJAAAAjrX+wAmt3X9Cft5euqU3i6MCjlDrImjhwoXOiAMAAADVKB8FGtGpsaJDA0yOBqgfan1PEAAAAFzj8MnTmn1mcdQJtMUGHKbGI0HXXXddjfabMWOG3cEAAADgVx8t2yerzVCfFpFKbsziqICj1LgICg8Pd2YcAAAAOEt+Uak+W3lAknTnpYwCAY5U4yJoypQpzowDAAAAZ5m+5qDyikrVPCpYl7eONjscoF7hniAAAAA3Y7UZ+mBpWUMEFkcFHI8iCAAAwM3M25qhg9mn1SDIV9d3iTc7HKDeoQgCAABwM+8v2StJurlnUwX6sTgq4GgUQQAAAG5k48GTWr3vhHy9Lbq1dzOzwwHqJYogAAAAN1KxOGrHxooJY3FUwBkoggAAANzEkZOn9cPmdEnSHSyOCjgNRRAAAICb+Gj5PpXaDPVqHqGUJqzRCDgLRRAAAIAbOHXW4qgT+jU3ORqgfqMIAgAAcANfrT2k3MJSNYsM0pVtWRwVcCaKIAAAAJNZbYamlC+O2o/FUQFnowgCAAAw2fxtGdp3vEDhgb66oSuLowLORhEEAABgsvK22GN7NFWQn4/J0QD1H0UQAACAiVIP52hlWrZ8vCwa3yfR7HAAj0ARBAAAYKLyUaBhHeMUFx5ocjSAZ6AIAgAAMMnRnELN2nhEkjSBxVEBl6EIAgAAMMnHZxZH7dEsQh3jG5gdDuAxKIIAAABMUFBcqmmryhZHvYNRIMClKIIAAABM8PW6wzpZUKKmEUEamBxjdjiAR6EIAgAAcDGbzdCUMw0Rbu/bTN4sjgq4FEUQAACAiy3ckam9WacUGuCjG7slmB0O4HEoggAAAFzs7MVRQ/xZHBVwNVOLoLfeeksdO3ZUWFiYwsLC1Lt3b82ePdvMkAAAAJxqy5EcLdtzXN5eFo3v08zscACPZGoRFB8fr+eff15r167VmjVrdMUVV+iaa67Rli1bzAwLAADAaT5Ysk+SNDQlVk0asDgqYAZTx19HjBhR6fvnnntOb731llasWKH27dubFBUAAIBzZOYWaubGw5KkOy9tbnI0gOdym0moVqtV06dP16lTp9S7d+9q9ykqKlJRUVHF97m5uZKkkpISlZSUuCTOcyk/v9lx1EXkzj7kzT7kzX7kzj7kzT71NW8fLk1TidVQl6YN1D422OHXV1/z5grkzj7ulLfaxGAxDMNwYiwXtHnzZvXu3VuFhYUKCQnRtGnTdPXVV1e776RJkzR58uQq26dNm6agoCBnhwoAAGC3Yqs0aZ23TpVadHtrqy6JNPUtGFDvFBQU6KabblJOTo7CwsLOu6/pRVBxcbEOHDignJwcffXVV3rvvfe0aNEiJScnV9m3upGghIQEZWVlXfBCna2kpETz5s3TwIED5evra2osdQ25sw95sw95sx+5sw95s099zNvnqw/pqZlbFd8gQD89fKlT1gaqj3lzFXJnH3fKW25urho1alSjIsj06XB+fn5q2bKlJKlr165avXq1XnvtNf33v/+tsq+/v7/8/f2rbPf19TU96eXcKZa6htzZh7zZh7zZj9zZh7zZp77kzWYz9OHy/ZKk2/s1V4C/n1PPV1/yZgZyZx93yFttzu926wTZbLZKoz0AAAB13aJdx7Tn2CmF+PtodLd4s8MBPJ6pI0GPP/64hg4dqqZNmyovL0/Tpk3Tzz//rLlz55oZFgAAgEO9/0vZ4qi/656g0ABGGQCzmVoEZWZm6tZbb1V6errCw8PVsWNHzZ07VwMHDjQzLAAAAIfZfjRXS3ZnycsiFkcF3ISpRdD7779v5ukBAACcrnwUaGhKnBIi6GYLuAO3uycIAACgvjiWV6RvNxyRJN3RL8nkaACUowgCAABwkk9W7Fex1abOTRuoa2JDs8MBcAZFEAAAgBMUllg1dUVZW+wJjAIBboUiCAAAwAn+t/6wjp8qVpMGgRrSPtbscACchSIIAADAwQzD0PtLyhoi3NanmXy8ecsFuBNekQAAAA62eFeWdmXmK9jPW2N6JJgdDoDfoAgCAABwsPJRoNHdExTG4qiA26EIAgAAcKCdGXlavPOYvCzS7X1oiAC4I4ogAAAAB/rgzCjQoORYNY1kcVTAHVEEAQAAOEhWfpFmrD8sSbrzUkaBAHdFEQQAAOAgU1ccUHGpTZ3iw1kcFXBjFEEAAAAOUFhi1Scr9kmSJlzaXBaLxdyAAJwTRRAAAIADzNx4RFn5xYoLD9DQFBZHBdwZRRAAAMBFMgyjoiHCbX2ayZfFUQG3xisUAADgIi3dfVzbj+YpyM9bv+vR1OxwAFwARRAAAMBFem/JXknS6G4JCg9kcVTA3VEEAQAAXITdmXn6eccxWSzS7X2bmR0OgBqgCAIAALgIHyzdJ0m6ql2MEiODzQ0GQI1QBAEAANgp+1Sxvl57SJJ0Zz8WRwXqCoogAAAAO01buV9FpTalNAlTj6QIs8MBUEMUQQAAAHYoKrXqo+X7JUl39mNxVKAuoQgCAACww3cb03Usr0gxYf66ukOc2eEAqAWKIAAAgFoyDEPvnVkcdXyfZvLz4S0VUJfwigUAAKil5XuPa1t6rgJ9vXUTi6MCdQ5FEAAAQC29/0vZKNANXePVIMjP5GgA1BZFEAAAQC3sPZav+dszJbE4KlBXUQQBAADUwgdLy0aBrmoXreZRISZHA8AeFEEAAAA1dLKgWF+dWRz1DhZHBeosiiAAAIAamrrygApLbEqOC1Pv5pFmhwPAThRBAAAANVBcatPHy/dJkib0S2JxVKAOowgCAACoge83H1FGbpGiQ/01olNjs8MBcBEoggAAAC7AMAy9f2Zx1Ft7J7I4KlDH8QoGAAC4gJVp2Uo9nKsAXy/d1DPR7HAAXCSKIAAAgAsoHwW6rku8IoJZHBWo6yiCAAAAzmNf1in9tC1DknRHX9piA/UBRRAAAMB5TFmaJsOQBrSJUstoFkcF6gOKIAAAgHPIKSjRl2vKFke989LmJkcDwFEoggAAAM7hs9UHdLrEqraxoerTgsVRgfqCIggAAKAaJVabPly6TxKLowL1DUUQAABANX7YnK6juYVqFOKvkZewOCpQn1AEAQAA/MZvF0f19/E2OSIAjkQRBAAA8Btr9p/QpkM58vPx0s09m5odDgAHowgCAAD4jfd+2StJur5LE0WG+JscDQBHowgCAAA4y/7jp/TjVhZHBeoziiAAAICzTFm6T4Yh9W8dpVYxoWaHA8AJKIIAAADOyDldoulrDkoqa4sNoH6iCAIAADjji9UHdKrYqtYxIbq0VSOzwwHgJBRBAAAAkkpZHBXwGBRBAAAAkmanHtWRnEJFBvvpmkuamB0OACeiCAIAAB7PMAy9d2Zx1HG9EhXgy+KoQH1GEQQAADzeugMntPHgSfn5eGlcr0SzwwHgZBRBAADA471/ZhRo1CWNFRXK4qhAfUcRBAAAPNrB7ALNST0qSbqDttiAR6AIAgAAHu3DZftkM6RLWzVS29gws8MB4AIUQQAAwGPlFZboi9Vli6MyCgR4DoogAADgsb5YfVD5RaVqGR2i/q2izA4HgItQBAEAAI9UarXpw2X7JEl39E2SlxeLowKegiIIAAB4pB+3ZujQidNqGOSr67qwOCrgSSiCAACAR3qfxVEBj0URBAAAPM76Aye0dv8J+Xl76ZbeLI4KeBqKIAAA4HHKR4FGdGqs6NAAk6MB4GoUQQAAwKMcPnlas88sjjqBttiAR6IIAgAAHuWjZftktRnq0yJSyY1ZHBXwRBRBAADAY+QXleqzlQckSXdeyigQ4KkogoA6yGoztDItW2uzLFqZli2rzTA7JADV4LXqfqavOai8olI1jwrW5a2jzQ4HgEl8zA4AQO3MSU3X5FlblZ5TKMlbH+9ao7jwAE0ckawhKXFmhwfgDF6r7sdqM/TB0rKGCCyOCng2RoKAOmROarru+XTdmTdVvzqaU6h7Pl2nOanpJkUG4Gy8Vt3TvK0ZOph9Wg2CfHV9l3izwwFgIoogoI6w2gxNnrVV1U2mKd82edZWptsAJimx2pSZV6gtR3L0xDepvFbd0PtL9kqSbu7ZVIF+LI4KeDKmwwF1xKq07CqfKp/NkJSeU6hVadnq3SLSdYEB9ZBhGCootir7VHHF1/FTxTrxmz+zTxXpREGJjucXKbewtGbHFq9VM2w8eFKr952Qr7dFt/ZuZnY4AExGEQTUEek5p2u0X2beuQslwFNZbYZOFhSfu6g589jx/LK/Hz9VrOJSW63PY7FIQb7eOlVsveC+vFZdq2Jx1I6NFRPG4qiAp6MIAtxcTkGJPlt9QO8s3lOj/ZfsylLv5pGK5j95ONDZXc4i07LVu2W0vE28qbywxFo2EpNfrOyCshGZ7FMlZ/4srvJ18nSJDDtmn/n5eCky2E8Rv/0K8lNEiJ8ig/3UMMhPkSFlfzYI8tOqtGyNfXfFBY994lSxHVcOexw5eVo/bC67D+sOFkcFIIogwG3tyzqlKUvTNH3tIRWc+VTZyyJd6DaC6WsP6Zv1hzW4faxu7tVUvZtHymKhAxLs5+wuZzabodzCkjPTy2r2dbrkwiMt1QkP9K22mIkIOvP92X8P9lOQn3etXz89kiIUFx6gozmF1d4XVG7SrK3afDhX/ze0raJC/e26HtTMR8v3qdRmqFfzCKU0CTc7HABugCIIcCOGYWjF3my9vyRN87dnVHxy3TY2VHf0S1KAj5ce/HxD2b5n/Vz5W7Tb+jbT5kM5WrP/hL7fnK7vN6erRVSwbu6ZqOu7xis80NeVl4N6oLzL2W/fzJd3OXtrXJcqhVBRqVUnTpXo+G9GZc6eenY8/8y2gmKdKCixq0mAr7dFEWeNxEQE+ysiyLfsz+CyPxsG+yoy2F8RwX5qEOQrX2/n9wPy9rJo4ohk3fPpOllU/Wu1b8tILd1zXF+vO6Qftx7Vo4PaaFyvRFNH1+qrU2ctjjqhX3OTowHgLiiCADdQXGrTd5uO6P0ladpyJLdi+4A2UZrQr7n6tvx1NMfPx+usT+XLxP7mU/lt6bmaunK/vll3WHuOndIz323VP+du1zWdmmhcr0R1iOeTUFxYTToSPvzFRn2x+qCyC8qmop04VaL8opo1CPitUH8fRZyZVvbbKWgNg89MPQv+9bEQfx+3HeUckhKnt8Z1Oe9rdf2BE3rq21SlHs7VxJlb9OWag3rmmhR1TWxoYuT1z1drDym3sFTNIoN0ZVsWRwVQhiIIMNGJU8WaunK/Pl6+X5l5RZKkAF8vXdclXnf0TVLL6JAqPzMkJU4Dk2O1fHemfvxlpQZd2rPK/Rnt4sL0t1Ed9H9D2+mb9Yc1dcV+bT+apy/WHNQXaw6qU3y4bu6VqBEdG9MmFue0cu/x83YklKTTJVYt3HGsynZvL0tFMVM+GtPwzOjM2cXM2ffT+PnUr1UbLvRa7dy0ob69t5+mrTqgF+ds15Yjubr+rWUa3S1efxnSVpEhTJG7WFaboSnli6P2Y3FUAL+iCAJMsDszXx8sTdOMdYdUWFLWgSo61F/j+zTTTT2aqmGw33l/3tvLop5JETq+zVDPpIhzTqEJ8ffRLb0SNa5nU63df0KfrtivHzYf1cZDOdr41SY99/023dA1Xjf3bKrmUVULLngewzC0/uBJzdp4RF+vO1SjnxnbI0ED2kRXFDORwf4KDfDhDacu/Fr19rLoll6JGpoSqxdmb9f0tYf05ZpDmrslQ48NaaPfdW/KFLmLMH9bhvYdL1B4oK9u6MriqAB+RREEuIhhGFqyO0vvL0nTz2d9ct6+cZjuvDRJwzo0dton4RaLRd2aRahbswg9NbxIX645pGmr9utg9mm9vyRN7y9JU7+WjTSuV1Nd1S5GPi64bwLuwzAMbTmSq1mbjui7jek6fLJm7djLjezUhPVuLlKjEH+9eGMnjemeoKe+3aJt6bn66zep+mL1QT17TYo6JTQwO8Q6qbwt9tgeTRXkx1seAL/iXwTAyQpLrJq54Yg+WJqm7UfzJJWtJXJVuxhN6JeknkkRLr2vITLEX/dc3kJ3X9Zci3Yd06fL92vBjkwt2Z2lJbuzFBPmr991b6qxPZoqNpw22/XZzow8zdp4RN9tSlda1qmK7UF+3hqYHKNhKXF6emaqMnKLqr0vyKKye1x6JEW4LOb6rluzCM26r68+XbFfL/24U5sO5WjUm0s1tkdT/XlQmwuOEuNXqYdztDItWz5eFo3vk2h2OADcDEUQ4CRZ+UX6dMV+fbpiv7Lyy9YDCfLz1o1d43V73yQ1axRsanxeXhYNaBOtAW2idehEgT5bdUBfrD6ojNwivTZ/l15fuFsD28VoXK9E9WkRydSmeiIt65S+23hEszYd0c6M/Irt/j5eurJdtIZ3bKwBbaIr7hWzyThvl7OJI5KZruVgPt5euq1vkq7uGKfnf9iuGesPa9rKA5q9OV3/N7StbuyawOuxBspHgYZ1jFNceKDJ0QBwNxRBgIPtOJqn95fs1f82HKlYcb5xeIDG92mm33VvqvAg92tTHd8wSH8e3FYPXtlac7cc1Scr9mtVWrbmbDmqOVuOKqlRsG7u2VQ3dI1XgyA+ia5rDp0o0Heb0vXdpiNKPfxr90Ffb4v6t47SiE6NdWW7GIX4V/0voSZdzuAc0aEBennMJRrTPUFPf7tFOzLy9JevN+uzVQf1t1EprHdzHkdzCjVr4xFJ0gQWRwVQDYogwAFsNkOLdh3TB0vS9MuurIrtnRIaaEK/JA1NiXXJ+iQXy8/HSyM6NdaITo21MyNPU1fs19frDist65T+9v02vTh3h0Z0aqxxvRLVKT7cbdsTQ8rILdT3m9I1a9MRrT9wsmK7t5dFfVs20vCOcRqcHFujorwmHQnhPD2bR+q7B/rpo2X79Mq8ndpw8KRGvr5E43ol6k8D27jlBytm+/jM4qg9mkWoY3wDs8MB4IYogoCLcLrYqhnrD+mDJWnac6zsngovizQkJVYT+iWpS9OGdbZQaB0TqsnXpOixIW317YYj+nTFfm1Nz9VXaw/pq7WHlNIkTON6JmrkJY254dhNHM8v0g+pR/XdxiNatS+7YrFdi0XqmRShEZ0aa0j7WLtaL9e0IyGcw9fbS3de2lwjOjXWc99v08yNR/Tx8v36flPZFLnru8QzRe6MguJSTS1fHPVSRoEAVI93LoAdMnML9fHy/Zq6cr9OFJRIKmtHPaZ7gm7r00wJEUEmR+g4wf4+uqlnU43tkaD1B0/q0xX79d2mdKUeztX/zdis537Ypuu7xGtcr6ZqGR1qdrgeJ6egRHO3HNWsTUe0bM9xWW2/3rnTpWkDjejUWFd3iFNMGE0u6oOYsAD9e2xn/a57gp6euUW7M/P15682lXWRG5WidnFhZodouq/XHVbO6RI1jQjSVe1izA4HgJuiCAJqIfVwjj5YkqZZm46oxFr2ZjO+YaBu75uk0d3iFRpQf6elWCwWdWnaUF2aNtRTw5I1fe1BTV15QPuPF+jDZfv04bJ96tU8QuN6JWpQcmy9W/jSneQXlWre1qP6bmO6Fu86VvFclKQOTcI1vGOchnWMU3zD+lOMo7I+LRvphwcu1QdL0/Tv+bu0Zv8JDf/PEt3aO1EPD2ytsHr8b9H52GyGPjjTEOGOvs0YsQRwTqYWQf/4xz80Y8YMbd++XYGBgerTp49eeOEFtWnTxsywgEpsNkPzt2fq/SV7tWJvdsX2bokNNaFfkga1j/W4/2gbBvvp95e10J39muuX3Vn6dMV+zd+WoRV7s7Vib7aiQv31u+4JGtujqRo3oCuTI5wutmrB9kx9t+mIFmzPVNGZphuS1CYmVCM6xWl4x8amdx2E6/j5eOkP/Vto5Jkpct9vTteUpfv03aZ0/fXqdrrmksZ1djquvRbuyFRa1imFBvjoxm4JZocDwI2ZWgQtWrRI9957r7p3767S0lI98cQTGjRokLZu3argYP4jh7lOFZXq63Vl9/vsO14gqey+iKs7xGlCvyRdwuKF8vIq6y7Wv3WUjpw8rc9XHdBnqw/qWF6R/rNgt95YuFtXnmmzfWnLRtyzUEtFpVYt3pmlWRuP6KdtGSootlY81rxRsIZ3jNPwTo3VOoZpiJ6scYNAvXFzF43ZeUyTZm7R3qxTeuiLDZq26oCevSZFbWI95/nx3i9lo0A39Wiq4Gq6HQJAOVP/hZgzZ06l7z/88ENFR0dr7dq1uuyyy6rsX1RUpKKioorvc3PLWr2WlJSopKTEucFeQPn5zY6jLnK33KXnFOqTFQf0xZpDyi0slSSFBfhoTLd43dKrqeLOLCBqdrzulreoYB/dP6C5/nBZM/20LVPTVh3UirQTmrc1Q/O2ZqhpRKB+1z1e13duoggTF3x0t7z9VonVpuV7s/X95qOaty1TeWeeg5LUpEGAhnWI1dUpsUqOC634lN9V1+LuuXNXrspb76QGmnlvb01Zuk9vLNqrVWnZuvrfv+i23k1134AW1bZAd2e1zdvW9Fwt33tc3l4W3dwj3mOfp7xO7Ufu7ONOeatNDBbDMKpbCNwUu3fvVqtWrbR582alpKRUeXzSpEmaPHlyle3Tpk1TUBBz33Fx9udLPx/x0objFtnOLAXZKMDQ5XE29Ygy5O9tcoB1UMZpaelRL606ZtFpa1lOfSyGOkca6htrU7OQss5lns5mSHtyLVqXZdHGbItOlf6alHBfQ5c0MtQl0qZE8oUayi6SvtnnpU3ZZffmhfsaGtXMps6RRr19Dn2620urj3mpc6RNt7W2XfgHANQ7BQUFuummm5STk6OwsPM3inGbIshms2nkyJE6efKklixZUu0+1Y0EJSQkKCsr64IX6mwlJSWaN2+eBg4cKF9fz7wh1V5m5s5qMzRvW6Y+XLZfa89aS6VnUkPd3jtRl7eJctv7ferSc66guFTfbz6qaasOKfXIr4t1to0N1U094jWyY5zLpq64S95sNkPrD57U96kZmpN6VMfyiyseiwj21dD2sbq6Q4y6NW3oNtMI3SV3dY2ZeVu085ie+X67DmSfliT1bh6hp4e1VcvoEJfGYY/a5C0zr0iXv7RYJVZDX93dU53iPXchWV6n9iN39nGnvOXm5qpRo0Y1KoLcZmz83nvvVWpq6jkLIEny9/eXv3/V9S18fX1NT3o5d4qlrnFl7vIKS/TlmkOasjRNh06UvTnw9bZoRMfGuqNfUp1aib0uPOfCfX11U68k3dQrSRsPntQnK/Zr1sYj2n40T0/P3KZ/zt2l67o00bheiS67v8WMvBmGoc2HczRr4xF9vyldR3IKKx4LD/TVkPaxGtGpsXo1j5CPGy+uWxeec+7IjLxd1b6x+rWO0TuL9+qNhbu1fG+2Rr65XBP6NdcDV7asE2t81SRvn63eqxKroa6JDdUtqZGLInNvvE7tR+7s4w55q8353eJfv/vuu0/fffedFi9erPj4eLPDQT12MLusnfMXqw8qv6jsXouGQb66uWeibumdyFoqLtApoYE6JTTQk8Pa6au1hzRt5QHtzTqlj5fv18fL96tHswiN652oIe3rR5ttwzC0/Wievtt0RLM2putAdkHFYyH+PhqUHKPhneLUr2VUvbheuJ8AX289cGUrjbqkiSbP2qL52zP19qI9mrnhsJ4anqwhKbF1uotcYYlVU1fulyTd2Y/FUQHUjKlFkGEYuv/++/XNN9/o559/VlIS/3jB8QzD0LoDJ/T+kjTNST2q8rUkW0QF645+Sbquc7wC/bjhx9UaBPnpzkuba0K/JC3bc1yfLN+vedsytGpftlbty1ajED+N7lbWZrsuLj67OzNf3206ou82pWt3Zn7F9gBfL13ZLkYjOjbW5W2iFODLcw+u0TQySO/f1l0/bc3QpFlbdOjEad0zdZ0ubdVIz1yToqQ62l59xrrDOlFQoviGgRrUPtbscADUEaYWQffee6+mTZumb7/9VqGhoTp69KgkKTw8XIGBrC2Ci1NitWl26lG9vyRNGw+erNh+aatGuqNfkvq3inKbey08mcViUd+WjdS3ZSMdzSnU56sP6LNVB5SRW6Q3f96jtxbt0YA20bqlV6Iua+2+92hJZSONs86M+GxL//XeJz9vL13eJkrDOzXWlW2jad0LU12VHKN+rRrpzYW79faivfplV5YGv7JYv7+sue4d0LJOfShksxl6f8leSdLtfZPc+t8HAO7F1P+J33rrLUnS5ZdfXmn7lClTdNttt7k+INQLOadL9PmqA/po2b6Key78fLw06pKy+33axprbRAPnFhseoIeuaq17B7TU/G0Z+nTFAS3ZnaUF2zO1YHum4hsG6qaeTTW6W4IahVS9P9AM6Tmn9f2mdM3alF6p2Pbxsqhfq0Ya0bGxBraPUVgA88vhPgJ8vfXIoDa6rku8Js7cokU7j+n1hbv1zfrDmjgiWQOTY+rEFLlFu45pz7FTCvH30ehuTKcHUHOmT4cDHGVf1ilNWZqm6WsPVSwqGRnsp1t6J2pcr0S3edOMC/P19tKQlDgNSYnT3mP5mrbygKavPaRDJ07rn3N26JV5O3V1hziN65WobokNXf5m7VhekWanpmvWxiNave9ExXYvi9S7RaSGd2ysIe1j1dDE9ZCAmmjWKFgf3t5dc7dk6NnvturwydP6/SdrNaBNlCaNbK/ESPeeIvf+mcVRf9c9QaF80ACgFpiTgTrNMAytTMvW+0vS9NO2DJXX1W1iQjWhX5JGXtKYey7quOZRIXpyeLIeHdxGszYe0acrD2jjwZP6dsMRfbvhiNrEhGpcr6Ya1bmJU98EnThVrDlbjuq7TUe0fM/xinvLJKl7s4Ya0amxhqbEKSqUYht1i8Vi0ZCUWF3WupHeWLhb7yzeq4U7jmnpK4t1T/8WuufyFm757+j2o7lasjtLXhZpfJ9mZocDoI6hCEKdVFxq0/ebj+i9X9K05ax1Zy5vE6U7+zVX35aRdWIqB2ouwNdbN3ZL0I3dEpR6OEefrtiv/204rB0ZeXrq2y16fvZ2jepc1ma7XZxjpjzmFpZo3pYMzdp0REt2Zan0rMqnU0IDjegYp6s7xKlxA+5hRN0X5OejPw9uWzZF7tstWrI7S6/N36Vv1h/WpJHJuqJtjNkhVlI+CjQ0Ja5ONk8BYC6KINQpJ04Va9qZ+30y88oWzg3w9dJ1XeJ1R99mahntmjVmYK6UJuF6/vqOevzqdpqx7pA+XbFfe46d0tSVBzR15QF1TWyocb2aamhKXKVPsK22spHDtVkWRaZlq3fL6Co3UhcUl+qnbZn6buMR/bzzmIpLf115vl1cmEZ0itPwDo3VNJI3XaifWkSF6JMJPfTD5qN69rutOpBdoDs+XKOByTF6eniyWxQcx/KK9O2GI5KkO2iLDcAOFEGoE/Ycy9cHS9L09bpDKiwpe1MaHeqv8X2a6aYeTbn3wkOFB/rq9r5Juq1PM63Ym61PV+zX3C1HtXb/Ca3df0LPfrdNN3aL1809ErU1PUeTZ21Vek6hJG99vGuN4sIDNHFEsi5vE62fdxzTrE1HtGBbpk6XWCvO0SIqWCM6Ndbwjo3VMjrEvIsFXMhisWhYxzhd3iZK/56/S+8vSdO8rRlavPOY7hvQUr/v31z+PuZNkftkxX4VW23q3LSBuiY2NC0OAHUXRRBMdb5P5g3D0NLdx/X+krL56eXaNw7ThH5JGt6xMYtLQlLZG7beLSLVu0WkMnML9cXqg/ps1QEdySnUfxft1X8X7a3259JzCvWHT9cpwMdLhWeN+DSNCCob8enYWG1jQ5laCY8V7O+jx69upxu6xuupb1O1Ym+2Xpq3U1+vO6TJ16Sof+sol8dUWGLV1BVli6NOYBQIgJ0ogmCaOanp1X4y//jQtiostemDJWnafjRPkmSxSFe2jdGEfknq1TyCN6U4p+iwAN1/ZSvdc3kLLdxxTB8v36dfdmWd92cKS22KC/PX8E6NNaJTY3VoEs5zDDhLq5hQfXZXL83ceETPfb9N+44XaPwHqzSkfayeGpGsJi68L+5/6w/r+KliNWkQqCEsjgrAThRBMMWc1HTd8+k6/bZJenpOoR74fEPF94G+3hrdLV639U2qs6uZwxw+3l4amByjEH+fCxZBkvTS6EvUp2UjF0QG1E0Wi0XXXNJEV7SN1qs/7dKHy/ZpzpajWrTzmO6/sqXu7Nfc6aPzhmHo/SVlDRFu69NMPt7MBgBgH4oguJzVZmjyrK1VCqCzeVmkRwe30c09EhUexNoPsF9mXmGN9juWX+TkSID6ITTAV08NT9aN3eL19P+2aNW+bP1zzg59tfaQnr0mRX2d+GHC4l1Z2pWZr2A/b43pkeC08wCo/yiC4HCFJVZl5RcpK79YWXlFZ/5e9v2xvCLtOZZ/ZgrcudkMqXNCQwogXLTo0ACH7gegTNvYMH1xdy99s/6w/v7DNu09dko3v7dSwzrG6alhyYoNd/xrqnwUaHT3BIWxOCqAi0ARhBopLLHqWN6vxUxWftFZ3xcpK+/Mtvwi5RWWOuScNf0EHzifHkkRigsP0NGcwmpHHy2SYsMD1CMpwtWhAXWexWLRdV3idWW7GL0yb6c+Xr5P329K18/bM/XgVa10e98k+TpoytrOjDwt3nlMXhbp9j40RABwcSiCPNjpYmtF4ZKVV/5n8VkjN7+O3uQX1a6w8fP2UqMQPzUK9VejEP+yv4eU/f1kQbH+vWD3BY/BJ/NwBG8viyaOSNY9n66TRapUCJW3Ppg4IrnKekEAai480FeTRrbXjd3i9dT/UrXuwEn9/Yftmr7mkJ65JkW9W0Re9Dk+ODMKNCg5lnW6AFw0iiAHqMkCjK5SUFyqrLxiHcsv1LHfFjRnjdZk5RXpVLH1wgc8i5+Pl6J+U9BEhfr/ptjxV1SIv8ICfc7ZXctqMzR97SE+mYfLDEmJ01vjupzVjbBM7Jl1goakxJkYHVB/tG8crq/+0EdfrTuk52dv167MfI19d4VGXdJYT1zdTtFh9n24lZVfpBnrD0uS7ryUUSAAF48i6CKdq82zI99YnSoqrTT17NhZ99r8dopaQS0LG38fr7LiJdRfUSF+Z4qas7/KCpyoUH+F+p+7sKkNPpmHGYakxGlgcqyW787Uj7+s1KBLe5r6gQVQX3l5WTS6W4IGJcfoXz/u0NSVB/S/DUf007ZMPTywtcb3Tqx1V7epKw6ouNSmTvHhLI4KwCEogi7Cudo8H80p1D2frtNb47pUWwgZhqH8otKKwqWioDkz9ey3ozdnr15fEwG+XmeN0pSPzvxmtObMCE6Igwqb2uKTeZjB28uinkkROr7NUM+kCAogwIkaBPnpb6M6aEy3pnry21RtPHhSz363VdPXHNSzo1LUvVnNRvuLSqz6ZMU+SdKES5uzhhcAh6AIstP52jyXb3vsq03afDhH2aeKK01NO5ZXpKKzVqeviUBf71+nnp0ZuSkvbiqN3oT6K9jPu078J8En8wBQ/3WID9c39/TRF2sO6oU527X9aJ5ufHu5ruvSRI8PbaeoUP/z/vyszUeVlV+suPAADU1hcVQAjkERZKdVadkXbPOcW1iqNxbuOefjwX7e1TYOKC9qokJ/3RbsXz9/VXwyDwD1n5eXRWN7NNWQ9rH659zt+nz1Qc1Yd1jztmbo0UFtNK5XYrX//huG9OGy/ZLKFkd1VKc5AKif76xdoKbtm/u1bKTuzSLU6KyCJirEX41C/RTkR/oBAJ6jYbCf/nFdR43ulqCnvk1V6uFcTZy5RV+uOahnrkmpuN+nvOHQ9we8tCMjX4G+Xvpdj6YmRw+gPuFduJ1q2r753gEtHdIaFACA+qJz04b69t5+mrbqgF6cs11bjuTq+reWaXS3eHVvFqGX5+08M9uibOTHYrFo+Z4s7hcF4DCMK9upfAHGc03eskiKo80zAADV8vay6JZeiVr46OW6sWu8JOnLNYf05682VZluXlBs1T2frtOc1HQzQgVQD1EE2am8zbOkKoUQbZ4BAKiZyBB/vXhjJ315dy/5XOD/zMmztspqq64lEQDUDkXQRShv8xwbXnlqXGx4wDnbYwMAgKqsNqn0PAWOISk9p1Cr0rJdFxSAeot7gi4SbZ4BALh4NW04VNP9AOB8KIIcgDbPAABcnJo2HKrpfgBwPkyHAwAApqPhEABXoggCAACmo+EQAFeiCAIAAG6BhkMAXIV7ggAAgNug4RAAV6AIAgAAboWGQwCcjelwAAAAADwKRRAAAAAAj0IRBAAAAMCjUAQBAAAA8CgUQQAAAAA8CkUQAAAAAI9CEQQAAADAo1AEAQAAAPAoFEEAAAAAPApFEAAAAACPQhEEAAAAwKNQBAEAAADwKBRBAAAAADyKj9kBXAzDMCRJubm5JkcilZSUqKCgQLm5ufL19TU7nDqF3NmHvNmHvNmP3NmHvNmHvNmHvNmP3NnHnfJWXhOU1wjnU6eLoLy8PElSQkKCyZEAAAAAcAd5eXkKDw8/7z4Woyalkpuy2Ww6cuSIQkNDZbFYTI0lNzdXCQkJOnjwoMLCwkyNpa4hd/Yhb/Yhb/Yjd/Yhb/Yhb/Yhb/Yjd/Zxp7wZhqG8vDw1btxYXl7nv+unTo8EeXl5KT4+3uwwKgkLCzP9CVBXkTv7kDf7kDf7kTv7kDf7kDf7kDf7kTv7uEveLjQCVI7GCAAAAAA8CkUQAAAAAI9CEeQg/v7+mjhxovz9/c0Opc4hd/Yhb/Yhb/Yjd/Yhb/Yhb/Yhb/Yjd/apq3mr040RAAAAAKC2GAkCAAAA4FEoggAAAAB4FIogAAAAAB6FIggAAACAR6EIOss//vEPde/eXaGhoYqOjtaoUaO0Y8eOSvsUFhbq3nvvVWRkpEJCQnT99dcrIyOj0j4PPPCAunbtKn9/f11yySXnPefu3bsVGhqqBg0aOPhqXMdVedu3b58sFkuVrxUrVjjz8pzGlc83wzD0r3/9S61bt5a/v7+aNGmi5557zlmX5nSuyt2kSZOqfc4FBwc78/KcxpXPublz56pXr14KDQ1VVFSUrr/+eu3bt89JV+Zcrszbl19+qUsuuURBQUFKTEzUiy++6KzLcglH5G7jxo0aO3asEhISFBgYqHbt2um1116rcq6ff/5ZXbp0kb+/v1q2bKkPP/zQ2ZfnNK7KW3p6um666Sa1bt1aXl5eeuihh1xxeU7jqrzNmDFDAwcOVFRUlMLCwtS7d2/NnTvXJdfoDK7K25IlS9S3b19FRkYqMDBQbdu21SuvvOKSa6wORdBZFi1apHvvvVcrVqzQvHnzVFJSokGDBunUqVMV+zz88MOaNWuWpk+frkWLFunIkSO67rrrqhzrjjvu0JgxY857vpKSEo0dO1aXXnqpw6/FlVydt59++knp6ekVX127dnX4NbmCK/P24IMP6r333tO//vUvbd++XTNnzlSPHj2ccl2u4KrcPfroo5Wea+np6UpOTtaNN97otGtzJlflLS0tTddcc42uuOIKbdiwQXPnzlVWVla1x6kLXJW32bNn6+abb9Yf/vAHpaam6s0339Qrr7yi119/3WnX5myOyN3atWsVHR2tTz/9VFu2bNFf//pXPf7445XykpaWpmHDhmnAgAHasGGDHnroId1555119o2pq/JWVFSkqKgoPfnkk+rUqZNLr9EZXJW3xYsXa+DAgfrhhx+0du1aDRgwQCNGjND69etder2O4qq8BQcH67777tPixYu1bds2Pfnkk3ryySf1zjvvuPR6Kxg4p8zMTEOSsWjRIsMwDOPkyZOGr6+vMX369Ip9tm3bZkgyli9fXuXnJ06caHTq1Omcx3/ssceMcePGGVOmTDHCw8MdHb5pnJW3tLQ0Q5Kxfv16Z4VuKmflbevWrYaPj4+xfft2p8VuNme/Vstt2LDBkGQsXrzYYbGbyVl5mz59uuHj42NYrdaKbTNnzjQsFotRXFzs+AtxMWflbezYscYNN9xQadu///1vIz4+3rDZbI69CJNcbO7K/fGPfzQGDBhQ8f1jjz1mtG/fvtI+Y8aMMQYPHuzgKzCHs/J2tv79+xsPPvigQ+M2myvyVi45OdmYPHmyYwI3mSvzdu211xrjxo1zTOC1xEjQeeTk5EiSIiIiJJVVuSUlJbrqqqsq9mnbtq2aNm2q5cuX1+rYCxYs0PTp0/XGG284LmA34cy8SdLIkSMVHR2tfv36aebMmY4J2g04K2+zZs1S8+bN9d133ykpKUnNmjXTnXfeqezsbMdegImc/Zwr995776l169Z1fvS2nLPy1rVrV3l5eWnKlCmyWq3KycnRJ598oquuukq+vr6OvQgTOCtvRUVFCggIqLQtMDBQhw4d0v79+x0QufkclbucnJyKY0jS8uXLKx1DkgYPHnxRr3d34qy81XeuypvNZlNeXl69ya2r8rZ+/XotW7ZM/fv3d1DktUMRdA42m00PPfSQ+vbtq5SUFEnS0aNH5efnV+X+nZiYGB09erTGxz5+/Lhuu+02ffjhhwoLC3Nk2KZzZt5CQkL00ksvafr06fr+++/Vr18/jRo1ql4UQs7M2969e7V//35Nnz5dH3/8sT788EOtXbtWN9xwgyMvwTTOzN3ZCgsLNXXqVE2YMOFiQ3YLzsxbUlKSfvzxRz3xxBPy9/dXgwYNdOjQIX355ZeOvARTODNvgwcP1owZMzR//nzZbDbt3LlTL730kqSyezfqOkflbtmyZfriiy/0+9//vmLb0aNHFRMTU+UYubm5On36tGMvxMWcmbf6zJV5+9e//qX8/HyNHj3aYfGbxRV5i4+Pl7+/v7p166Z7771Xd955p8OvoyZ8TDlrHXDvvfcqNTVVS5Yscfix77rrLt1000267LLLHH5sszkzb40aNdIjjzxS8X337t115MgRvfjiixo5cqTDz+dKzsybzWZTUVGRPv74Y7Vu3VqS9P7776tr167asWOH2rRp4/BzupIzc3e2b775Rnl5eRo/frxTz+Mqzszb0aNHddddd2n8+PEaO3as8vLy9PTTT+uGG27QvHnzZLFYHH5OV3H2/w179uzR8OHDVVJSorCwMD344IOaNGmSvLzq/meWjshdamqqrrnmGk2cOFGDBg1yYHTui7zZx1V5mzZtmiZPnqxvv/1W0dHRdp/LXbgib7/88ovy8/O1YsUK/d///Z9atmypsWPHXkzYdqn7/6o6wX333afvvvtOCxcuVHx8fMX22NhYFRcX6+TJk5X2z8jIUGxsbI2Pv2DBAv3rX/+Sj4+PfHx8NGHCBOXk5MjHx0cffPCBoy7D5Zydt+r07NlTu3fvvqhjmM3ZeYuLi5OPj09FASRJ7dq1kyQdOHDg4oI3mSufc++9956GDx9e5dPmusjZeXvjjTcUHh6uf/7zn+rcubMuu+wyffrpp5o/f75WrlzpqMtwOWfnzWKx6IUXXlB+fr7279+vo0ePVjQwad68uUOuwSyOyN3WrVt15ZVX6ve//72efPLJSo/FxsZW6caXkZGhsLAwBQYGOvZiXMjZeauvXJW3zz//XHfeeae+/PLLKtMx6yJX5S0pKUkdOnTQXXfdpYcffliTJk1y9KXUCEXQWQzD0H333advvvlGCxYsUFJSUqXHu3btKl9fX82fP79i244dO3TgwAH17t27xudZvny5NmzYUPH1zDPPKDQ0VBs2bNC1117rsOtxFVflrTobNmxQXFzcRR3DLK7KW9++fVVaWqo9e/ZUbNu5c6ckKTEx8SKvwhyufs6lpaVp4cKFdX4qnKvyVlBQUGXkwtvbW1LZyGRd4+rnm7e3t5o0aSI/Pz999tln6t27t6Kioi76OszgqNxt2bJFAwYM0Pjx46tt79+7d+9Kx5CkefPmXfT/MWZxVd7qG1fm7bPPPtPtt9+uzz77TMOGDXPOBbmImc+38tkqpjClHYObuueee4zw8HDj559/NtLT0yu+CgoKKvb5wx/+YDRt2tRYsGCBsWbNGqN3795G7969Kx1n165dxvr16427777baN26tbF+/Xpj/fr1RlFRUbXnrevd4VyVtw8//NCYNm2asW3bNmPbtm3Gc889Z3h5eRkffPCBS6/XUVyVN6vVanTp0sW47LLLjHXr1hlr1qwxevbsaQwcONCl1+tIrn6tPvnkk0bjxo2N0tJSl1yfs7gqb/PnzzcsFosxefJkY+fOncbatWuNwYMHG4mJiZXOVVe4Km/Hjh0z3nrrLWPbtm3G+vXrjQceeMAICAgwVq5c6dLrdSRH5G7z5s1GVFSUMW7cuErHyMzMrNhn7969RlBQkPHnP//Z2LZtm/HGG28Y3t7expw5c1x6vY7iqrwZhlHxPOzatatx0003GevXrze2bNnismt1JFflberUqYaPj4/xxhtvVNrn5MmTLr1eR3FV3l5//XVj5syZxs6dO42dO3ca7733nhEaGmr89a9/den1lqMIOoukar+mTJlSsc/p06eNP/7xj0bDhg2NoKAg49prrzXS09MrHad///7VHictLa3a89b1IshVefvwww+Ndu3aGUFBQUZYWJjRo0ePSu0a6xpXPt8OHz5sXHfddUZISIgRExNj3Hbbbcbx48dddKWO58rcWa1WIz4+3njiiSdcdHXO48q8ffbZZ0bnzp2N4OBgIyoqyhg5cqSxbds2F12pY7kqb8eOHTN69eplBAcHG0FBQcaVV15prFixwoVX6niOyN3EiROrPUZiYmKlcy1cuNC45JJLDD8/P6N58+aVzlHXuDJvNdmnrnBV3s71Wh4/frzrLtaBXJW3f//730b79u0r3sd17tzZePPNNystp+BKFsMwDAEAAACAh+CeIAAAAAAehSIIAAAAgEehCAIAAADgUSiCAAAAAHgUiiAAAAAAHoUiCAAAAIBHoQgCAAAA4FEoggAAAAB4FIogAAAAAB6FIggA4DYMw9BVV12lwYMHV3nszTffVIMGDXTo0CETIgMA1CcUQQAAt2GxWDRlyhStXLlS//3vfyu2p6Wl6bHHHtN//vMfxcfHO/ScJSUlDj0eAMD9UQQBANxKQkKCXnvtNT366KNKS0uTYRiaMGGCBg0apM6dO2vo0KEKCQlRTEyMbrnlFmVlZVX87Jw5c9SvXz81aNBAkZGRGj58uPbs2VPx+L59+2SxWPTFF1+of//+CggI0NSpU824TACAiSyGYRhmBwEAwG+NGjVKOTk5uu666/Tss89qy5Ytat++ve68807deuutOn36tP7yl7+otLRUCxYskCR9/fXXslgs6tixo/Lz8/X0009r37592rBhg7y8vLRv3z4lJSWpWbNmeumll9S5c2cFBAQoLi7O5KsFALgSRRAAwC1lZmaqffv2ys7O1tdff63U1FT98ssvmjt3bsU+hw4dUkJCgnbs2KHWrVtXOUZWVpaioqK0efNmpaSkVBRBr776qh588EFXXg4AwI0wHQ4A4Jaio6N19913q127dho1apQ2btyohQsXKiQkpOKrbdu2klQx5W3Xrl0aO3asmjdvrrCwMDVr1kySdODAgUrH7tatm0uvBQDgXnzMDgAAgHPx8fGRj0/Zf1X5+fkaMWKEXnjhhSr7lU9nGzFihBITE/Xuu++qcePGstlsSklJUXFxcaX9g4ODnR88AMBtUQQBAOqELl266Ouvv1azZs0qCqOzHT9+XDt27NC7776rSy+9VJK0ZMkSV4cJAKgDmA4HAKgT7r33XmVnZ2vs2LFavXq19uzZo7lz5+r222+X1WpVw4YNFRkZqXfeeUe7d+/WggUL9Mgjj5gdNgDADVEEAQDqhMaNG2vp0qWyWq0aNGiQOnTooIceekgNGjSQl5eXvLy89Pnnn2vt2rVKSUnRww8/rBdffNHssAEAbojucAAAAAA8CiNBAAAAADwKRRAAAAAAj0IRBAAAAMCjUAQBAAAA8CgUQQAAAAA8CkUQAAAAAI9CEQQAAADAo1AEAQAAAPAoFEEAAAAAPApFEAAAAACPQhEEAAAAwKP8P6KQ14ErFH3sAAAAAElFTkSuQmCC", "text/plain": [ "
