delete eval / scoring / scoring_functions api

This commit is contained in:
Xi Yan 2025-03-18 21:32:56 -07:00
parent 08c0c5505e
commit a475d72155
11 changed files with 71 additions and 451 deletions

View file

@ -20,8 +20,6 @@ class Api(Enum):
agents = "agents"
vector_io = "vector_io"
datasetio = "datasetio"
scoring = "scoring"
eval = "eval"
post_training = "post_training"
tool_runtime = "tool_runtime"
@ -31,7 +29,6 @@ class Api(Enum):
shields = "shields"
vector_dbs = "vector_dbs"
datasets = "datasets"
scoring_functions = "scoring_functions"
benchmarks = "benchmarks"
tool_groups = "tool_groups"

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .eval import * # noqa: F401 F403

View file

@ -1,145 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.agents import AgentConfig
from llama_stack.apis.common.job_types import Job, JobStatus
from llama_stack.apis.inference import SamplingParams, SystemMessage
from llama_stack.apis.scoring import ScoringResult
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@json_schema_type
class ModelCandidate(BaseModel):
"""A model candidate for evaluation.
:param model: The model ID to evaluate.
:param sampling_params: The sampling parameters for the model.
:param system_message: (Optional) The system message providing instructions or context to the model.
"""
type: Literal["model"] = "model"
model: str
sampling_params: SamplingParams
system_message: Optional[SystemMessage] = None
@json_schema_type
class AgentCandidate(BaseModel):
"""An agent candidate for evaluation.
:param config: The configuration for the agent candidate.
"""
type: Literal["agent"] = "agent"
config: AgentConfig
EvalCandidate = register_schema(
Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")],
name="EvalCandidate",
)
@json_schema_type
class BenchmarkConfig(BaseModel):
"""A benchmark configuration for evaluation.
:param eval_candidate: The candidate to evaluate.
:param scoring_params: Map between scoring function id and parameters for each scoring function you want to run
:param num_examples: (Optional) The number of examples to evaluate. If not provided, all examples in the dataset will be evaluated
"""
eval_candidate: EvalCandidate
scoring_params: Dict[str, ScoringFnParams] = Field(
description="Map between scoring function id and parameters for each scoring function you want to run",
default_factory=dict,
)
num_examples: Optional[int] = Field(
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
default=None,
)
# we could optinally add any specific dataset config here
@json_schema_type
class EvaluateResponse(BaseModel):
"""The response from an evaluation.
:param generations: The generations from the evaluation.
:param scores: The scores from the evaluation.
"""
generations: List[Dict[str, Any]]
# each key in the dict is a scoring function name
scores: Dict[str, ScoringResult]
class Eval(Protocol):
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST")
async def run_eval(
self,
benchmark_id: str,
benchmark_config: BenchmarkConfig,
) -> Job:
"""Run an evaluation on a benchmark.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param benchmark_config: The configuration for the benchmark.
:return: The job that was created to run the evaluation.
"""
@webmethod(route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST")
async def evaluate_rows(
self,
benchmark_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
"""Evaluate a list of rows on a benchmark.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param input_rows: The rows to evaluate.
:param scoring_functions: The scoring functions to use for the evaluation.
:param benchmark_config: The configuration for the benchmark.
:return: EvaluateResponse object containing generations and scores
"""
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
async def job_status(self, benchmark_id: str, job_id: str) -> JobStatus:
"""Get the status of a job.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param job_id: The ID of the job to get the status of.
:return: The status of the evaluationjob.
"""
...
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="DELETE")
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
"""Cancel a job.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param job_id: The ID of the job to cancel.
"""
...
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result", method="GET")
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
"""Get the result of a job.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param job_id: The ID of the job to get the result of.
:return: The result of the job.
"""

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .scoring import * # noqa: F401 F403

View file

@ -1,78 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from pydantic import BaseModel
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
from llama_stack.schema_utils import json_schema_type, webmethod
# mapping of metric to value
ScoringResultRow = Dict[str, Any]
@json_schema_type
class ScoringResult(BaseModel):
"""
A scoring result for a single row.
:param score_rows: The scoring result for each row. Each row is a map of column name to value.
:param aggregated_results: Map of metric name to aggregated value
"""
score_rows: List[ScoringResultRow]
# aggregated metrics to value
aggregated_results: Dict[str, Any]
@json_schema_type
class ScoreBatchResponse(BaseModel):
dataset_id: Optional[str] = None
results: Dict[str, ScoringResult]
@json_schema_type
class ScoreResponse(BaseModel):
"""
The response from scoring.
:param results: A map of scoring function name to ScoringResult.
"""
# each key in the dict is a scoring function name
results: Dict[str, ScoringResult]
class ScoringFunctionStore(Protocol):
def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn: ...
@runtime_checkable
class Scoring(Protocol):
scoring_function_store: ScoringFunctionStore
@webmethod(route="/scoring/score-batch", method="POST")
async def score_batch(
self,
dataset_id: str,
scoring_functions: Dict[str, Optional[ScoringFnParams]],
save_results_dataset: bool = False,
) -> ScoreBatchResponse: ...
@webmethod(route="/scoring/score", method="POST")
async def score(
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]],
) -> ScoreResponse:
"""Score a list of rows.
:param input_rows: The rows to score.
:param scoring_functions: The scoring functions to use for the scoring.
:return: ScoreResponse object containing rows and aggregated results
"""
...