[\n", - "β {\n", - "β β 'input': [\n", - "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", - "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}'\n", - "β β ],\n", - "β β 'output': 'content: Let me check the latest sports news. tool_calls: []'\n", - "β },\n", - "β {\n", - "β β 'input': [\n", - "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", - "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", - "β β β '{\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", - "β β β '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}'\n", - "β β ],\n", - "β β 'output': \"content: tool_calls: [ToolCall(call_id='19bd3554-e670-4856-89d0-c63f5b016245', tool_name='bravy_search', arguments={'query': 'Bill Cosby South Park episode'})]\"\n", - "β },\n", - "β {\n", - "β β 'input': [\n", - "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", - "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", - "β β β '{\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", - "β β β '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n", - "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"19bd3554-e670-4856-89d0-c63f5b016245\",\"tool_name\":\"bravy_search\",\"arguments\":{\"query\":\"Bill Cosby South Park episode\"}}]}',\n", - "β β β '{\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null}'\n", - "β β ],\n", - "β β 'output': \"content: tool_calls: [ToolCall(call_id='526045a7-5f51-40fb-ba97-5ad29610e511', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'Andrew Tate kickboxing name'})]\"\n", - "β },\n", - "β {\n", - "β β 'input': '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Andrew Tate kickboxing name\"}}]}',\n", - "β β 'output': '{\"role\":\"ipython\",\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"Andrew Tate kickboxing record: How many championships ... - FirstSportz\\\\\", \\\\\"url\\\\\": \\\\\"https://firstsportz.com/mma-how-many-championships-does-andrew-tate-have/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s Kickboxing career. During his kickboxing career, he used the nickname \\\\\\\\\\\\\"King Cobra,\\\\\\\\\\\\\" which he currently uses as his Twitter name. Tate had an unorthodox style of movement inside the ring. He kept his hands down most of the time and relied on quick jabs and an overhand right to land significant strikes.\\\\\", \\\\\"score\\\\\": 0.9996244, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.99909246, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Who is Andrew Tate? MMA, kickboxing record and controversies of fighter ...\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportingnews.com/us/kickboxing/news/andrew-tate-mma-kickboxing-record-controversies/u50waalc9cfz7krjg9wnyb7p\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate kickboxing record After launching his career as a 20-year-old in 2007, Tate built a formidable kickboxing record that included 76 wins across 85 fights in more than 13 years in the ring.\\\\\", \\\\\"score\\\\\": 0.9976586, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"About Andrew Tate: A Journey from Champion to Controversy\\\\\", \\\\\"url\\\\\": \\\\\"https://reachmorpheus.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s kickboxing career, beginning in 2005, is a tale of determination and skill. He quickly made a name for himself in the sport, rising through the ranks with his unique fighting style and strategic approach, honed by his chess-playing background.\\\\\", \\\\\"score\\\\\": 0.99701905, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate Bio, Wiki, Net Worth, Age, Family, MMA Career - Next Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nextbiography.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate Age. Andrew Tate is 36 years old as of 2023, born on December 1, 1986, in Washington, DC. By his mid-thirties, Andrew Tate has become an esteemed figure in the world of kickboxing, showcasing remarkable expertise and experience in the sport. Early Life of Andrew Tate. Andrew Tate was born on 01 December 1986 to an African-American\\\\\", \\\\\"score\\\\\": 0.99368566, \\\\\"raw_content\\\\\": null}]}\"}'\n", - "β },\n", - "β {\n", - "β β 'input': [\n", - "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", - "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", - "β β β '{\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", - "β β β '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n", - "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"19bd3554-e670-4856-89d0-c63f5b016245\",\"tool_name\":\"bravy_search\",\"arguments\":{\"query\":\"Bill Cosby South Park episode\"}}]}',\n", - "β β β '{\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null}',\n", - "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Andrew Tate kickboxing name\"}}]}',\n", - "β β β '{\"role\":\"ipython\",\"call_id\":\"526045a7-5f51-40fb-ba97-5ad29610e511\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"Andrew Tate kickboxing record: How many championships ... - FirstSportz\\\\\", \\\\\"url\\\\\": \\\\\"https://firstsportz.com/mma-how-many-championships-does-andrew-tate-have/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s Kickboxing career. During his kickboxing career, he used the nickname \\\\\\\\\\\\\"King Cobra,\\\\\\\\\\\\\" which he currently uses as his Twitter name. Tate had an unorthodox style of movement inside the ring. He kept his hands down most of the time and relied on quick jabs and an overhand right to land significant strikes.\\\\\", \\\\\"score\\\\\": 0.9996244, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.99909246, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Who is Andrew Tate? MMA, kickboxing record and controversies of fighter ...\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportingnews.com/us/kickboxing/news/andrew-tate-mma-kickboxing-record-controversies/u50waalc9cfz7krjg9wnyb7p\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate kickboxing record After launching his career as a 20-year-old in 2007, Tate built a formidable kickboxing record that included 76 wins across 85 fights in more than 13 years in the ring.\\\\\", \\\\\"score\\\\\": 0.9976586, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"About Andrew Tate: A Journey from Champion to Controversy\\\\\", \\\\\"url\\\\\": \\\\\"https://reachmorpheus.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate\\'s kickboxing career, beginning in 2005, is a tale of determination and skill. He quickly made a name for himself in the sport, rising through the ranks with his unique fighting style and strategic approach, honed by his chess-playing background.\\\\\", \\\\\"score\\\\\": 0.99701905, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate Bio, Wiki, Net Worth, Age, Family, MMA Career - Next Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nextbiography.com/andrew-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate Age. Andrew Tate is 36 years old as of 2023, born on December 1, 1986, in Washington, DC. By his mid-thirties, Andrew Tate has become an esteemed figure in the world of kickboxing, showcasing remarkable expertise and experience in the sport. Early Life of Andrew Tate. Andrew Tate was born on 01 December 1986 to an African-American\\\\\", \\\\\"score\\\\\": 0.99368566, \\\\\"raw_content\\\\\": null}]}\"}'\n", - "β β ],\n", - "β β 'output': 'content: Andrew Tate\\'s kickboxing name is \"King Cobra.\" tool_calls: []'\n", - "β }\n", - "]\n", - "\n" - ], "text/plain": [ "\u001b[1m[\u001b[0m\n", "\u001b[2;32mβ \u001b[0m\u001b[1m{\u001b[0m\n", "\u001b[2;32mβ β \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[1m[\u001b[0m\n", "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m'content: Let me check the latest sports news. tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m'\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[1m[\u001b[0m\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title.\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='19bd3554-e670-4856-89d0-c63f5b016245', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m='bravy_search', \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Bill Cosby South Park episode'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[1m[\u001b[0m\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"Let me check the latest sports news.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"NBA Western Conference Finals 2024 teams\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"ipython\",\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown \u001b[0m\u001b[32m(\u001b[0m\u001b[32m20.8 / 5.4 / 5.0\u001b[0m\u001b[32m)\u001b[0m\u001b[32m 2024 Playoff Leaders: PTS: Luka Don\\\\\\\\u010di\\\\\\\\u0107 \u001b[0m\u001b[32m(\u001b[0m\u001b[32m635\u001b[0m\u001b[32m)\u001b[0m\u001b[32m TRB: Luka Don\\\\\\\\u010di\\\\\\\\u0107 \u001b[0m\u001b[32m(\u001b[0m\u001b[32m208\u001b[0m\u001b[32m)\u001b[0m\u001b[32m AST: Luka Don\\\\\\\\u010di\\\\\\\\u0107 \u001b[0m\u001b[32m(\u001b[0m\u001b[32m178\u001b[0m\u001b[32m)\u001b[0m\u001b[32m WS: Derrick White \u001b[0m\u001b[32m(\u001b[0m\u001b[32m2.9\u001b[0m\u001b[32m)\u001b[0m\u001b[32m More playoffs info\\\\\", \\\\\"score\\\\\": 0.9310187, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\\\\\", \\\\\"content\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\\\\\", \\\\\"score\\\\\": 0.8914433, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves \u001b[0m\u001b[32m(\u001b[0m\u001b[32m3\u001b[0m\u001b[32m)\u001b[0m\u001b[32m vs. Mavericks \u001b[0m\u001b[32m(\u001b[0m\u001b[32m5\u001b[0m\u001b[32m)\u001b[0m\u001b[32m - NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\\\\\", \\\\\"score\\\\\": 0.8884594, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"NBA Conference Finals Schedule: Full List of Games & Results\\\\\", \\\\\"url\\\\\": \\\\\"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\\\\\", \\\\\"content\\\\\": \\\\\"The 2024 NBA conference finals matchups are set. Here\\'s the schedule for all the games. ... Western Conference First Round \u001b[0m\u001b[32m(\u001b[0m\u001b[32m1\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Oklahoma City Thunder def. \u001b[0m\u001b[32m(\u001b[0m\u001b[32m8\u001b[0m\u001b[32m)\u001b[0m\u001b[32m New Orleans Pelicans in 4 games\\\\\", \\\\\"score\\\\\": 0.85008353, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\\\\\", \\\\\"content\\\\\": \\\\\"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\\\\\", \\\\\"score\\\\\": 0.81979275, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title.\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"19bd3554-e670-4856-89d0-c63f5b016245\",\"tool_name\":\"bravy_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Bill Cosby South Park episode\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Bill Cosby South Park episode\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"ipython\",\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"Bill Cosby South Park episode\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Bill Cosby | South Park Archives | Fandom\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.fandom.com/wiki/Bill_Cosby\\\\\", \\\\\"content\\\\\": \\\\\"For other uses, see Bill \u001b[0m\u001b[32m(\u001b[0m\u001b[32mDisambiguation\u001b[0m\u001b[32m)\u001b[0m\u001b[32m. William Henry \\\\\\\\\\\\\"Bill\\\\\\\\\\\\\" Cosby Jr. African-American comedian, actor, and serial rapist. He first appears in the Season Five episode, \\\\\\\\\\\\\"Here Comes the Neighborhood\\\\\\\\\\\\\", as one of the wealthy African-Americans who move to South Park. He returned as a hologram in the Season Eighteen episode, \\\\\\\\\\\\\"#HappyHolograms\\\\\\\\\\\\\" where he is shown trying to molest pop star Taylor\\\\\", \\\\\"score\\\\\": 0.82288796, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Trapper Keeper \u001b[0m\u001b[32m(\u001b[0m\u001b[32mSouth Park\u001b[0m\u001b[32m)\u001b[0m\u001b[32m - Wikipedia\\\\\", \\\\\"url\\\\\": \\\\\"https://en.wikipedia.org/wiki/Trapper_Keeper_\u001b[0m\u001b[32m(\u001b[0m\u001b[32mSouth_Park\u001b[0m\u001b[32m)\u001b[0m\u001b[32m\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby warns that if the Trapper Keeper assimilates with the supercomputer at Cheyenne Mountain, it will become unstoppable. ... It is one of the many South Park episodes that parodies a current event. \u001b[0m\u001b[32m[\u001b[0m\u001b[32m1\u001b[0m\u001b[32m]\u001b[0m\u001b[32m The main plot of the episode involving the Trapper Keeper was written before the election, \u001b[0m\u001b[32m[\u001b[0m\u001b[32m1\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\\\\\", \\\\\"score\\\\\": 0.75659186, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Bill Cosby is Here to See You - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/video-clips/wfot8s/south-park-bill-cosby-is-here-to-see-you\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. ... South Park. Bill Cosby is Here to See You. Season 18 E 10 \\\\\\\\u2022 12/10/2014. Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. More. Watch Random Episode. Watching. 01:11. Please Welcome \\\\\\\\\\\\\"Cartman Bra\\\\\\\\\\\\\" South Park S18 E9.\\\\\", \\\\\"score\\\\\": 0.7156829, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Bill Cosby and Taylor Swift Duet - South Park Studios\\\\\", \\\\\"url\\\\\": \\\\\"https://www.southparkstudios.com/video-clips/90r7i1/south-park-bill-cosby-and-taylor-swift-duet\\\\\", \\\\\"content\\\\\": \\\\\"The holiday special continues with Bill Cosby and Taylor Swift\\'s rendition of \\\\\\\\\\\\\"It\\'s Snowing Out There\\\\\\\\\\\\\". ... Full Episodes. Collections. Random Episode. Full Episodes. Events. Wiki. News. Avatar. Shop. Forum. Games. South Park. Menu. Episodes & Videos. About. South Park. Bill Cosby and Taylor Swift Duet. Season 18 E 10 \\\\\\\\u2022 12/10/2014. The\\\\\", \\\\\"score\\\\\": 0.64639384, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mandroid\u001b[0m\u001b[32m)\u001b[0m\u001b[32m | South Park Character ... - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/wiki/Bill_Cosby_\u001b[0m\u001b[32m(\u001b[0m\u001b[32mandroid\u001b[0m\u001b[32m)\u001b[0m\u001b[32m\\\\\", \\\\\"content\\\\\": \\\\\"About. Sent back in time to destroy Eric Cartman\\'s Dawson\\'s Creek Trapper Keeper before it manifests into an omnipotent supercomputer that can destroy all humanity, \\\\\\\\\\\\\"Bill Cosby\\\\\\\\\\\\\" is really VSM471, an android or cyborg of some kind engineered by \\'hoomans\\' in the distant future. He fails in his initial missions to infiltrate South Park Elementary\\'s 4th Grade class, destroy the Trapper Keeper or\\\\\", \\\\\"score\\\\\": 0.56460327, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appears in the Season 4 episode \\\\\"Trapper Keeper\\\\\" of South Park.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", "\u001b[2;32mβ β \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='526045a7-5f51-40fb-ba97-5ad29610e511', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m=\u001b[0m\u001b[32m<\u001b[0m\u001b[32mBuiltinTool.brave_search:\u001b[0m\u001b[32m 'brave_search'\u001b[0m\u001b[32m>\u001b[0m\u001b[32m, \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Andrew Tate kickboxing name'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='44705eaf-b371-4841-b0ee-5eb21a5d7f36', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m=\u001b[0m\u001b[32m<\u001b[0m\u001b[32mBuiltinTool.brave_search:\u001b[0m\u001b[32m 'brave_search'>, \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Andrew Tate kickboxing name'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1;39m}\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1;39m{\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'input'\u001b[0m\u001b[39m: \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"44705eaf-b371-4841-b0ee-5eb21a5d7f36\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Andrew Tate kickboxing name\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'output'\u001b[0m\u001b[39m: \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"ipython\",\"call_id\":\"44705eaf-b371-4841-b0ee-5eb21a5d7f36\",\"tool_name\":\"brave_search\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"50 Facts About Andrew Tate - Facts.net\\\\\", \\\\\"url\\\\\": \\\\\"https://facts.net/andrew-tate-facts/\\\\\", \\\\\"content\\\\\": \\\\\"Full Name: Andrew Tate\\'s full name is Emory Andrew Tate III, named after his father, a celebrated chess player. Date of Birth: ... Kickboxing Start: Tate began his kickboxing career in 2005, starting his journey as a professional fighter, which would later be a significant part of his persona. First Championship:\\\\\", \\\\\"score\\\\\": 0.8967681, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"The Life Of Andrew Tate \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBy Andrew Tate Himself\u001b[0m\u001b[32m)\u001b[0m\u001b[32m\\\\\", \\\\\"url\\\\\": \\\\\"https://sidekickboxing.co.uk/the-life-of-andrew-king-cobra-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate stats. Fight Name: Cobra Tate. Born: 1 December 1986. Weight: 90 KG. Weight Class: Cruiserweight. Height: 1.92m. Fight Record: Wins - 76, Losses - 9. ... Andrew Tate\\'s Kickboxing Career. Andrew Tate has always fought credible opponents right from the beginning of his kickboxing career. One of his first professional fights on\\\\\", \\\\\"score\\\\\": 0.8795718, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"About Andrew Tate | The Real World\\\\\", \\\\\"url\\\\\": \\\\\"https://www.taterealworldofficial.com/about-andrew-tate\\\\\", \\\\\"content\\\\\": \\\\\"Emory Andrew Tate III \u001b[0m\u001b[32m(\u001b[0m\u001b[32mborn December 14, 1986\u001b[0m\u001b[32m)\u001b[0m\u001b[32m is an American-British kickboxer from Chicago, Illinois, who competes in the cruiserweight and heavyweight divisions. ... Tate challenged Paul Randall for the vacant ISKA English Kickboxing Light-cruiserweight title. Tate won his first ISKA Kickboxing title stopping Randall in the fifth round of\\\\\", \\\\\"score\\\\\": 0.8386933, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate - Fight Record - Muay Thai Records\\\\\", \\\\\"url\\\\\": \\\\\"https://muaythairecords.com/fighters/andrew-tate\\\\\", \\\\\"content\\\\\": \\\\\"Andrew \\\\\\\\\\\\\"King Cobra\\\\\\\\\\\\\" Tate is a 38-year-old Muay Thai fighter. With a record of 23-8-0, including 32 knockouts, standing at 6\\\\\\\\u2032 4\\\\\\\\u2033 and weighing 198 lbs. Originally from Luton, United Kingdom. ... WIN Dec -Kickboxing Jean Luc Beno\\\\\\\\u00eet. 14th Mar 2015 -Boxe in D\\\\\\\\u00e9fi 16. Andrew Tate defeated Jean Luc Beno\\\\\\\\u00eet by decision. ... Name: Andrew Tate\\\\\", \\\\\"score\\\\\": 0.8194462, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.7992077, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1;39m}\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1;39m{\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'input'\u001b[0m\u001b[39m: \u001b[0m\u001b[1;39m[\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"NBA Western Conference Finals 2024 teams\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"ipython\",\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown \u001b[0m\u001b[32m(\u001b[0m\u001b[32m20.8 / 5.4 / 5.0\u001b[0m\u001b[32m)\u001b[0m\u001b[32m 2024 Playoff Leaders: PTS: Luka Don\\\\\\\\u010di\\\\\\\\u0107 \u001b[0m\u001b[32m(\u001b[0m\u001b[32m635\u001b[0m\u001b[32m)\u001b[0m\u001b[32m TRB: Luka Don\\\\\\\\u010di\\\\\\\\u0107 \u001b[0m\u001b[32m(\u001b[0m\u001b[32m208\u001b[0m\u001b[32m)\u001b[0m\u001b[32m AST: Luka Don\\\\\\\\u010di\\\\\\\\u0107 \u001b[0m\u001b[32m(\u001b[0m\u001b[32m178\u001b[0m\u001b[32m)\u001b[0m\u001b[32m WS: Derrick White \u001b[0m\u001b[32m(\u001b[0m\u001b[32m2.9\u001b[0m\u001b[32m)\u001b[0m\u001b[32m More playoffs info\\\\\", \\\\\"score\\\\\": 0.9310187, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\\\\\", \\\\\"content\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\\\\\", \\\\\"score\\\\\": 0.8914433, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves \u001b[0m\u001b[32m(\u001b[0m\u001b[32m3\u001b[0m\u001b[32m)\u001b[0m\u001b[32m vs. Mavericks \u001b[0m\u001b[32m(\u001b[0m\u001b[32m5\u001b[0m\u001b[32m)\u001b[0m\u001b[32m - NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\\\\\", \\\\\"score\\\\\": 0.8884594, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"NBA Conference Finals Schedule: Full List of Games & Results\\\\\", \\\\\"url\\\\\": \\\\\"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\\\\\", \\\\\"content\\\\\": \\\\\"The 2024 NBA conference finals matchups are set. Here\\'s the schedule for all the games. ... Western Conference First Round \u001b[0m\u001b[32m(\u001b[0m\u001b[32m1\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Oklahoma City Thunder def. \u001b[0m\u001b[32m(\u001b[0m\u001b[32m8\u001b[0m\u001b[32m)\u001b[0m\u001b[32m New Orleans Pelicans in 4 games\\\\\", \\\\\"score\\\\\": 0.85008353, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\\\\\", \\\\\"content\\\\\": \\\\\"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\\\\\", \\\\\"score\\\\\": 0.81979275, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title.\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Bill Cosby South Park episode\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"ipython\",\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"Bill Cosby South Park episode\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Bill Cosby | South Park Archives | Fandom\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.fandom.com/wiki/Bill_Cosby\\\\\", \\\\\"content\\\\\": \\\\\"For other uses, see Bill \u001b[0m\u001b[32m(\u001b[0m\u001b[32mDisambiguation\u001b[0m\u001b[32m)\u001b[0m\u001b[32m. William Henry \\\\\\\\\\\\\"Bill\\\\\\\\\\\\\" Cosby Jr. African-American comedian, actor, and serial rapist. He first appears in the Season Five episode, \\\\\\\\\\\\\"Here Comes the Neighborhood\\\\\\\\\\\\\", as one of the wealthy African-Americans who move to South Park. He returned as a hologram in the Season Eighteen episode, \\\\\\\\\\\\\"#HappyHolograms\\\\\\\\\\\\\" where he is shown trying to molest pop star Taylor\\\\\", \\\\\"score\\\\\": 0.82288796, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Trapper Keeper \u001b[0m\u001b[32m(\u001b[0m\u001b[32mSouth Park\u001b[0m\u001b[32m)\u001b[0m\u001b[32m - Wikipedia\\\\\", \\\\\"url\\\\\": \\\\\"https://en.wikipedia.org/wiki/Trapper_Keeper_\u001b[0m\u001b[32m(\u001b[0m\u001b[32mSouth_Park\u001b[0m\u001b[32m)\u001b[0m\u001b[32m\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby warns that if the Trapper Keeper assimilates with the supercomputer at Cheyenne Mountain, it will become unstoppable. ... It is one of the many South Park episodes that parodies a current event. \u001b[0m\u001b[32m[\u001b[0m\u001b[32m1\u001b[0m\u001b[32m]\u001b[0m\u001b[32m The main plot of the episode involving the Trapper Keeper was written before the election, \u001b[0m\u001b[32m[\u001b[0m\u001b[32m1\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\\\\\", \\\\\"score\\\\\": 0.75659186, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Bill Cosby is Here to See You - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/video-clips/wfot8s/south-park-bill-cosby-is-here-to-see-you\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. ... South Park. Bill Cosby is Here to See You. Season 18 E 10 \\\\\\\\u2022 12/10/2014. Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. More. Watch Random Episode. Watching. 01:11. Please Welcome \\\\\\\\\\\\\"Cartman Bra\\\\\\\\\\\\\" South Park S18 E9.\\\\\", \\\\\"score\\\\\": 0.7156829, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Bill Cosby and Taylor Swift Duet - South Park Studios\\\\\", \\\\\"url\\\\\": \\\\\"https://www.southparkstudios.com/video-clips/90r7i1/south-park-bill-cosby-and-taylor-swift-duet\\\\\", \\\\\"content\\\\\": \\\\\"The holiday special continues with Bill Cosby and Taylor Swift\\'s rendition of \\\\\\\\\\\\\"It\\'s Snowing Out There\\\\\\\\\\\\\". ... Full Episodes. Collections. Random Episode. Full Episodes. Events. Wiki. News. Avatar. Shop. Forum. Games. South Park. Menu. Episodes & Videos. About. South Park. Bill Cosby and Taylor Swift Duet. Season 18 E 10 \\\\\\\\u2022 12/10/2014. The\\\\\", \\\\\"score\\\\\": 0.64639384, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mandroid\u001b[0m\u001b[32m)\u001b[0m\u001b[32m | South Park Character ... - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/wiki/Bill_Cosby_\u001b[0m\u001b[32m(\u001b[0m\u001b[32mandroid\u001b[0m\u001b[32m)\u001b[0m\u001b[32m\\\\\", \\\\\"content\\\\\": \\\\\"About. Sent back in time to destroy Eric Cartman\\'s Dawson\\'s Creek Trapper Keeper before it manifests into an omnipotent supercomputer that can destroy all humanity, \\\\\\\\\\\\\"Bill Cosby\\\\\\\\\\\\\" is really VSM471, an android or cyborg of some kind engineered by \\'hoomans\\' in the distant future. He fails in his initial missions to infiltrate South Park Elementary\\'s 4th Grade class, destroy the Trapper Keeper or\\\\\", \\\\\"score\\\\\": 0.56460327, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appears in the Season 4 episode \\\\\"Trapper Keeper\\\\\" of South Park.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"44705eaf-b371-4841-b0ee-5eb21a5d7f36\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"Andrew Tate kickboxing name\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"ipython\",\"call_id\":\"44705eaf-b371-4841-b0ee-5eb21a5d7f36\",\"tool_name\":\"brave_search\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"50 Facts About Andrew Tate - Facts.net\\\\\", \\\\\"url\\\\\": \\\\\"https://facts.net/andrew-tate-facts/\\\\\", \\\\\"content\\\\\": \\\\\"Full Name: Andrew Tate\\'s full name is Emory Andrew Tate III, named after his father, a celebrated chess player. Date of Birth: ... Kickboxing Start: Tate began his kickboxing career in 2005, starting his journey as a professional fighter, which would later be a significant part of his persona. First Championship:\\\\\", \\\\\"score\\\\\": 0.8967681, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"The Life Of Andrew Tate \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBy Andrew Tate Himself\u001b[0m\u001b[32m)\u001b[0m\u001b[32m\\\\\", \\\\\"url\\\\\": \\\\\"https://sidekickboxing.co.uk/the-life-of-andrew-king-cobra-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate stats. Fight Name: Cobra Tate. Born: 1 December 1986. Weight: 90 KG. Weight Class: Cruiserweight. Height: 1.92m. Fight Record: Wins - 76, Losses - 9. ... Andrew Tate\\'s Kickboxing Career. Andrew Tate has always fought credible opponents right from the beginning of his kickboxing career. One of his first professional fights on\\\\\", \\\\\"score\\\\\": 0.8795718, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"About Andrew Tate | The Real World\\\\\", \\\\\"url\\\\\": \\\\\"https://www.taterealworldofficial.com/about-andrew-tate\\\\\", \\\\\"content\\\\\": \\\\\"Emory Andrew Tate III \u001b[0m\u001b[32m(\u001b[0m\u001b[32mborn December 14, 1986\u001b[0m\u001b[32m)\u001b[0m\u001b[32m is an American-British kickboxer from Chicago, Illinois, who competes in the cruiserweight and heavyweight divisions. ... Tate challenged Paul Randall for the vacant ISKA English Kickboxing Light-cruiserweight title. Tate won his first ISKA Kickboxing title stopping Randall in the fifth round of\\\\\", \\\\\"score\\\\\": 0.8386933, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate - Fight Record - Muay Thai Records\\\\\", \\\\\"url\\\\\": \\\\\"https://muaythairecords.com/fighters/andrew-tate\\\\\", \\\\\"content\\\\\": \\\\\"Andrew \\\\\\\\\\\\\"King Cobra\\\\\\\\\\\\\" Tate is a 38-year-old Muay Thai fighter. With a record of 23-8-0, including 32 knockouts, standing at 6\\\\\\\\u2032 4\\\\\\\\u2033 and weighing 198 lbs. Originally from Luton, United Kingdom. ... WIN Dec -Kickboxing Jean Luc Beno\\\\\\\\u00eet. 14th Mar 2015 -Boxe in D\\\\\\\\u00e9fi 16. Andrew Tate defeated Jean Luc Beno\\\\\\\\u00eet by decision. ... Name: Andrew Tate\\\\\", \\\\\"score\\\\\": 0.8194462, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.7992077, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[1;39m]\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'output'\u001b[0m\u001b[39m: \u001b[0m\u001b[32m'content: Andrew Tate\\'s kickboxing name is \"King Cobra\" or \"Cobra Tate\". tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1;39m}\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1;39m{\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'input'\u001b[0m\u001b[39m: \u001b[0m\u001b[1;39m[\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[1;39m]\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'output'\u001b[0m\u001b[39m: \u001b[0m\u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m=
[\n", + "β {\n", + "β β 'input': [\n", + "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", + "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"NBA Western Conference Finals 2024 teams\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (635) TRB: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (208) AST: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (178) WS: Derrick White (2.9) More playoffs info\\\\\", \\\\\"score\\\\\": 0.9310187, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\\\\\", \\\\\"content\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\\\\\", \\\\\"score\\\\\": 0.8914433, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\\\\\", \\\\\"score\\\\\": 0.8884594, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Conference Finals Schedule: Full List of Games & Results\\\\\", \\\\\"url\\\\\": \\\\\"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\\\\\", \\\\\"content\\\\\": \\\\\"The 2024 NBA conference finals matchups are set. Here\\'s the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\\\\\", \\\\\"score\\\\\": 0.85008353, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\\\\\", \\\\\"content\\\\\": \\\\\"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\\\\\", \\\\\"score\\\\\": 0.81979275, \\\\\"raw_content\\\\\": null}]}\"}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", + "β β β '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Bill Cosby South Park episode\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Bill Cosby South Park episode\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"Bill Cosby | South Park Archives | Fandom\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.fandom.com/wiki/Bill_Cosby\\\\\", \\\\\"content\\\\\": \\\\\"For other uses, see Bill (Disambiguation). William Henry \\\\\\\\\\\\\"Bill\\\\\\\\\\\\\" Cosby Jr. African-American comedian, actor, and serial rapist. He first appears in the Season Five episode, \\\\\\\\\\\\\"Here Comes the Neighborhood\\\\\\\\\\\\\", as one of the wealthy African-Americans who move to South Park. He returned as a hologram in the Season Eighteen episode, \\\\\\\\\\\\\"#HappyHolograms\\\\\\\\\\\\\" where he is shown trying to molest pop star Taylor\\\\\", \\\\\"score\\\\\": 0.82288796, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Trapper Keeper (South Park) - Wikipedia\\\\\", \\\\\"url\\\\\": \\\\\"https://en.wikipedia.org/wiki/Trapper_Keeper_(South_Park)\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby warns that if the Trapper Keeper assimilates with the supercomputer at Cheyenne Mountain, it will become unstoppable. ... It is one of the many South Park episodes that parodies a current event. [1] The main plot of the episode involving the Trapper Keeper was written before the election, [1]\\\\\", \\\\\"score\\\\\": 0.75659186, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby is Here to See You - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/video-clips/wfot8s/south-park-bill-cosby-is-here-to-see-you\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. ... South Park. Bill Cosby is Here to See You. Season 18 E 10 \\\\\\\\u2022 12/10/2014. Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. More. Watch Random Episode. Watching. 01:11. Please Welcome \\\\\\\\\\\\\"Cartman Bra\\\\\\\\\\\\\" South Park S18 E9.\\\\\", \\\\\"score\\\\\": 0.7156829, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby and Taylor Swift Duet - South Park Studios\\\\\", \\\\\"url\\\\\": \\\\\"https://www.southparkstudios.com/video-clips/90r7i1/south-park-bill-cosby-and-taylor-swift-duet\\\\\", \\\\\"content\\\\\": \\\\\"The holiday special continues with Bill Cosby and Taylor Swift\\'s rendition of \\\\\\\\\\\\\"It\\'s Snowing Out There\\\\\\\\\\\\\". ... Full Episodes. Collections. Random Episode. Full Episodes. Events. Wiki. News. Avatar. Shop. Forum. Games. South Park. Menu. Episodes & Videos. About. South Park. Bill Cosby and Taylor Swift Duet. Season 18 E 10 \\\\\\\\u2022 12/10/2014. The\\\\\", \\\\\"score\\\\\": 0.64639384, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby (android) | South Park Character ... - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/wiki/Bill_Cosby_(android)\\\\\", \\\\\"content\\\\\": \\\\\"About. Sent back in time to destroy Eric Cartman\\'s Dawson\\'s Creek Trapper Keeper before it manifests into an omnipotent supercomputer that can destroy all humanity, \\\\\\\\\\\\\"Bill Cosby\\\\\\\\\\\\\" is really VSM471, an android or cyborg of some kind engineered by \\'hoomans\\' in the distant future. He fails in his initial missions to infiltrate South Park Elementary\\'s 4th Grade class, destroy the Trapper Keeper or\\\\\", \\\\\"score\\\\\": 0.56460327, \\\\\"raw_content\\\\\": null}]}\"}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"Bill Cosby (BSM-471) first appears in the Season 4 episode \\\\\"Trapper Keeper\\\\\" of South Park.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", + "β β β '{\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null}'\n", + "β β ],\n", + "β β 'output': \"content: tool_calls: [ToolCall(call_id='44705eaf-b371-4841-b0ee-5eb21a5d7f36', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'Andrew Tate kickboxing name'})]\"\n", + "β },\n", + "β {\n", + "β β 'input': '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"44705eaf-b371-4841-b0ee-5eb21a5d7f36\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Andrew Tate kickboxing name\"}}]}',\n", + "β β 'output': '{\"role\":\"ipython\",\"call_id\":\"44705eaf-b371-4841-b0ee-5eb21a5d7f36\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"50 Facts About Andrew Tate - Facts.net\\\\\", \\\\\"url\\\\\": \\\\\"https://facts.net/andrew-tate-facts/\\\\\", \\\\\"content\\\\\": \\\\\"Full Name: Andrew Tate\\'s full name is Emory Andrew Tate III, named after his father, a celebrated chess player. Date of Birth: ... Kickboxing Start: Tate began his kickboxing career in 2005, starting his journey as a professional fighter, which would later be a significant part of his persona. First Championship:\\\\\", \\\\\"score\\\\\": 0.8967681, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"The Life Of Andrew Tate (By Andrew Tate Himself)\\\\\", \\\\\"url\\\\\": \\\\\"https://sidekickboxing.co.uk/the-life-of-andrew-king-cobra-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate stats. Fight Name: Cobra Tate. Born: 1 December 1986. Weight: 90 KG. Weight Class: Cruiserweight. Height: 1.92m. Fight Record: Wins - 76, Losses - 9. ... Andrew Tate\\'s Kickboxing Career. Andrew Tate has always fought credible opponents right from the beginning of his kickboxing career. One of his first professional fights on\\\\\", \\\\\"score\\\\\": 0.8795718, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"About Andrew Tate | The Real World\\\\\", \\\\\"url\\\\\": \\\\\"https://www.taterealworldofficial.com/about-andrew-tate\\\\\", \\\\\"content\\\\\": \\\\\"Emory Andrew Tate III (born December 14, 1986) is an American-British kickboxer from Chicago, Illinois, who competes in the cruiserweight and heavyweight divisions. ... Tate challenged Paul Randall for the vacant ISKA English Kickboxing Light-cruiserweight title. Tate won his first ISKA Kickboxing title stopping Randall in the fifth round of\\\\\", \\\\\"score\\\\\": 0.8386933, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate - Fight Record - Muay Thai Records\\\\\", \\\\\"url\\\\\": \\\\\"https://muaythairecords.com/fighters/andrew-tate\\\\\", \\\\\"content\\\\\": \\\\\"Andrew \\\\\\\\\\\\\"King Cobra\\\\\\\\\\\\\" Tate is a 38-year-old Muay Thai fighter. With a record of 23-8-0, including 32 knockouts, standing at 6\\\\\\\\u2032 4\\\\\\\\u2033 and weighing 198 lbs. Originally from Luton, United Kingdom. ... WIN Dec -Kickboxing Jean Luc Beno\\\\\\\\u00eet. 14th Mar 2015 -Boxe in D\\\\\\\\u00e9fi 16. Andrew Tate defeated Jean Luc Beno\\\\\\\\u00eet by decision. ... Name: Andrew Tate\\\\\", \\\\\"score\\\\\": 0.8194462, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.7992077, \\\\\"raw_content\\\\\": null}]}\"}'\n", + "β },\n", + "β {\n", + "β β 'input': [\n", + "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", + "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"NBA Western Conference Finals 2024 teams\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (635) TRB: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (208) AST: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (178) WS: Derrick White (2.9) More playoffs info\\\\\", \\\\\"score\\\\\": 0.9310187, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\\\\\", \\\\\"content\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\\\\\", \\\\\"score\\\\\": 0.8914433, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\\\\\", \\\\\"score\\\\\": 0.8884594, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Conference Finals Schedule: Full List of Games & Results\\\\\", \\\\\"url\\\\\": \\\\\"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\\\\\", \\\\\"content\\\\\": \\\\\"The 2024 NBA conference finals matchups are set. Here\\'s the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\\\\\", \\\\\"score\\\\\": 0.85008353, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\\\\\", \\\\\"content\\\\\": \\\\\"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\\\\\", \\\\\"score\\\\\": 0.81979275, \\\\\"raw_content\\\\\": null}]}\"}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", + "β β β '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Bill Cosby South Park episode\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Bill Cosby South Park episode\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"Bill Cosby | South Park Archives | Fandom\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.fandom.com/wiki/Bill_Cosby\\\\\", \\\\\"content\\\\\": \\\\\"For other uses, see Bill (Disambiguation). William Henry \\\\\\\\\\\\\"Bill\\\\\\\\\\\\\" Cosby Jr. African-American comedian, actor, and serial rapist. He first appears in the Season Five episode, \\\\\\\\\\\\\"Here Comes the Neighborhood\\\\\\\\\\\\\", as one of the wealthy African-Americans who move to South Park. He returned as a hologram in the Season Eighteen episode, \\\\\\\\\\\\\"#HappyHolograms\\\\\\\\\\\\\" where he is shown trying to molest pop star Taylor\\\\\", \\\\\"score\\\\\": 0.82288796, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Trapper Keeper (South Park) - Wikipedia\\\\\", \\\\\"url\\\\\": \\\\\"https://en.wikipedia.org/wiki/Trapper_Keeper_(South_Park)\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby warns that if the Trapper Keeper assimilates with the supercomputer at Cheyenne Mountain, it will become unstoppable. ... It is one of the many South Park episodes that parodies a current event. [1] The main plot of the episode involving the Trapper Keeper was written before the election, [1]\\\\\", \\\\\"score\\\\\": 0.75659186, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby is Here to See You - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/video-clips/wfot8s/south-park-bill-cosby-is-here-to-see-you\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. ... South Park. Bill Cosby is Here to See You. Season 18 E 10 \\\\\\\\u2022 12/10/2014. Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. More. Watch Random Episode. Watching. 01:11. Please Welcome \\\\\\\\\\\\\"Cartman Bra\\\\\\\\\\\\\" South Park S18 E9.\\\\\", \\\\\"score\\\\\": 0.7156829, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby and Taylor Swift Duet - South Park Studios\\\\\", \\\\\"url\\\\\": \\\\\"https://www.southparkstudios.com/video-clips/90r7i1/south-park-bill-cosby-and-taylor-swift-duet\\\\\", \\\\\"content\\\\\": \\\\\"The holiday special continues with Bill Cosby and Taylor Swift\\'s rendition of \\\\\\\\\\\\\"It\\'s Snowing Out There\\\\\\\\\\\\\". ... Full Episodes. Collections. Random Episode. Full Episodes. Events. Wiki. News. Avatar. Shop. Forum. Games. South Park. Menu. Episodes & Videos. About. South Park. Bill Cosby and Taylor Swift Duet. Season 18 E 10 \\\\\\\\u2022 12/10/2014. The\\\\\", \\\\\"score\\\\\": 0.64639384, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby (android) | South Park Character ... - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/wiki/Bill_Cosby_(android)\\\\\", \\\\\"content\\\\\": \\\\\"About. Sent back in time to destroy Eric Cartman\\'s Dawson\\'s Creek Trapper Keeper before it manifests into an omnipotent supercomputer that can destroy all humanity, \\\\\\\\\\\\\"Bill Cosby\\\\\\\\\\\\\" is really VSM471, an android or cyborg of some kind engineered by \\'hoomans\\' in the distant future. He fails in his initial missions to infiltrate South Park Elementary\\'s 4th Grade class, destroy the Trapper Keeper or\\\\\", \\\\\"score\\\\\": 0.56460327, \\\\\"raw_content\\\\\": null}]}\"}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"Bill Cosby (BSM-471) first appears in the Season 4 episode \\\\\"Trapper Keeper\\\\\" of South Park.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", + "β β β '{\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"44705eaf-b371-4841-b0ee-5eb21a5d7f36\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Andrew Tate kickboxing name\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"44705eaf-b371-4841-b0ee-5eb21a5d7f36\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Andrew Tate kickboxing name\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"50 Facts About Andrew Tate - Facts.net\\\\\", \\\\\"url\\\\\": \\\\\"https://facts.net/andrew-tate-facts/\\\\\", \\\\\"content\\\\\": \\\\\"Full Name: Andrew Tate\\'s full name is Emory Andrew Tate III, named after his father, a celebrated chess player. Date of Birth: ... Kickboxing Start: Tate began his kickboxing career in 2005, starting his journey as a professional fighter, which would later be a significant part of his persona. First Championship:\\\\\", \\\\\"score\\\\\": 0.8967681, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"The Life Of Andrew Tate (By Andrew Tate Himself)\\\\\", \\\\\"url\\\\\": \\\\\"https://sidekickboxing.co.uk/the-life-of-andrew-king-cobra-tate/\\\\\", \\\\\"content\\\\\": \\\\\"Andrew Tate stats. Fight Name: Cobra Tate. Born: 1 December 1986. Weight: 90 KG. Weight Class: Cruiserweight. Height: 1.92m. Fight Record: Wins - 76, Losses - 9. ... Andrew Tate\\'s Kickboxing Career. Andrew Tate has always fought credible opponents right from the beginning of his kickboxing career. One of his first professional fights on\\\\\", \\\\\"score\\\\\": 0.8795718, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"About Andrew Tate | The Real World\\\\\", \\\\\"url\\\\\": \\\\\"https://www.taterealworldofficial.com/about-andrew-tate\\\\\", \\\\\"content\\\\\": \\\\\"Emory Andrew Tate III (born December 14, 1986) is an American-British kickboxer from Chicago, Illinois, who competes in the cruiserweight and heavyweight divisions. ... Tate challenged Paul Randall for the vacant ISKA English Kickboxing Light-cruiserweight title. Tate won his first ISKA Kickboxing title stopping Randall in the fifth round of\\\\\", \\\\\"score\\\\\": 0.8386933, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate - Fight Record - Muay Thai Records\\\\\", \\\\\"url\\\\\": \\\\\"https://muaythairecords.com/fighters/andrew-tate\\\\\", \\\\\"content\\\\\": \\\\\"Andrew \\\\\\\\\\\\\"King Cobra\\\\\\\\\\\\\" Tate is a 38-year-old Muay Thai fighter. With a record of 23-8-0, including 32 knockouts, standing at 6\\\\\\\\u2032 4\\\\\\\\u2033 and weighing 198 lbs. Originally from Luton, United Kingdom. ... WIN Dec -Kickboxing Jean Luc Beno\\\\\\\\u00eet. 14th Mar 2015 -Boxe in D\\\\\\\\u00e9fi 16. Andrew Tate defeated Jean Luc Beno\\\\\\\\u00eet by decision. ... Name: Andrew Tate\\\\\", \\\\\"score\\\\\": 0.8194462, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\\\\\", \\\\\"url\\\\\": \\\\\"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\\\\\", \\\\\"content\\\\\": \\\\\"Birth Name: Emory Andrew Tate III: Date of Birth: 1 December 1986: Place of Birth: Washington, D.C., U.S. ... In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout.\\\\\", \\\\\"score\\\\\": 0.7992077, \\\\\"raw_content\\\\\": null}]}\"}'\n", + "β β ],\n", + "β β 'output': 'content: Andrew Tate\\'s kickboxing name is \"King Cobra\" or \"Cobra Tate\". tool_calls: []'\n", + "β },\n", + "β {\n", + "β β 'input': [\n", + "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", + "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}'\n", + "β β ],\n", + "β β 'output': \"content: tool_calls: [ToolCall(call_id='b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'NBA Western Conference Finals 2024 teams'})]\"\n", + "β },\n", + "β {\n", + "β β 'input': '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"NBA Western Conference Finals 2024 teams\"}}]}',\n", + "β β 'output': '{\"role\":\"ipython\",\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (635) TRB: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (208) AST: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (178) WS: Derrick White (2.9) More playoffs info\\\\\", \\\\\"score\\\\\": 0.9310187, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\\\\\", \\\\\"content\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\\\\\", \\\\\"score\\\\\": 0.8914433, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\\\\\", \\\\\"score\\\\\": 0.8884594, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Conference Finals Schedule: Full List of Games & Results\\\\\", \\\\\"url\\\\\": \\\\\"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\\\\\", \\\\\"content\\\\\": \\\\\"The 2024 NBA conference finals matchups are set. Here\\'s the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\\\\\", \\\\\"score\\\\\": 0.85008353, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\\\\\", \\\\\"content\\\\\": \\\\\"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\\\\\", \\\\\"score\\\\\": 0.81979275, \\\\\"raw_content\\\\\": null}]}\"}'\n", + "β },\n", + "β {\n", + "β β 'input': [\n", + "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", + "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"NBA Western Conference Finals 2024 teams\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (635) TRB: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (208) AST: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (178) WS: Derrick White (2.9) More playoffs info\\\\\", \\\\\"score\\\\\": 0.9310187, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\\\\\", \\\\\"content\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\\\\\", \\\\\"score\\\\\": 0.8914433, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\\\\\", \\\\\"score\\\\\": 0.8884594, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Conference Finals Schedule: Full List of Games & Results\\\\\", \\\\\"url\\\\\": \\\\\"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\\\\\", \\\\\"content\\\\\": \\\\\"The 2024 NBA conference finals matchups are set. Here\\'s the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\\\\\", \\\\\"score\\\\\": 0.85008353, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\\\\\", \\\\\"content\\\\\": \\\\\"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\\\\\", \\\\\"score\\\\\": 0.81979275, \\\\\"raw_content\\\\\": null}]}\"}'\n", + "β β ],\n", + "β β 'output': 'content: The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves. tool_calls: []'\n", + "β },\n", + "β {\n", + "β β 'input': [\n", + "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", + "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"NBA Western Conference Finals 2024 teams\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (635) TRB: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (208) AST: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (178) WS: Derrick White (2.9) More playoffs info\\\\\", \\\\\"score\\\\\": 0.9310187, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\\\\\", \\\\\"content\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\\\\\", \\\\\"score\\\\\": 0.8914433, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\\\\\", \\\\\"score\\\\\": 0.8884594, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Conference Finals Schedule: Full List of Games & Results\\\\\", \\\\\"url\\\\\": \\\\\"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\\\\\", \\\\\"content\\\\\": \\\\\"The 2024 NBA conference finals matchups are set. Here\\'s the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\\\\\", \\\\\"score\\\\\": 0.85008353, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\\\\\", \\\\\"content\\\\\": \\\\\"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\\\\\", \\\\\"score\\\\\": 0.81979275, \\\\\"raw_content\\\\\": null}]}\"}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", + "β β β '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}'\n", + "β β ],\n", + "β β 'output': \"content: tool_calls: [ToolCall(call_id='1e487e8e-a15f-4137-854a-1d4979a70b8c', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'Bill Cosby South Park episode'})]\"\n", + "β },\n", + "β {\n", + "β β 'input': '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Bill Cosby South Park episode\"}}]}',\n", + "β β 'output': '{\"role\":\"ipython\",\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Bill Cosby South Park episode\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"Bill Cosby | South Park Archives | Fandom\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.fandom.com/wiki/Bill_Cosby\\\\\", \\\\\"content\\\\\": \\\\\"For other uses, see Bill (Disambiguation). William Henry \\\\\\\\\\\\\"Bill\\\\\\\\\\\\\" Cosby Jr. African-American comedian, actor, and serial rapist. He first appears in the Season Five episode, \\\\\\\\\\\\\"Here Comes the Neighborhood\\\\\\\\\\\\\", as one of the wealthy African-Americans who move to South Park. He returned as a hologram in the Season Eighteen episode, \\\\\\\\\\\\\"#HappyHolograms\\\\\\\\\\\\\" where he is shown trying to molest pop star Taylor\\\\\", \\\\\"score\\\\\": 0.82288796, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Trapper Keeper (South Park) - Wikipedia\\\\\", \\\\\"url\\\\\": \\\\\"https://en.wikipedia.org/wiki/Trapper_Keeper_(South_Park)\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby warns that if the Trapper Keeper assimilates with the supercomputer at Cheyenne Mountain, it will become unstoppable. ... It is one of the many South Park episodes that parodies a current event. [1] The main plot of the episode involving the Trapper Keeper was written before the election, [1]\\\\\", \\\\\"score\\\\\": 0.75659186, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby is Here to See You - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/video-clips/wfot8s/south-park-bill-cosby-is-here-to-see-you\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. ... South Park. Bill Cosby is Here to See You. Season 18 E 10 \\\\\\\\u2022 12/10/2014. Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. More. Watch Random Episode. Watching. 01:11. Please Welcome \\\\\\\\\\\\\"Cartman Bra\\\\\\\\\\\\\" South Park S18 E9.\\\\\", \\\\\"score\\\\\": 0.7156829, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby and Taylor Swift Duet - South Park Studios\\\\\", \\\\\"url\\\\\": \\\\\"https://www.southparkstudios.com/video-clips/90r7i1/south-park-bill-cosby-and-taylor-swift-duet\\\\\", \\\\\"content\\\\\": \\\\\"The holiday special continues with Bill Cosby and Taylor Swift\\'s rendition of \\\\\\\\\\\\\"It\\'s Snowing Out There\\\\\\\\\\\\\". ... Full Episodes. Collections. Random Episode. Full Episodes. Events. Wiki. News. Avatar. Shop. Forum. Games. South Park. Menu. Episodes & Videos. About. South Park. Bill Cosby and Taylor Swift Duet. Season 18 E 10 \\\\\\\\u2022 12/10/2014. The\\\\\", \\\\\"score\\\\\": 0.64639384, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby (android) | South Park Character ... - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/wiki/Bill_Cosby_(android)\\\\\", \\\\\"content\\\\\": \\\\\"About. Sent back in time to destroy Eric Cartman\\'s Dawson\\'s Creek Trapper Keeper before it manifests into an omnipotent supercomputer that can destroy all humanity, \\\\\\\\\\\\\"Bill Cosby\\\\\\\\\\\\\" is really VSM471, an android or cyborg of some kind engineered by \\'hoomans\\' in the distant future. He fails in his initial missions to infiltrate South Park Elementary\\'s 4th Grade class, destroy the Trapper Keeper or\\\\\", \\\\\"score\\\\\": 0.56460327, \\\\\"raw_content\\\\\": null}]}\"}'\n", + "β },\n", + "β {\n", + "β β 'input': [\n", + "β β β '{\"role\":\"system\",\"content\":\"You are a helpful assistant. Use search tool to answer the questions. \"}',\n", + "β β β '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"NBA Western Conference Finals 2024 teams\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (635) TRB: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (208) AST: Luka Don\\\\\\\\u010di\\\\\\\\u0107 (178) WS: Derrick White (2.9) More playoffs info\\\\\", \\\\\"score\\\\\": 0.9310187, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\\\\\", \\\\\"url\\\\\": \\\\\"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\\\\\", \\\\\"content\\\\\": \\\\\"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\\\\\", \\\\\"score\\\\\": 0.8914433, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\\\\\", \\\\\"score\\\\\": 0.8884594, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Conference Finals Schedule: Full List of Games & Results\\\\\", \\\\\"url\\\\\": \\\\\"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\\\\\", \\\\\"content\\\\\": \\\\\"The 2024 NBA conference finals matchups are set. Here\\'s the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\\\\\", \\\\\"score\\\\\": 0.85008353, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Finals 2024 - Celtics-Mavericks news, schedule, scores and ... - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/story/_/id/39943302/nba-playoffs-2024-conference-finals-news-scores-highlights\\\\\", \\\\\"content\\\\\": \\\\\"The Boston Celtics are the 2024 NBA Champions. ... Western Conference. Final 2023-24 NBA regular-season standings. Which team left standing has the most trips to the NBA Finals? Here is a look at\\\\\", \\\\\"score\\\\\": 0.81979275, \\\\\"raw_content\\\\\": null}]}\"}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[]}',\n", + "β β β '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n", + "β β β '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"Bill Cosby South Park episode\"}}]}',\n", + "β β β '{\"role\":\"ipython\",\"call_id\":\"1e487e8e-a15f-4137-854a-1d4979a70b8c\",\"tool_name\":\"brave_search\",\"content\":\"{\\\\\"query\\\\\": \\\\\"Bill Cosby South Park episode\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"Bill Cosby | South Park Archives | Fandom\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.fandom.com/wiki/Bill_Cosby\\\\\", \\\\\"content\\\\\": \\\\\"For other uses, see Bill (Disambiguation). William Henry \\\\\\\\\\\\\"Bill\\\\\\\\\\\\\" Cosby Jr. African-American comedian, actor, and serial rapist. He first appears in the Season Five episode, \\\\\\\\\\\\\"Here Comes the Neighborhood\\\\\\\\\\\\\", as one of the wealthy African-Americans who move to South Park. He returned as a hologram in the Season Eighteen episode, \\\\\\\\\\\\\"#HappyHolograms\\\\\\\\\\\\\" where he is shown trying to molest pop star Taylor\\\\\", \\\\\"score\\\\\": 0.82288796, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Trapper Keeper (South Park) - Wikipedia\\\\\", \\\\\"url\\\\\": \\\\\"https://en.wikipedia.org/wiki/Trapper_Keeper_(South_Park)\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby warns that if the Trapper Keeper assimilates with the supercomputer at Cheyenne Mountain, it will become unstoppable. ... It is one of the many South Park episodes that parodies a current event. [1] The main plot of the episode involving the Trapper Keeper was written before the election, [1]\\\\\", \\\\\"score\\\\\": 0.75659186, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby is Here to See You - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/video-clips/wfot8s/south-park-bill-cosby-is-here-to-see-you\\\\\", \\\\\"content\\\\\": \\\\\"Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. ... South Park. Bill Cosby is Here to See You. Season 18 E 10 \\\\\\\\u2022 12/10/2014. Bill Cosby recruits Kyle and his hashtag for the big Holiday Special. More. Watch Random Episode. Watching. 01:11. Please Welcome \\\\\\\\\\\\\"Cartman Bra\\\\\\\\\\\\\" South Park S18 E9.\\\\\", \\\\\"score\\\\\": 0.7156829, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby and Taylor Swift Duet - South Park Studios\\\\\", \\\\\"url\\\\\": \\\\\"https://www.southparkstudios.com/video-clips/90r7i1/south-park-bill-cosby-and-taylor-swift-duet\\\\\", \\\\\"content\\\\\": \\\\\"The holiday special continues with Bill Cosby and Taylor Swift\\'s rendition of \\\\\\\\\\\\\"It\\'s Snowing Out There\\\\\\\\\\\\\". ... Full Episodes. Collections. Random Episode. Full Episodes. Events. Wiki. News. Avatar. Shop. Forum. Games. South Park. Menu. Episodes & Videos. About. South Park. Bill Cosby and Taylor Swift Duet. Season 18 E 10 \\\\\\\\u2022 12/10/2014. The\\\\\", \\\\\"score\\\\\": 0.64639384, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"Bill Cosby (android) | South Park Character ... - South Park Studios US\\\\\", \\\\\"url\\\\\": \\\\\"https://southpark.cc.com/wiki/Bill_Cosby_(android)\\\\\", \\\\\"content\\\\\": \\\\\"About. Sent back in time to destroy Eric Cartman\\'s Dawson\\'s Creek Trapper Keeper before it manifests into an omnipotent supercomputer that can destroy all humanity, \\\\\\\\\\\\\"Bill Cosby\\\\\\\\\\\\\" is really VSM471, an android or cyborg of some kind engineered by \\'hoomans\\' in the distant future. He fails in his initial missions to infiltrate South Park Elementary\\'s 4th Grade class, destroy the Trapper Keeper or\\\\\", \\\\\"score\\\\\": 0.56460327, \\\\\"raw_content\\\\\": null}]}\"}'\n", + "β β ],\n", + "β β 'output': 'content: Bill Cosby (BSM-471) first appears in the Season 4 episode \"Trapper Keeper\" of South Park. tool_calls: []'\n", + "β }\n", + "]\n", + "\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -2296,88 +2821,88 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "id": "sy4Xaff_Avuu", "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 411 + "height": 432 }, "id": "sy4Xaff_Avuu", - "outputId": "cb68bae7-b21d-415d-8e71-612bd383c793" + "outputId": "1b14b5ed-4c77-47c4-edfb-1c13a88e5ef4" }, "outputs": [ { + "output_type": "display_data", "data": { + "text/plain": [ + "\u001b[1m[\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='44705eaf-b371-4841-b0ee-5eb21a5d7f36', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m=\u001b[0m\u001b[32m<\u001b[0m\u001b[32mBuiltinTool.brave_search:\u001b[0m\u001b[32m 'brave_search'>, \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Andrew Tate kickboxing name'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'expected_answer'\u001b[0m\u001b[39m: \u001b[0m\u001b[32m'brave_search'\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1;39m}\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ \u001b[0m\u001b[1;39m{\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'input_query'\u001b[0m\u001b[39m: \u001b[0m\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\u001b[39m,\u001b[0m\n", + "\u001b[2;32mβ β \u001b[0m\u001b[32m'generated_answer'\u001b[0m\u001b[39m: \u001b[0m\u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m=
[\n", "β {\n", - "β β 'input_query': '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", - "β β 'generated_answer': 'content: Let me check the latest sports news. tool_calls: []',\n", - "β β 'expected_answer': 'brave_search'\n", - "β },\n", - "β {\n", - "β β 'input_query': '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n", - "β β 'generated_answer': \"content: tool_calls: [ToolCall(call_id='19bd3554-e670-4856-89d0-c63f5b016245', tool_name='bravy_search', arguments={'query': 'Bill Cosby South Park episode'})]\",\n", - "β β 'expected_answer': 'brave_search'\n", - "β },\n", - "β {\n", "β β 'input_query': '{\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null}',\n", - "β β 'generated_answer': \"content: tool_calls: [ToolCall(call_id='526045a7-5f51-40fb-ba97-5ad29610e511', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'Andrew Tate kickboxing name'})]\",\n", + "β β 'generated_answer': \"content: tool_calls: [ToolCall(call_id='44705eaf-b371-4841-b0ee-5eb21a5d7f36', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'Andrew Tate kickboxing name'})]\",\n", + "β β 'expected_answer': 'brave_search'\n", + "β },\n", + "β {\n", + "β β 'input_query': '{\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null}',\n", + "β β 'generated_answer': \"content: tool_calls: [ToolCall(call_id='b7d9e0dd-4d6d-47db-9d81-3d7834f6e53d', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'NBA Western Conference Finals 2024 teams'})]\",\n", + "β β 'expected_answer': 'brave_search'\n", + "β },\n", + "β {\n", + "β β 'input_query': '{\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title.\",\"context\":null}',\n", + "β β 'generated_answer': \"content: tool_calls: [ToolCall(call_id='1e487e8e-a15f-4137-854a-1d4979a70b8c', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'Bill Cosby South Park episode'})]\",\n", "β β 'expected_answer': 'brave_search'\n", "β }\n", "]\n", "\n" - ], - "text/plain": [ - "\u001b[1m[\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"Which teams played in the NBA western conference finals of 2024\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'content: Let me check the latest sports news. tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32m]\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'brave_search'\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title.\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='19bd3554-e670-4856-89d0-c63f5b016245', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m='bravy_search', \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Bill Cosby South Park episode'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'brave_search'\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"user\",\"content\":\"What is the British-American kickboxer Andrew Tate\\'s kickboxing name?\",\"context\":null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"content: tool_calls: \u001b[0m\u001b[32m[\u001b[0m\u001b[32mToolCall\u001b[0m\u001b[32m(\u001b[0m\u001b[32mcall_id\u001b[0m\u001b[32m='526045a7-5f51-40fb-ba97-5ad29610e511', \u001b[0m\u001b[32mtool_name\u001b[0m\u001b[32m=\u001b[0m\u001b[32m<\u001b[0m\u001b[32mBuiltinTool.brave_search:\u001b[0m\u001b[32m 'brave_search'\u001b[0m\u001b[32m>\u001b[0m\u001b[32m, \u001b[0m\u001b[32marguments\u001b[0m\u001b[32m=\u001b[0m\u001b[32m{\u001b[0m\u001b[32m'query': 'Andrew Tate kickboxing name'\u001b[0m\u001b[32m}\u001b[0m\u001b[32m)\u001b[0m\u001b[32m]\u001b[0m\u001b[32m\"\u001b[0m,\n", - "\u001b[2;32mβ β \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'brave_search'\u001b[0m\n", - "\u001b[2;32mβ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m]\u001b[0m\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { + "output_type": "display_data", "data": { - "text/html": [ - "
ScoringScoreResponse(\n", - "β results={\n", - "β β 'basic::subset_of': ScoringResult(\n", - "β β β aggregated_results={'accuracy': {'accuracy': 0.3333333333333333, 'num_correct': 1.0, 'num_total': 3}},\n", - "β β β score_rows=[{'score': 0.0}, {'score': 0.0}, {'score': 1.0}]\n", - "β β )\n", - "β }\n", - ")\n", - "\n" - ], "text/plain": [ "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", "\u001b[2;32mβ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", "\u001b[2;32mβ β \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m0.3333333333333333\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m3\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m3.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m3\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[2;32mβ β \u001b[0m\u001b[1m)\u001b[0m\n", "\u001b[2;32mβ \u001b[0m\u001b[1m}\u001b[0m\n", "\u001b[1m)\u001b[0m\n" + ], + "text/html": [ + "
ScoringScoreResponse(\n", + "β results={\n", + "β β 'basic::subset_of': ScoringResult(\n", + "β β β aggregated_results={'accuracy': {'accuracy': 1.0, 'num_correct': 3.0, 'num_total': 3}},\n", + "β β β score_rows=[{'score': 1.0}, {'score': 1.0}, {'score': 1.0}]\n", + "β β )\n", + "β }\n", + ")\n", + "\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -2423,39 +2948,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "xG4Y84VQBb0g", "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 298 + "height": 304 }, "id": "xG4Y84VQBb0g", - "outputId": "f61cebdf-f614-440c-d170-f1e873b542ef" + "outputId": "cf7dcecc-a81d-4c60-af5e-b36b8fe85c69" }, "outputs": [ { + "output_type": "display_data", "data": { - "text/html": [ - "
ScoringScoreResponse(\n", - "β results={\n", - "β β 'llm-as-judge::base': ScoringResult(\n", - "β β β aggregated_results={},\n", - "β β β score_rows=[\n", - "β β β β {\n", - "β β β β β 'score': 'B',\n", - "β β β β β 'judge_feedback': 'Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. The GENERATED_RESPONSE provides more detailed information about the top 5 topics related to LoRA, while the EXPECTED_RESPONSE only mentions \"LoRA\". The GENERATED_RESPONSE expands on the topic, but does not conflict with the EXPECTED_RESPONSE.'\n", - "β β β β }\n", - "β β β ]\n", - "β β ),\n", - "β β 'basic::subset_of': ScoringResult(\n", - "β β β aggregated_results={'accuracy': 1.0, 'num_correct': 1.0, 'num_total': 1.0},\n", - "β β β score_rows=[{'score': 1.0}]\n", - "β β )\n", - "β }\n", - ")\n", - "\n" - ], "text/plain": [ "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", "\u001b[2;32mβ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", @@ -2464,20 +2970,39 @@ "\u001b[2;32mβ β β \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", "\u001b[2;32mβ β β β \u001b[0m\u001b[1m{\u001b[0m\n", "\u001b[2;32mβ β β β β \u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m,\n", - "\u001b[2;32mβ β β β β \u001b[0m\u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. The GENERATED_RESPONSE provides more detailed information about the top 5 topics related to LoRA, while the EXPECTED_RESPONSE only mentions \"LoRA\". The GENERATED_RESPONSE expands on the topic, but does not conflict with the EXPECTED_RESPONSE.'\u001b[0m\n", + "\u001b[2;32mβ β β β β \u001b[0m\u001b[32m'judge_feedback'\u001b[0m: \u001b[32m\"Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE as it provides more detailed information about the topics related to LoRA \u001b[0m\u001b[32m(\u001b[0m\u001b[32malthough it does list more than one topic as does not exactly follow the desired format of only giving one 'topic', while the EXPECTED_RESPONSE simply lists 'LoRA'\u001b[0m\u001b[32m)\u001b[0m\u001b[32m.\"\u001b[0m\n", "\u001b[2;32mβ β β β \u001b[0m\u001b[1m}\u001b[0m\n", "\u001b[2;32mβ β β \u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[2;32mβ β \u001b[0m\u001b[1m)\u001b[0m,\n", "\u001b[2;32mβ β \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32mβ β β \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32mβ β β \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m1\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", "\u001b[2;32mβ β β \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", "\u001b[2;32mβ β \u001b[0m\u001b[1m)\u001b[0m\n", "\u001b[2;32mβ \u001b[0m\u001b[1m}\u001b[0m\n", "\u001b[1m)\u001b[0m\n" + ], + "text/html": [ + "
ScoringScoreResponse(\n", + "β results={\n", + "β β 'llm-as-judge::base': ScoringResult(\n", + "β β β aggregated_results={},\n", + "β β β score_rows=[\n", + "β β β β {\n", + "β β β β β 'score': 'B',\n", + "β β β β β 'judge_feedback': \"Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE as it provides more detailed information about the topics related to LoRA (although it does list more than one topic as does not exactly follow the desired format of only giving one 'topic', while the EXPECTED_RESPONSE simply lists 'LoRA').\"\n", + "β β β β }\n", + "β β β ]\n", + "β β ),\n", + "β β 'basic::subset_of': ScoringResult(\n", + "β β β aggregated_results={'accuracy': {'accuracy': 1.0, 'num_correct': 1.0, 'num_total': 1}},\n", + "β β β score_rows=[{'score': 1.0}]\n", + "β β )\n", + "β }\n", + ")\n", + "\n" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -2539,23 +3064,12 @@ "response = client.scoring.score(input_rows=rows, scoring_functions=scoring_params)\n", "pprint(response)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "rKtGo_v98UA2", - "metadata": { - "id": "rKtGo_v98UA2" - }, - "outputs": [], - "source": [] } ], "metadata": { + "accelerator": "GPU", "colab": { - "collapsed_sections": [ - "_JueJAKyJR5m" - ], + "gpuType": "T4", "provenance": [] }, "kernelspec": { @@ -2576,25 +3090,53 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "0243626d7ef44ef2b90e8fed5c13183d": { + "88f0c88612bb45d59f07e93567cc0e14": { "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9b24a82117e1482a8f6665978e84089c", + "IPY_MODEL_8e75bf7cac454eeabd5ce47a1e981c68", + "IPY_MODEL_fc272883566541108f83117ccd146a21" + ], + "layout": "IPY_MODEL_2e27a025a416434f8ab3b63049626d11" } }, - "044d6d8dda1c4935b1752a9c71c6ee4a": { + "9b24a82117e1482a8f6665978e84089c": { "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3a46a46bc8124a92b27aef43cbc009b6", + "placeholder": "β", + "style": "IPY_MODEL_4ad6bc0cca62446d8faf19a341bfa86f", + "value": "modules.json:β100%" + } + }, + "8e75bf7cac454eeabd5ce47a1e981c68": { + "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2607,40 +3149,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_63f34c3d43bb4fdd9faeb6161fd77285", - "max": 1, + "layout": "IPY_MODEL_6437c99289f947449f7d2964288973e5", + "max": 349, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5cb841b49eaa429e8616ec4b78f501e9", - "value": 1 + "style": "IPY_MODEL_e2f7dea8fc744537b42d0f1a85a73eb4", + "value": 349 } }, - "0640b57408644741970dd958ca0e21e6": { + "fc272883566541108f83117ccd146a21": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6259ffc3ef674df985fd3fa4334f9c8e", - "IPY_MODEL_3d0376d2e574410eb4ef963d51cac0a6", - "IPY_MODEL_b66984cc5de541a5801a1e6e54d40daf" - ], - "layout": "IPY_MODEL_92135b9cb201475681ee0886887c84a8" - } - }, - "116139bfe7a44f969a2c97490c224d31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "HTMLModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2652,16 +3172,187 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ab1f339cba094c918fc5507f8361de5c", + "layout": "IPY_MODEL_1377d2160344430da8f29a50d113a288", "placeholder": "β", - "style": "IPY_MODEL_a6a1eb412f204578b80e5b6717c1e3a5", - "value": "β1/1β[00:01<00:00,ββ1.27s/it]" + "style": "IPY_MODEL_0c0b30e126724f9282ac5acbcb4581db", + "value": "β349/349β[00:00<00:00,β7.72kB/s]" } }, - "118b359b83304ae59fad57e28f621645": { + "2e27a025a416434f8ab3b63049626d11": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3a46a46bc8124a92b27aef43cbc009b6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ad6bc0cca62446d8faf19a341bfa86f": { "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6437c99289f947449f7d2964288973e5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2f7dea8fc744537b42d0f1a85a73eb4": { + "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2674,25 +3365,10 @@ "description_width": "" } }, - "15d3ff07f1c54e58b51d452caca01209": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "17603dd7fedf4798a74533fbfd5bb421": { + "1377d2160344430da8f29a50d113a288": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2741,10 +3417,47 @@ "width": null } }, - "186682be50c148c0826fa7c314087562": { + "0c0b30e126724f9282ac5acbcb4581db": { "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "895efd0b6d9f4b319159703d965d1966": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dece6dff65394a5f93585c73359d4dad", + "IPY_MODEL_1030c0848635497681cc9ff0c344fb1a", + "IPY_MODEL_fa6ecaab432347de8427b9b5ac3d4524" + ], + "layout": "IPY_MODEL_5effefa8e3764e3aaff57fe0197a7c96" + } + }, + "dece6dff65394a5f93585c73359d4dad": { + "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2756,292 +3469,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1f427d4273e04e19b1bdb13388736c01", + "layout": "IPY_MODEL_1756eceba2c34c1ca182b7db465e95ce", "placeholder": "β", - "style": "IPY_MODEL_38897429b7cf4077aea3a981593ca866", - "value": "β1/1β[00:00<00:00,β15.09it/s]" + "style": "IPY_MODEL_0fd62e56e0bb41a996c04e63381d2a29", + "value": "config_sentence_transformers.json:β100%" } }, - "1f427d4273e04e19b1bdb13388736c01": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2082554eed6644a996f0e31545789e08": { + "1030c0848635497681cc9ff0c344fb1a": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a0be415018644c3cac098ab9b19c2391", - "IPY_MODEL_6ede3649e8c24015b3ca77490568bfcd", - "IPY_MODEL_116139bfe7a44f969a2c97490c224d31" - ], - "layout": "IPY_MODEL_243d13828d854880a6adb861ea867734" - } - }, - "2100363a158b4488a58620983aa5bdd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "243d13828d854880a6adb861ea867734": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "277101c35a784e6caf455a13cd9b8e59": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2924814bab5748ddbeeedc70d324195e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4738bccc6b384da5a20a8bcd61ecec59", - "IPY_MODEL_044d6d8dda1c4935b1752a9c71c6ee4a", - "IPY_MODEL_9277709ad9154d7b8f37d08db84ee425" - ], - "layout": "IPY_MODEL_f3f1f2487d6f455caeb6ec71a2d51ee2" - } - }, - "2958af7c9cdb46038e0336d6b7c6773e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "351928faa62543128e0bd29bf89bbf79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "38897429b7cf4077aea3a981593ca866": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3978f618c4f8467eb83c63a8f5aef98a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3d0376d2e574410eb4ef963d51cac0a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3054,18 +3491,293 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9054d3825edb49cb9c35d24023f50c03", - "max": 1, + "layout": "IPY_MODEL_29badfc2eb0345d38d7cfc6c7f8bb1a8", + "max": 116, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_3978f618c4f8467eb83c63a8f5aef98a", - "value": 1 + "style": "IPY_MODEL_e64cedb4560a43d8a43f36002087ac30", + "value": 116 } }, - "425c6c0eaed741669551b9af77096c6f": { + "fa6ecaab432347de8427b9b5ac3d4524": { "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_45aadb26b382460eb5b6b147509fb75a", + "placeholder": "β", + "style": "IPY_MODEL_130f2f5840764e8dbd573cc8a6ea6f5f", + "value": "β116/116β[00:00<00:00,β3.35kB/s]" + } + }, + "5effefa8e3764e3aaff57fe0197a7c96": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1756eceba2c34c1ca182b7db465e95ce": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0fd62e56e0bb41a996c04e63381d2a29": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "29badfc2eb0345d38d7cfc6c7f8bb1a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e64cedb4560a43d8a43f36002087ac30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "45aadb26b382460eb5b6b147509fb75a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "130f2f5840764e8dbd573cc8a6ea6f5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9ee45247ec144bb3aafe4208f316063f": { + "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3077,17 +3789,337 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d124b09896934d289df649375f455a8e", - "IPY_MODEL_554cff1a83d44bd2bbd36fd43acac7e2", - "IPY_MODEL_d0381718fc8b49a6ac7e7fe85cabba90" + "IPY_MODEL_da330e0999cb4c3c91a1cb1026304568", + "IPY_MODEL_ff58a5381fb74cb1b9efc10f5c2738d6", + "IPY_MODEL_18ed62b1d4594ed9a2651fa5df046efc" ], - "layout": "IPY_MODEL_fd3daaf9093d45d8a9d39b87835f4582" + "layout": "IPY_MODEL_4004cda1d84949f5a380536f8a9d0274" } }, - "457374ae3035496eb943ad21484f76a0": { + "da330e0999cb4c3c91a1cb1026304568": { "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54bddcf41c5641b7a56c981aadb62ef1", + "placeholder": "β", + "style": "IPY_MODEL_a9a0d8415d9d4e98a3f02ae8ec1053da", + "value": "README.md:β100%" + } + }, + "ff58a5381fb74cb1b9efc10f5c2738d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cceff1126242494bab432205c7ac7345", + "max": 10659, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e6e53c439dab4639adc1c3c873602476", + "value": 10659 + } + }, + "18ed62b1d4594ed9a2651fa5df046efc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95db8eab3f964edf99038ad53f41fabc", + "placeholder": "β", + "style": "IPY_MODEL_52f1d69c6cd04816b6f34657893ae32b", + "value": "β10.7k/10.7kβ[00:00<00:00,β223kB/s]" + } + }, + "4004cda1d84949f5a380536f8a9d0274": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54bddcf41c5641b7a56c981aadb62ef1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9a0d8415d9d4e98a3f02ae8ec1053da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cceff1126242494bab432205c7ac7345": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6e53c439dab4639adc1c3c873602476": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "95db8eab3f964edf99038ad53f41fabc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52f1d69c6cd04816b6f34657893ae32b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b79a1dfcf2904bcba332569dbf351f34": { + "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3099,69 +4131,17 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bcf4679dda2d4767a0a24cbf236ca76e", - "IPY_MODEL_6e4ce98853c84beca11471e7ea9d97df", - "IPY_MODEL_186682be50c148c0826fa7c314087562" + "IPY_MODEL_7363b1a9a1b54a57bf15357e897128fd", + "IPY_MODEL_3ac596104cdc4439b3980f7ce66ad080", + "IPY_MODEL_5c9ec25994914acd8e13866b3eb943e1" ], - "layout": "IPY_MODEL_e1ef246e3e6c4359b7b61c341119e121" + "layout": "IPY_MODEL_38a958036c6e4155815a8169f1be1e53" } }, - "45b569d733f944d29cefae8a5d13b215": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4738bccc6b384da5a20a8bcd61ecec59": { + "7363b1a9a1b54a57bf15357e897128fd": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "HTMLModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3173,98 +4153,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_66c92a8a89234a61a8c688cf1c3e29a1", + "layout": "IPY_MODEL_cf5113a647ce45c4a3a523361aa3b5af", "placeholder": "β", - "style": "IPY_MODEL_ee1f4a0c85e44a3b849283337743a8d4", - "value": "Batches:β100%" + "style": "IPY_MODEL_da8c20a65ba541bda058614849d5cfe2", + "value": "sentence_bert_config.json:β100%" } }, - "4a405d391b974e58a2c4fe00d4bb5815": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4ad57f5d8a824afab639e8606ee43ca6": { + "3ac596104cdc4439b3980f7ce66ad080": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "53865d3f918e468ab53504133b127973": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "554cff1a83d44bd2bbd36fd43acac7e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3277,18 +4175,293 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6c60c8291e734f549e6c5a46b427b974", - "max": 1, + "layout": "IPY_MODEL_40e9f20d74374b0e82c653caa0559d04", + "max": 53, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_de88640505c24928904a3c76bda31c70", - "value": 1 + "style": "IPY_MODEL_f46cfc9237e64db6be2ec6529b61ec88", + "value": 53 } }, - "5afdb88e0159462e98773560e3dad439": { + "5c9ec25994914acd8e13866b3eb943e1": { "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc04575da46540d4ad3a708e58f0de6a", + "placeholder": "β", + "style": "IPY_MODEL_24c0be775e474517a7be49d187822bd0", + "value": "β53.0/53.0β[00:00<00:00,β3.84kB/s]" + } + }, + "38a958036c6e4155815a8169f1be1e53": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf5113a647ce45c4a3a523361aa3b5af": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da8c20a65ba541bda058614849d5cfe2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "40e9f20d74374b0e82c653caa0559d04": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f46cfc9237e64db6be2ec6529b61ec88": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dc04575da46540d4ad3a708e58f0de6a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24c0be775e474517a7be49d187822bd0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "111184729957441d9d1f3d404bd82757": { + "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3300,49 +4473,17 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f7bc4df675a141e380d965138552a142", - "IPY_MODEL_d7bf8b49145843ac98a6de424e628729", - "IPY_MODEL_8fb17faf68524de2b73321d71b80b407" + "IPY_MODEL_be060f9d7a664c17a80510f447c0bee3", + "IPY_MODEL_228445132e5f4b2ca793f4beeeca4426", + "IPY_MODEL_b96a2e34a2af435b9705550fe564591d" ], - "layout": "IPY_MODEL_45b569d733f944d29cefae8a5d13b215" + "layout": "IPY_MODEL_1f1cdac013af4559889f15eebac5256a" } }, - "5cb841b49eaa429e8616ec4b78f501e9": { + "be060f9d7a664c17a80510f447c0bee3": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5f19dab8c6da4050bc47fd78838f7530": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6259ffc3ef674df985fd3fa4334f9c8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "HTMLModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3354,172 +4495,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4a405d391b974e58a2c4fe00d4bb5815", + "layout": "IPY_MODEL_834ae2d249b94be6bbe5349509536a4b", "placeholder": "β", - "style": "IPY_MODEL_2958af7c9cdb46038e0336d6b7c6773e", - "value": "Batches:β100%" + "style": "IPY_MODEL_509863a58de74b07b813aa83ffa4a507", + "value": "config.json:β100%" } }, - "63f34c3d43bb4fdd9faeb6161fd77285": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "66c92a8a89234a61a8c688cf1c3e29a1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6c60c8291e734f549e6c5a46b427b974": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6e4ce98853c84beca11471e7ea9d97df": { + "228445132e5f4b2ca793f4beeeca4426": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3532,94 +4517,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a0ac7ee92d994c7b9b74e580ab2acdf7", - "max": 1, + "layout": "IPY_MODEL_48a5b775a4324da791603b83d61be7d1", + "max": 612, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_118b359b83304ae59fad57e28f621645", - "value": 1 + "style": "IPY_MODEL_02b60dad91c7482ba70cf8bb954bc4eb", + "value": 612 } }, - "6ede3649e8c24015b3ca77490568bfcd": { + "b96a2e34a2af435b9705550fe564591d": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f10237315e794539a00ca82bfff930be", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ca09d2207b00456da4c37b5a782a190c", - "value": 1 - } - }, - "753dbe7891a143118b55eccf8c252e03": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8fb17faf68524de2b73321d71b80b407": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "HTMLModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3631,16 +4540,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_277101c35a784e6caf455a13cd9b8e59", + "layout": "IPY_MODEL_2bfb0fb5506d4285918a9c94af9ab5d1", "placeholder": "β", - "style": "IPY_MODEL_d06666f765764f949e1876f2d5d67242", - "value": "β1/1β[00:01<00:00,ββ1.68s/it]" + "style": "IPY_MODEL_0f699b0f99484a8ba2eb17bb1d621c5a", + "value": "β612/612β[00:00<00:00,β47.5kB/s]" } }, - "9054d3825edb49cb9c35d24023f50c03": { + "1f1cdac013af4559889f15eebac5256a": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3689,10 +4598,10 @@ "width": null } }, - "92135b9cb201475681ee0886887c84a8": { + "834ae2d249b94be6bbe5349509536a4b": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3741,156 +4650,10 @@ "width": null } }, - "9277709ad9154d7b8f37d08db84ee425": { + "509863a58de74b07b813aa83ffa4a507": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a447ea9af3e14e5e94eb14ed8dd3c0de", - "placeholder": "β", - "style": "IPY_MODEL_0243626d7ef44ef2b90e8fed5c13183d", - "value": "β1/1β[00:02<00:00,ββ2.65s/it]" - } - }, - "a0ac7ee92d994c7b9b74e580ab2acdf7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a0be415018644c3cac098ab9b19c2391": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e4b1dfe159304c5f88766b33e85a5c19", - "placeholder": "β", - "style": "IPY_MODEL_2100363a158b4488a58620983aa5bdd4", - "value": "Batches:β100%" - } - }, - "a447ea9af3e14e5e94eb14ed8dd3c0de": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a6a1eb412f204578b80e5b6717c1e3a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -3902,10 +4665,10 @@ "description_width": "" } }, - "ab1f339cba094c918fc5507f8361de5c": { + "48a5b775a4324da791603b83d61be7d1": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3954,104 +4717,10 @@ "width": null } }, - "b66984cc5de541a5801a1e6e54d40daf": { + "02b60dad91c7482ba70cf8bb954bc4eb": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_efd68f6dc0b3428e8f5fc830c1bf2341", - "placeholder": "β", - "style": "IPY_MODEL_4ad57f5d8a824afab639e8606ee43ca6", - "value": "β1/1β[00:00<00:00,ββ5.36it/s]" - } - }, - "bbb93c771a9c453bb90e729b1f73b931": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bcf4679dda2d4767a0a24cbf236ca76e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bbb93c771a9c453bb90e729b1f73b931", - "placeholder": "β", - "style": "IPY_MODEL_351928faa62543128e0bd29bf89bbf79", - "value": "Batches:β100%" - } - }, - "ca09d2207b00456da4c37b5a782a190c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4064,10 +4733,62 @@ "description_width": "" } }, - "ce7de1af99434ad38a9382e7253dbfc0": { + "2bfb0fb5506d4285918a9c94af9ab5d1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f699b0f99484a8ba2eb17bb1d621c5a": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4079,10 +4800,32 @@ "description_width": "" } }, - "d0381718fc8b49a6ac7e7fe85cabba90": { + "c6f34317390e4f90b16235f2ae84a981": { "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3da95c8814f34472a181ce7687f9e15e", + "IPY_MODEL_4d1c2de4c1354ef0b84c54c447141707", + "IPY_MODEL_31ab98e0e375416b83b36a98d4958f57" + ], + "layout": "IPY_MODEL_8b9ebe06b4e045a29269128ec97d9f62" + } + }, + "3da95c8814f34472a181ce7687f9e15e": { + "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4094,52 +4837,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fc086d0dd1a745308c59ae219ae135c5", + "layout": "IPY_MODEL_53a46fe254924e78876db6dd2e1b7123", "placeholder": "β", - "style": "IPY_MODEL_15d3ff07f1c54e58b51d452caca01209", - "value": "β1/1β[00:00<00:00,β14.36it/s]" + "style": "IPY_MODEL_f2ce01983f0a4f12b318e6d29f1dd4a1", + "value": "model.safetensors:β100%" } }, - "d06666f765764f949e1876f2d5d67242": { + "4d1c2de4c1354ef0b84c54c447141707": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d124b09896934d289df649375f455a8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_753dbe7891a143118b55eccf8c252e03", - "placeholder": "β", - "style": "IPY_MODEL_ce7de1af99434ad38a9382e7253dbfc0", - "value": "Batches:β100%" - } - }, - "d7bf8b49145843ac98a6de424e628729": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4152,18 +4859,210 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_17603dd7fedf4798a74533fbfd5bb421", - "max": 1, + "layout": "IPY_MODEL_1b7af9f7204547b8b4a718a780af0ded", + "max": 90868376, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5f19dab8c6da4050bc47fd78838f7530", - "value": 1 + "style": "IPY_MODEL_a4bb5a59d1324585b0a34c9bb2820b7f", + "value": 90868376 } }, - "de88640505c24928904a3c76bda31c70": { + "31ab98e0e375416b83b36a98d4958f57": { "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_90c2e0e012a94521b9f5cb24924771d8", + "placeholder": "β", + "style": "IPY_MODEL_2563a4677dde47d0a2f7fba5c5dde358", + "value": "β90.9M/90.9Mβ[00:00<00:00,β223MB/s]" + } + }, + "8b9ebe06b4e045a29269128ec97d9f62": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "53a46fe254924e78876db6dd2e1b7123": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f2ce01983f0a4f12b318e6d29f1dd4a1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1b7af9f7204547b8b4a718a780af0ded": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4bb5a59d1324585b0a34c9bb2820b7f": { + "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4176,10 +5075,10 @@ "description_width": "" } }, - "e1ef246e3e6c4359b7b61c341119e121": { + "90c2e0e012a94521b9f5cb24924771d8": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4228,62 +5127,10 @@ "width": null } }, - "e4b1dfe159304c5f88766b33e85a5c19": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ee1f4a0c85e44a3b849283337743a8d4": { + "2563a4677dde47d0a2f7fba5c5dde358": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4295,166 +5142,32 @@ "description_width": "" } }, - "efd68f6dc0b3428e8f5fc830c1bf2341": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f10237315e794539a00ca82bfff930be": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f3f1f2487d6f455caeb6ec71a2d51ee2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f7bc4df675a141e380d965138552a142": { + "5023c2b8cf9846069d116237826fed7f": { "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_960c2f44166b4ac7910af6512832186f", + "IPY_MODEL_309ea9620a674088a5207206d9a52d54", + "IPY_MODEL_1c86d856083c4ef99976849c7a1c9100" + ], + "layout": "IPY_MODEL_5d9bf2102da143c1b9e1483e05add4e5" + } + }, + "960c2f44166b4ac7910af6512832186f": { + "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4466,16 +5179,1771 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fdd057a4506f4f119d945bab5b930799", + "layout": "IPY_MODEL_85569eaf3ae3488b808131cd460f6514", "placeholder": "β", - "style": "IPY_MODEL_53865d3f918e468ab53504133b127973", + "style": "IPY_MODEL_3015bc3ce98a4221a9dd3be92481435d", + "value": "tokenizer_config.json:β100%" + } + }, + "309ea9620a674088a5207206d9a52d54": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d7b0983b97f48b2a333d5b2a4ec50a8", + "max": 350, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e834a64e49534c3586cb77f4ec5eab2d", + "value": 350 + } + }, + "1c86d856083c4ef99976849c7a1c9100": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_67f82b82ebb74d0fb3c68b9c8c57d690", + "placeholder": "β", + "style": "IPY_MODEL_b710cb57f19d4490a740c060e8a83b90", + "value": "β350/350β[00:00<00:00,β26.0kB/s]" + } + }, + "5d9bf2102da143c1b9e1483e05add4e5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "85569eaf3ae3488b808131cd460f6514": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3015bc3ce98a4221a9dd3be92481435d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4d7b0983b97f48b2a333d5b2a4ec50a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e834a64e49534c3586cb77f4ec5eab2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "67f82b82ebb74d0fb3c68b9c8c57d690": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b710cb57f19d4490a740c060e8a83b90": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "713c09d1275a43b0af7c2ae8e126517f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b62fe08114f549ea99808e8df95c7cad", + "IPY_MODEL_af722d177320422e97c679b24cb754f6", + "IPY_MODEL_487477e023b64947bf42f83dc6275ef1" + ], + "layout": "IPY_MODEL_bcf0d3af3bc0439e97023937852941e9" + } + }, + "b62fe08114f549ea99808e8df95c7cad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d83a1e1e678e4efd83115f9aee0ffc8d", + "placeholder": "β", + "style": "IPY_MODEL_f210583576594e759387fc704695ad09", + "value": "vocab.txt:β100%" + } + }, + "af722d177320422e97c679b24cb754f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91e103573c034ceda689047c61294b17", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b9eac61fb55342f4bf9834f321899836", + "value": 231508 + } + }, + "487477e023b64947bf42f83dc6275ef1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a92a7bce961e4291b126fda3c540636b", + "placeholder": "β", + "style": "IPY_MODEL_01b3e7803d1946118d27acda0c067da2", + "value": "β232k/232kβ[00:00<00:00,β550kB/s]" + } + }, + "bcf0d3af3bc0439e97023937852941e9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d83a1e1e678e4efd83115f9aee0ffc8d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f210583576594e759387fc704695ad09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91e103573c034ceda689047c61294b17": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9eac61fb55342f4bf9834f321899836": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a92a7bce961e4291b126fda3c540636b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "01b3e7803d1946118d27acda0c067da2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f097b32928f246de9b01fea6f9b092f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_35e10db3906248ffa8ab955d2f53bd75", + "IPY_MODEL_80e884cae6ea42eaa37f028120963355", + "IPY_MODEL_25821e7aef4e481bbdf3b4698ce3c277" + ], + "layout": "IPY_MODEL_916190b4615e4c5c9f3e55c0804a3502" + } + }, + "35e10db3906248ffa8ab955d2f53bd75": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f1dc0d20cae46feb372203aea6458a0", + "placeholder": "β", + "style": "IPY_MODEL_43feace0290a47c0b06c3a1c08cc70a9", + "value": "tokenizer.json:β100%" + } + }, + "80e884cae6ea42eaa37f028120963355": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9f185162847f4cb2828af81c92116582", + "max": 466247, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3a649adc22694036b35bab04ff03d338", + "value": 466247 + } + }, + "25821e7aef4e481bbdf3b4698ce3c277": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7daef1502e2a4140ac021b3b3a6aa12d", + "placeholder": "β", + "style": "IPY_MODEL_1307ef0325bb433d8a1bcc653c7fb291", + "value": "β466k/466kβ[00:00<00:00,β2.16MB/s]" + } + }, + "916190b4615e4c5c9f3e55c0804a3502": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f1dc0d20cae46feb372203aea6458a0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43feace0290a47c0b06c3a1c08cc70a9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9f185162847f4cb2828af81c92116582": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3a649adc22694036b35bab04ff03d338": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7daef1502e2a4140ac021b3b3a6aa12d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1307ef0325bb433d8a1bcc653c7fb291": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f01d7a1404a943a08c84adce14a262c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f15cdedf8e7b4a44993644a5ff070e78", + "IPY_MODEL_b7f9a3c97f2043f380bdc1827961c649", + "IPY_MODEL_0b64892a98d14a3b85b128df77d8e7d6" + ], + "layout": "IPY_MODEL_8de1cba3a7c0422eb2a21e3f8b2059c7" + } + }, + "f15cdedf8e7b4a44993644a5ff070e78": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0639d5360044f97ac5b9374c735ff4b", + "placeholder": "β", + "style": "IPY_MODEL_9b11eaf2d50a447384b75eb7f73829eb", + "value": "special_tokens_map.json:β100%" + } + }, + "b7f9a3c97f2043f380bdc1827961c649": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ab411217bfd486ca3fb8b885fff4690", + "max": 112, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c80ea8c54211427087712b5500e26edf", + "value": 112 + } + }, + "0b64892a98d14a3b85b128df77d8e7d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_542aa4a847cf4a66a4b3fc93c241363b", + "placeholder": "β", + "style": "IPY_MODEL_8c0d69b735c94b719160d39256c643cc", + "value": "β112/112β[00:00<00:00,β6.51kB/s]" + } + }, + "8de1cba3a7c0422eb2a21e3f8b2059c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0639d5360044f97ac5b9374c735ff4b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b11eaf2d50a447384b75eb7f73829eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8ab411217bfd486ca3fb8b885fff4690": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c80ea8c54211427087712b5500e26edf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "542aa4a847cf4a66a4b3fc93c241363b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c0d69b735c94b719160d39256c643cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3c868641db934c67a44e1d26e1a17756": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a72d01788b484bbeb4375aac3ceadf34", + "IPY_MODEL_366add01dc734455a384460c97491215", + "IPY_MODEL_70accb92e645435b8f1e0c48538f7473" + ], + "layout": "IPY_MODEL_628848757fcf443e806a8f25013cc2b5" + } + }, + "a72d01788b484bbeb4375aac3ceadf34": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebf411690c844daf89b87c120e3cb67e", + "placeholder": "β", + "style": "IPY_MODEL_79b9fb75dc1d486c9fc881a90b6f1060", + "value": "1_Pooling/config.json:β100%" + } + }, + "366add01dc734455a384460c97491215": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0f3bbf28fbed4e97b660bbf3c66a214a", + "max": 190, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a4b2220ed47f4f85b3f991c92de98964", + "value": 190 + } + }, + "70accb92e645435b8f1e0c48538f7473": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b6a505e6c863409db1b906423f99125a", + "placeholder": "β", + "style": "IPY_MODEL_d9560d20106a42ec904e7e315f99ff01", + "value": "β190/190β[00:00<00:00,β9.18kB/s]" + } + }, + "628848757fcf443e806a8f25013cc2b5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ebf411690c844daf89b87c120e3cb67e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "79b9fb75dc1d486c9fc881a90b6f1060": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0f3bbf28fbed4e97b660bbf3c66a214a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4b2220ed47f4f85b3f991c92de98964": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b6a505e6c863409db1b906423f99125a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d9560d20106a42ec904e7e315f99ff01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "edc4d84302f746d39a43e8107af6b67b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_980292182c7144e194604c13ac544a26", + "IPY_MODEL_8dee873065a047799a04e49ab791e449", + "IPY_MODEL_29683ef34d5646c687118a2a0cdec6d4" + ], + "layout": "IPY_MODEL_3ec694106303491ea112a257309bc69c" + } + }, + "980292182c7144e194604c13ac544a26": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_288c9da81b3c4d80a4959753da973f58", + "placeholder": "β", + "style": "IPY_MODEL_cf453a1ed54645aba656f9a3f1461e69", "value": "Batches:β100%" } }, - "fc086d0dd1a745308c59ae219ae135c5": { + "8dee873065a047799a04e49ab791e449": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec747bd7c37c45298896c513634cd59a", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a620017a5384af1a056de687b2670db", + "value": 1 + } + }, + "29683ef34d5646c687118a2a0cdec6d4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8d370762fafd4d7887ff68ea8279d083", + "placeholder": "β", + "style": "IPY_MODEL_b6a0eb553b024a71b737ff47ca8f7633", + "value": "β1/1β[00:01<00:00,ββ1.24s/it]" + } + }, + "3ec694106303491ea112a257309bc69c": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4524,10 +6992,10 @@ "width": null } }, - "fd3daaf9093d45d8a9d39b87835f4582": { + "288c9da81b3c4d80a4959753da973f58": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4576,10 +7044,25 @@ "width": null } }, - "fdd057a4506f4f119d945bab5b930799": { + "cf453a1ed54645aba656f9a3f1461e69": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec747bd7c37c45298896c513634cd59a": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4627,6 +7110,1457 @@ "visibility": null, "width": null } + }, + "5a620017a5384af1a056de687b2670db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8d370762fafd4d7887ff68ea8279d083": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b6a0eb553b024a71b737ff47ca8f7633": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2eff72cbd9bb4f1ca77213602caa9417": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e82b5196209f4b9f919c7abb402a4504", + "IPY_MODEL_fe34706489c14253a5015ff6332ec4e0", + "IPY_MODEL_2574b07e4af24715aa89d048cc84e358" + ], + "layout": "IPY_MODEL_10bc8be68b5545fd8609824b02499ebf" + } + }, + "e82b5196209f4b9f919c7abb402a4504": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2473b7a6c5b4483981516af2fc59bde", + "placeholder": "β", + "style": "IPY_MODEL_4282ee7d947e426ba863df9970e82f3f", + "value": "Batches:β100%" + } + }, + "fe34706489c14253a5015ff6332ec4e0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cfe6be8fd8254bc084a81b1d06e86ae1", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1817f6732a5f44c7adc75a644b1acef2", + "value": 1 + } + }, + "2574b07e4af24715aa89d048cc84e358": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7551b282ef3a4387a801637de2d5c76e", + "placeholder": "β", + "style": "IPY_MODEL_69e5263c812c4542a9e5c31fefaa37fe", + "value": "β1/1β[00:00<00:00,β15.08it/s]" + } + }, + "10bc8be68b5545fd8609824b02499ebf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d2473b7a6c5b4483981516af2fc59bde": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4282ee7d947e426ba863df9970e82f3f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cfe6be8fd8254bc084a81b1d06e86ae1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1817f6732a5f44c7adc75a644b1acef2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7551b282ef3a4387a801637de2d5c76e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69e5263c812c4542a9e5c31fefaa37fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7cc356ed20e94401b72a0e138ad0f5df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_acd39276db17439798a97abc56460b0f", + "IPY_MODEL_bda474c3b8184597a6a9bc6da0672a50", + "IPY_MODEL_20a66f9de4ed41c7ac9a8e817898ed9e" + ], + "layout": "IPY_MODEL_e662ba10fbae49d9b66172125dfc0717" + } + }, + "acd39276db17439798a97abc56460b0f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d452b32c54e14e41a17fd7d51862ba8e", + "placeholder": "β", + "style": "IPY_MODEL_d1f8f4568a444248b69022d58e3f1af0", + "value": "Batches:β100%" + } + }, + "bda474c3b8184597a6a9bc6da0672a50": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c2e30d78c234b1b8098d879442d3bac", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9bb8bf12010f42b2b17c10c7ccaa7bf8", + "value": 1 + } + }, + "20a66f9de4ed41c7ac9a8e817898ed9e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b2046db907349798e3ae774c15b25d2", + "placeholder": "β", + "style": "IPY_MODEL_3c18f449359f422f950543bd976fe323", + "value": "β1/1β[00:00<00:00,β18.91it/s]" + } + }, + "e662ba10fbae49d9b66172125dfc0717": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d452b32c54e14e41a17fd7d51862ba8e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d1f8f4568a444248b69022d58e3f1af0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0c2e30d78c234b1b8098d879442d3bac": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9bb8bf12010f42b2b17c10c7ccaa7bf8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2b2046db907349798e3ae774c15b25d2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c18f449359f422f950543bd976fe323": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "472b1acc4c5a4c48b2ec62be42d1830c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44e34588d6854737b0fb14b4b6a62a95", + "IPY_MODEL_03402ad03418435ca7a550e3246cd300", + "IPY_MODEL_811f115733b14ab4b242a8b11526016c" + ], + "layout": "IPY_MODEL_e61fdef1dc4b4d809168c0b441b0e6ac" + } + }, + "44e34588d6854737b0fb14b4b6a62a95": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_631c9a95127244c79875c829a7637df6", + "placeholder": "β", + "style": "IPY_MODEL_d25492ad867141bfa8d957d2464b8639", + "value": "Batches:β100%" + } + }, + "03402ad03418435ca7a550e3246cd300": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9df914248c214597bed7d7980c7a0afe", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4709067f3f554b93b3ef35e3f58cbf85", + "value": 1 + } + }, + "811f115733b14ab4b242a8b11526016c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02baf670942347d69c290452de8641e4", + "placeholder": "β", + "style": "IPY_MODEL_7611cfc7965649ba88ca57c1a9f9ccf3", + "value": "β1/1β[00:00<00:00,β13.00it/s]" + } + }, + "e61fdef1dc4b4d809168c0b441b0e6ac": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "631c9a95127244c79875c829a7637df6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d25492ad867141bfa8d957d2464b8639": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9df914248c214597bed7d7980c7a0afe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4709067f3f554b93b3ef35e3f58cbf85": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "02baf670942347d69c290452de8641e4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7611cfc7965649ba88ca57c1a9f9ccf3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "15ae23892b634a9f821a8fcee14e500b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b28d46c2ecdd46b9b3f2da871afbf1cb", + "IPY_MODEL_4b83e3caa8ec47169dca04ee9599adeb", + "IPY_MODEL_c83c23161674484e81f0db9856c23eb6" + ], + "layout": "IPY_MODEL_3ded85d9c34246e88f8ce693eb8025e5" + } + }, + "b28d46c2ecdd46b9b3f2da871afbf1cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ac8e976a32c4f5989392b8088546e00", + "placeholder": "β", + "style": "IPY_MODEL_ed4b0035752546cc81688a7a77ba27c0", + "value": "Batches:β100%" + } + }, + "4b83e3caa8ec47169dca04ee9599adeb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_269b1ad9dc7b4ebb94d7364c75f3f324", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2256ddab0ae1408abb10ba211a08f794", + "value": 1 + } + }, + "c83c23161674484e81f0db9856c23eb6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_42335bcbc6ee40a79d36c5159cc7da06", + "placeholder": "β", + "style": "IPY_MODEL_cf694e1b797246b096ae588973dc985f", + "value": "β1/1β[00:00<00:00,β14.00it/s]" + } + }, + "3ded85d9c34246e88f8ce693eb8025e5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ac8e976a32c4f5989392b8088546e00": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ed4b0035752546cc81688a7a77ba27c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "269b1ad9dc7b4ebb94d7364c75f3f324": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2256ddab0ae1408abb10ba211a08f794": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "42335bcbc6ee40a79d36c5159cc7da06": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf694e1b797246b096ae588973dc985f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } } } } diff --git a/docs/openapi_generator/pyopenapi/generator.py b/docs/openapi_generator/pyopenapi/generator.py index 66424ab15..23465257a 100644 --- a/docs/openapi_generator/pyopenapi/generator.py +++ b/docs/openapi_generator/pyopenapi/generator.py @@ -486,13 +486,22 @@ class Generator: parameters = path_parameters + query_parameters parameters += [ Parameter( - name="X-LlamaStack-ProviderData", + name="X-LlamaStack-Provider-Data", in_=ParameterLocation.Header, description="JSON-encoded provider data which will be made available to the adapter servicing the API", required=False, schema=self.schema_builder.classdef_to_ref(str), ) ] + parameters += [ + Parameter( + name="X-LlamaStack-Client-Version", + in_=ParameterLocation.Header, + description="Version of the client making the request. This is used to ensure that the client and server are compatible.", + required=False, + schema=self.schema_builder.classdef_to_ref(str), + ) + ] # data passed in payload if op.request_params: diff --git a/docs/resources/llama-stack-spec.html b/docs/resources/llama-stack-spec.html index 33112012b..0ce216479 100644 --- a/docs/resources/llama-stack-spec.html +++ b/docs/resources/llama-stack-spec.html @@ -41,13 +41,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -81,13 +90,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -121,13 +139,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -154,13 +181,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -201,13 +237,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -248,13 +293,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -288,13 +342,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -328,13 +391,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -375,13 +447,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -408,13 +489,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -441,13 +531,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -481,13 +580,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -521,13 +629,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -577,13 +694,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -649,13 +775,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -703,13 +838,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -748,13 +892,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -793,13 +946,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -851,13 +1013,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -896,13 +1067,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -958,13 +1138,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1003,13 +1192,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1048,13 +1246,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1097,13 +1304,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1118,6 +1334,100 @@ } } }, + "/alpha/tools/get": { + "get": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/Tool" + } + } + } + } + }, + "tags": [ + "ToolGroups" + ], + "parameters": [ + { + "name": "tool_name", + "in": "query", + "required": true, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ] + } + }, + "/alpha/toolgroups/get": { + "get": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ToolGroup" + } + } + } + } + }, + "tags": [ + "ToolGroups" + ], + "parameters": [ + { + "name": "toolgroup_id", + "in": "query", + "required": true, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ] + } + }, "/alpha/post-training/job/artifacts": { "get": { "responses": { @@ -1152,13 +1462,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1197,13 +1516,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1227,13 +1555,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1257,13 +1594,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1280,13 +1626,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1301,6 +1656,56 @@ } } }, + "/alpha/tool-runtime/invoke": { + "post": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ToolInvocationResult" + } + } + } + } + }, + "tags": [ + "ToolRuntime" + ], + "summary": "Run a tool with the given arguments", + "parameters": [ + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ], + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/InvokeToolRequest" + } + } + }, + "required": true + } + } + }, "/alpha/eval/job/cancel": { "post": { "responses": { @@ -1313,13 +1718,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1369,13 +1783,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1422,13 +1845,22 @@ } }, { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1452,13 +1884,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1482,13 +1923,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1525,13 +1975,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1555,13 +2014,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1588,13 +2056,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1624,17 +2101,83 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } }, + "/alpha/tool-runtime/list-tools": { + "post": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/jsonl": { + "schema": { + "$ref": "#/components/schemas/ToolDef" + } + } + } + } + }, + "tags": [ + "ToolRuntime" + ], + "parameters": [ + { + "name": "tool_group_id", + "in": "query", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ], + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ListRuntimeToolsRequest" + } + } + }, + "required": true + } + } + }, "/alpha/scoring-functions/list": { "get": { "responses": { @@ -1654,13 +2197,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1684,13 +2236,110 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ] + } + }, + "/alpha/toolgroups/list": { + "get": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/jsonl": { + "schema": { + "$ref": "#/components/schemas/ToolGroup" + } + } + } + } + }, + "tags": [ + "ToolGroups" + ], + "summary": "List tool groups with optional provider", + "parameters": [ + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ] + } + }, + "/alpha/tools/list": { + "get": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/jsonl": { + "schema": { + "$ref": "#/components/schemas/Tool" + } + } + } + } + }, + "tags": [ + "ToolGroups" + ], + "summary": "List tools with optional tool group", + "parameters": [ + { + "name": "tool_group_id", + "in": "query", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ] } @@ -1707,13 +2356,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1747,13 +2405,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1787,13 +2454,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1827,13 +2503,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1867,13 +2552,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1900,13 +2594,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1933,13 +2636,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -1962,13 +2674,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2002,13 +2723,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2035,13 +2765,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2075,13 +2814,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2096,6 +2844,49 @@ } } }, + "/alpha/toolgroups/register": { + "post": { + "responses": { + "200": { + "description": "OK" + } + }, + "tags": [ + "ToolGroups" + ], + "summary": "Register a tool group", + "parameters": [ + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ], + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/RegisterToolGroupRequest" + } + } + }, + "required": true + } + } + }, "/alpha/eval/run-eval": { "post": { "responses": { @@ -2115,13 +2906,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2155,13 +2955,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2188,13 +2997,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2228,13 +3046,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2268,13 +3095,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2308,13 +3144,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2348,13 +3193,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2381,13 +3235,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2414,13 +3277,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2447,13 +3319,22 @@ ], "parameters": [ { - "name": "X-LlamaStack-ProviderData", + "name": "X-LlamaStack-Provider-Data", "in": "header", "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", "required": false, "schema": { "type": "string" } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } } ], "requestBody": { @@ -2467,6 +3348,88 @@ "required": true } } + }, + "/alpha/toolgroups/unregister": { + "post": { + "responses": { + "200": { + "description": "OK" + } + }, + "tags": [ + "ToolGroups" + ], + "summary": "Unregister a tool group", + "parameters": [ + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ], + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/UnregisterToolGroupRequest" + } + } + }, + "required": true + } + } + }, + "/alpha/version": { + "get": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/VersionInfo" + } + } + } + } + }, + "tags": [ + "Inspect" + ], + "parameters": [ + { + "name": "X-LlamaStack-Provider-Data", + "in": "header", + "description": "JSON-encoded provider data which will be made available to the adapter servicing the API", + "required": false, + "schema": { + "type": "string" + } + }, + { + "name": "X-LlamaStack-Client-Version", + "in": "header", + "description": "Version of the client making the request. This is used to ensure that the client and server are compatible.", + "required": false, + "schema": { + "type": "string" + } + } + ] + } } }, "jsonSchemaDialect": "https://json-schema.org/draft/2020-12/schema", @@ -3414,29 +4377,16 @@ "type": "string" } }, - "tools": { + "toolgroups": { "type": "array", "items": { - "oneOf": [ - { - "$ref": "#/components/schemas/SearchToolDefinition" - }, - { - "$ref": "#/components/schemas/WolframAlphaToolDefinition" - }, - { - "$ref": "#/components/schemas/PhotogenToolDefinition" - }, - { - "$ref": "#/components/schemas/CodeInterpreterToolDefinition" - }, - { - "$ref": "#/components/schemas/FunctionCallToolDefinition" - }, - { - "$ref": "#/components/schemas/MemoryToolDefinition" - } - ] + "$ref": "#/components/schemas/AgentTool" + } + }, + "client_tools": { + "type": "array", + "items": { + "$ref": "#/components/schemas/ToolDef" } }, "tool_choice": { @@ -3469,477 +4419,142 @@ "enable_session_persistence" ] }, - "CodeInterpreterToolDefinition": { - "type": "object", - "properties": { - "input_shields": { - "type": "array", - "items": { - "type": "string" - } + "AgentTool": { + "oneOf": [ + { + "type": "string" }, - "output_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "type": { - "type": "string", - "const": "code_interpreter", - "default": "code_interpreter" - }, - "enable_inline_code_execution": { - "type": "boolean", - "default": true - }, - "remote_execution": { - "$ref": "#/components/schemas/RestAPIExecutionConfig" + { + "type": "object", + "properties": { + "name": { + "type": "string" + }, + "args": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + } + }, + "additionalProperties": false, + "required": [ + "name", + "args" + ] } - }, - "additionalProperties": false, - "required": [ - "type", - "enable_inline_code_execution" ] }, - "FunctionCallToolDefinition": { + "ToolDef": { "type": "object", "properties": { - "input_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "output_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "type": { - "type": "string", - "const": "function_call", - "default": "function_call" - }, - "function_name": { + "name": { "type": "string" }, "description": { "type": "string" }, "parameters": { - "type": "object", - "additionalProperties": { - "$ref": "#/components/schemas/ToolParamDefinition" + "type": "array", + "items": { + "$ref": "#/components/schemas/ToolParameter" } }, - "remote_execution": { - "$ref": "#/components/schemas/RestAPIExecutionConfig" + "metadata": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } } }, "additionalProperties": false, "required": [ - "type", - "function_name", - "description", - "parameters" + "name" ] }, - "MemoryToolDefinition": { + "ToolParameter": { "type": "object", "properties": { - "input_shields": { - "type": "array", - "items": { - "type": "string" - } + "name": { + "type": "string" }, - "output_shields": { - "type": "array", - "items": { - "type": "string" - } + "parameter_type": { + "type": "string" }, - "type": { - "type": "string", - "const": "memory", - "default": "memory" + "description": { + "type": "string" }, - "memory_bank_configs": { - "type": "array", - "items": { - "oneOf": [ - { - "type": "object", - "properties": { - "bank_id": { - "type": "string" - }, - "type": { - "type": "string", - "const": "vector", - "default": "vector" - } - }, - "additionalProperties": false, - "required": [ - "bank_id", - "type" - ] - }, - { - "type": "object", - "properties": { - "bank_id": { - "type": "string" - }, - "type": { - "type": "string", - "const": "keyvalue", - "default": "keyvalue" - }, - "keys": { - "type": "array", - "items": { - "type": "string" - } - } - }, - "additionalProperties": false, - "required": [ - "bank_id", - "type", - "keys" - ] - }, - { - "type": "object", - "properties": { - "bank_id": { - "type": "string" - }, - "type": { - "type": "string", - "const": "keyword", - "default": "keyword" - } - }, - "additionalProperties": false, - "required": [ - "bank_id", - "type" - ] - }, - { - "type": "object", - "properties": { - "bank_id": { - "type": "string" - }, - "type": { - "type": "string", - "const": "graph", - "default": "graph" - }, - "entities": { - "type": "array", - "items": { - "type": "string" - } - } - }, - "additionalProperties": false, - "required": [ - "bank_id", - "type", - "entities" - ] - } - ] - } + "required": { + "type": "boolean", + "default": true }, - "query_generator_config": { + "default": { "oneOf": [ { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "default", - "default": "default" - }, - "sep": { - "type": "string", - "default": " " - } - }, - "additionalProperties": false, - "required": [ - "type", - "sep" - ] + "type": "null" }, { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "llm", - "default": "llm" - }, - "model": { - "type": "string" - }, - "template": { - "type": "string" - } - }, - "additionalProperties": false, - "required": [ - "type", - "model", - "template" - ] + "type": "boolean" }, { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "custom", - "default": "custom" - } - }, - "additionalProperties": false, - "required": [ - "type" - ] + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" } ] - }, - "max_tokens_in_context": { - "type": "integer", - "default": 4096 - }, - "max_chunks": { - "type": "integer", - "default": 10 } }, "additionalProperties": false, "required": [ - "type", - "memory_bank_configs", - "query_generator_config", - "max_tokens_in_context", - "max_chunks" - ] - }, - "PhotogenToolDefinition": { - "type": "object", - "properties": { - "input_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "output_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "type": { - "type": "string", - "const": "photogen", - "default": "photogen" - }, - "remote_execution": { - "$ref": "#/components/schemas/RestAPIExecutionConfig" - } - }, - "additionalProperties": false, - "required": [ - "type" - ] - }, - "RestAPIExecutionConfig": { - "type": "object", - "properties": { - "url": { - "$ref": "#/components/schemas/URL" - }, - "method": { - "$ref": "#/components/schemas/RestAPIMethod" - }, - "params": { - "type": "object", - "additionalProperties": { - "oneOf": [ - { - "type": "null" - }, - { - "type": "boolean" - }, - { - "type": "number" - }, - { - "type": "string" - }, - { - "type": "array" - }, - { - "type": "object" - } - ] - } - }, - "headers": { - "type": "object", - "additionalProperties": { - "oneOf": [ - { - "type": "null" - }, - { - "type": "boolean" - }, - { - "type": "number" - }, - { - "type": "string" - }, - { - "type": "array" - }, - { - "type": "object" - } - ] - } - }, - "body": { - "type": "object", - "additionalProperties": { - "oneOf": [ - { - "type": "null" - }, - { - "type": "boolean" - }, - { - "type": "number" - }, - { - "type": "string" - }, - { - "type": "array" - }, - { - "type": "object" - } - ] - } - } - }, - "additionalProperties": false, - "required": [ - "url", - "method" - ] - }, - "RestAPIMethod": { - "type": "string", - "enum": [ - "GET", - "POST", - "PUT", - "DELETE" - ] - }, - "SearchToolDefinition": { - "type": "object", - "properties": { - "input_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "output_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "type": { - "type": "string", - "const": "brave_search", - "default": "brave_search" - }, - "api_key": { - "type": "string" - }, - "engine": { - "type": "string", - "enum": [ - "bing", - "brave", - "tavily" - ], - "default": "brave" - }, - "remote_execution": { - "$ref": "#/components/schemas/RestAPIExecutionConfig" - } - }, - "additionalProperties": false, - "required": [ - "type", - "api_key", - "engine" - ] - }, - "WolframAlphaToolDefinition": { - "type": "object", - "properties": { - "input_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "output_shields": { - "type": "array", - "items": { - "type": "string" - } - }, - "type": { - "type": "string", - "const": "wolfram_alpha", - "default": "wolfram_alpha" - }, - "api_key": { - "type": "string" - }, - "remote_execution": { - "$ref": "#/components/schemas/RestAPIExecutionConfig" - } - }, - "additionalProperties": false, - "required": [ - "type", - "api_key" + "name", + "parameter_type", + "description", + "required" ] }, "CreateAgentRequest": { @@ -3994,38 +4609,6 @@ "session_id" ] }, - "Attachment": { - "type": "object", - "properties": { - "content": { - "oneOf": [ - { - "type": "string" - }, - { - "$ref": "#/components/schemas/InterleavedContentItem" - }, - { - "type": "array", - "items": { - "$ref": "#/components/schemas/InterleavedContentItem" - } - }, - { - "$ref": "#/components/schemas/URL" - } - ] - }, - "mime_type": { - "type": "string" - } - }, - "additionalProperties": false, - "required": [ - "content", - "mime_type" - ] - }, "CreateAgentTurnRequest": { "type": "object", "properties": { @@ -4048,14 +4631,49 @@ ] } }, - "attachments": { - "type": "array", - "items": { - "$ref": "#/components/schemas/Attachment" - } - }, "stream": { "type": "boolean" + }, + "documents": { + "type": "array", + "items": { + "type": "object", + "properties": { + "content": { + "oneOf": [ + { + "type": "string" + }, + { + "$ref": "#/components/schemas/InterleavedContentItem" + }, + { + "type": "array", + "items": { + "$ref": "#/components/schemas/InterleavedContentItem" + } + }, + { + "$ref": "#/components/schemas/URL" + } + ] + }, + "mime_type": { + "type": "string" + } + }, + "additionalProperties": false, + "required": [ + "content", + "mime_type" + ] + } + }, + "toolgroups": { + "type": "array", + "items": { + "$ref": "#/components/schemas/AgentTool" + } } }, "additionalProperties": false, @@ -4111,6 +4729,9 @@ "memory_retrieval" ] }, + "step_id": { + "type": "string" + }, "step_details": { "oneOf": [ { @@ -4132,6 +4753,7 @@ "required": [ "event_type", "step_type", + "step_id", "step_details" ] }, @@ -4538,7 +5160,36 @@ "output_attachments": { "type": "array", "items": { - "$ref": "#/components/schemas/Attachment" + "type": "object", + "properties": { + "content": { + "oneOf": [ + { + "type": "string" + }, + { + "$ref": "#/components/schemas/InterleavedContentItem" + }, + { + "type": "array", + "items": { + "$ref": "#/components/schemas/InterleavedContentItem" + } + }, + { + "$ref": "#/components/schemas/URL" + } + ] + }, + "mime_type": { + "type": "string" + } + }, + "additionalProperties": false, + "required": [ + "content", + "mime_type" + ] } }, "started_at": { @@ -5811,6 +6462,138 @@ "start_time" ] }, + "Tool": { + "type": "object", + "properties": { + "identifier": { + "type": "string" + }, + "provider_resource_id": { + "type": "string" + }, + "provider_id": { + "type": "string" + }, + "type": { + "type": "string", + "const": "tool", + "default": "tool" + }, + "toolgroup_id": { + "type": "string" + }, + "tool_host": { + "$ref": "#/components/schemas/ToolHost" + }, + "description": { + "type": "string" + }, + "parameters": { + "type": "array", + "items": { + "$ref": "#/components/schemas/ToolParameter" + } + }, + "metadata": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + } + }, + "additionalProperties": false, + "required": [ + "identifier", + "provider_resource_id", + "provider_id", + "type", + "toolgroup_id", + "tool_host", + "description", + "parameters" + ] + }, + "ToolHost": { + "type": "string", + "enum": [ + "distribution", + "client", + "model_context_protocol" + ] + }, + "ToolGroup": { + "type": "object", + "properties": { + "identifier": { + "type": "string" + }, + "provider_resource_id": { + "type": "string" + }, + "provider_id": { + "type": "string" + }, + "type": { + "type": "string", + "const": "tool_group", + "default": "tool_group" + }, + "mcp_endpoint": { + "$ref": "#/components/schemas/URL" + }, + "args": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + } + }, + "additionalProperties": false, + "required": [ + "identifier", + "provider_resource_id", + "provider_id", + "type" + ] + }, "Checkpoint": { "description": "Checkpoint created during training runs" }, @@ -6011,6 +6794,62 @@ "documents" ] }, + "InvokeToolRequest": { + "type": "object", + "properties": { + "tool_name": { + "type": "string" + }, + "args": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + } + }, + "additionalProperties": false, + "required": [ + "tool_name", + "args" + ] + }, + "ToolInvocationResult": { + "type": "object", + "properties": { + "content": { + "$ref": "#/components/schemas/InterleavedContent" + }, + "error_message": { + "type": "string" + }, + "error_code": { + "type": "integer" + } + }, + "additionalProperties": false, + "required": [ + "content" + ] + }, "JobCancelRequest": { "type": "object", "properties": { @@ -6066,6 +6905,15 @@ "provider_types" ] }, + "ListRuntimeToolsRequest": { + "type": "object", + "properties": { + "mcp_endpoint": { + "$ref": "#/components/schemas/URL" + } + }, + "additionalProperties": false + }, "LogSeverity": { "type": "string", "enum": [ @@ -6457,6 +7305,9 @@ "gradient_accumulation_steps": { "type": "integer" }, + "max_validation_steps": { + "type": "integer" + }, "data_config": { "$ref": "#/components/schemas/DataConfig" }, @@ -6476,6 +7327,7 @@ "n_epochs", "max_steps_per_epoch", "gradient_accumulation_steps", + "max_validation_steps", "data_config", "optimizer_config" ] @@ -7153,6 +8005,50 @@ "shield_id" ] }, + "RegisterToolGroupRequest": { + "type": "object", + "properties": { + "toolgroup_id": { + "type": "string" + }, + "provider_id": { + "type": "string" + }, + "mcp_endpoint": { + "$ref": "#/components/schemas/URL" + }, + "args": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + } + }, + "additionalProperties": false, + "required": [ + "toolgroup_id", + "provider_id" + ] + }, "RunEvalRequest": { "type": "object", "properties": { @@ -7686,6 +8582,30 @@ "required": [ "model_id" ] + }, + "UnregisterToolGroupRequest": { + "type": "object", + "properties": { + "tool_group_id": { + "type": "string" + } + }, + "additionalProperties": false, + "required": [ + "tool_group_id" + ] + }, + "VersionInfo": { + "type": "object", + "properties": { + "version": { + "type": "string" + } + }, + "additionalProperties": false, + "required": [ + "version" + ] } }, "responses": {} @@ -7716,6 +8636,10 @@ "name": "AgentStepResponse", "description": "