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .scoring_functions import * # noqa: F401 F403

View file

@ -1,149 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import (
Any,
Dict,
List,
Literal,
Optional,
Protocol,
Union,
runtime_checkable,
)
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
# Perhaps more structure can be imposed on these functions. Maybe they could be associated
# with standard metrics so they can be rolled up?
@json_schema_type
class ScoringFnParamsType(Enum):
llm_as_judge = "llm_as_judge"
regex_parser = "regex_parser"
basic = "basic"
@json_schema_type
class AggregationFunctionType(Enum):
average = "average"
median = "median"
categorical_count = "categorical_count"
accuracy = "accuracy"
@json_schema_type
class LLMAsJudgeScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.llm_as_judge.value] = ScoringFnParamsType.llm_as_judge.value
judge_model: str
prompt_template: Optional[str] = None
judge_score_regexes: Optional[List[str]] = Field(
description="Regexes to extract the answer from generated response",
default_factory=list,
)
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
@json_schema_type
class RegexParserScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.regex_parser.value] = ScoringFnParamsType.regex_parser.value
parsing_regexes: Optional[List[str]] = Field(
description="Regex to extract the answer from generated response",
default_factory=list,
)
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
@json_schema_type
class BasicScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.basic.value] = ScoringFnParamsType.basic.value
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
ScoringFnParams = register_schema(
Annotated[
Union[
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
BasicScoringFnParams,
],
Field(discriminator="type"),
],
name="ScoringFnParams",
)
class CommonScoringFnFields(BaseModel):
description: Optional[str] = None
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this definition",
)
return_type: ParamType = Field(
description="The return type of the deterministic function",
)
params: Optional[ScoringFnParams] = Field(
description="The parameters for the scoring function for benchmark eval, these can be overridden for app eval",
default=None,
)
@json_schema_type
class ScoringFn(CommonScoringFnFields, Resource):
type: Literal[ResourceType.scoring_function.value] = ResourceType.scoring_function.value
@property
def scoring_fn_id(self) -> str:
return self.identifier
@property
def provider_scoring_fn_id(self) -> str:
return self.provider_resource_id
class ScoringFnInput(CommonScoringFnFields, BaseModel):
scoring_fn_id: str
provider_id: Optional[str] = None
provider_scoring_fn_id: Optional[str] = None
class ListScoringFunctionsResponse(BaseModel):
data: List[ScoringFn]
@runtime_checkable
class ScoringFunctions(Protocol):
@webmethod(route="/scoring-functions", method="GET")
async def list_scoring_functions(self) -> ListScoringFunctionsResponse: ...
@webmethod(route="/scoring-functions/{scoring_fn_id:path}", method="GET")
async def get_scoring_function(self, scoring_fn_id: str, /) -> ScoringFn: ...
@webmethod(route="/scoring-functions", method="POST")
async def register_scoring_function(
self,
scoring_fn_id: str,
description: str,
return_type: ParamType,
provider_scoring_fn_id: Optional[str] = None,
provider_id: Optional[str] = None,
params: Optional[ScoringFnParams] = None,
) -> None: ...

View file

@ -39,14 +39,6 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
routing_table_api=Api.datasets,
router_api=Api.datasetio,
),
AutoRoutedApiInfo(
routing_table_api=Api.scoring_functions,
router_api=Api.scoring,
),
AutoRoutedApiInfo(
routing_table_api=Api.benchmarks,
router_api=Api.eval,
),
AutoRoutedApiInfo(
routing_table_api=Api.tool_groups,
router_api=Api.tool_runtime,
@ -55,8 +47,14 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
def providable_apis() -> List[Api]:
routing_table_apis = {x.routing_table_api for x in builtin_automatically_routed_apis()}
return [api for api in Api if api not in routing_table_apis and api != Api.inspect and api != Api.providers]
routing_table_apis = {
x.routing_table_api for x in builtin_automatically_routed_apis()
}
return [
api
for api in Api
if api not in routing_table_apis and api != Api.inspect and api != Api.providers
]
def get_provider_registry() -> Dict[Api, Dict[str, ProviderSpec]]:

View file

@ -23,12 +23,6 @@ from llama_stack.apis.datasets import (
)
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.scoring_functions import (
ListScoringFunctionsResponse,
ScoringFn,
ScoringFnParams,
ScoringFunctions,
)
from llama_stack.apis.shields import ListShieldsResponse, Shield, Shields
from llama_stack.apis.tools import (
ListToolGroupsResponse,
@ -68,10 +62,6 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable
return await p.register_vector_db(obj)
elif api == Api.datasetio:
return await p.register_dataset(obj)
elif api == Api.scoring:
return await p.register_scoring_function(obj)
elif api == Api.eval:
return await p.register_benchmark(obj)
elif api == Api.tool_runtime:
return await p.register_tool(obj)
else:
@ -105,7 +95,9 @@ class CommonRoutingTableImpl(RoutingTable):
self.dist_registry = dist_registry
async def initialize(self) -> None:
async def add_objects(objs: List[RoutableObjectWithProvider], provider_id: str, cls) -> None:
async def add_objects(
objs: List[RoutableObjectWithProvider], provider_id: str, cls
) -> None:
for obj in objs:
if cls is None:
obj.provider_id = provider_id
@ -127,12 +119,6 @@ class CommonRoutingTableImpl(RoutingTable):
p.vector_db_store = self
elif api == Api.datasetio:
p.dataset_store = self
elif api == Api.scoring:
p.scoring_function_store = self
scoring_functions = await p.list_scoring_functions()
await add_objects(scoring_functions, pid, ScoringFn)
elif api == Api.eval:
p.benchmark_store = self
elif api == Api.tool_runtime:
p.tool_store = self
@ -140,7 +126,9 @@ class CommonRoutingTableImpl(RoutingTable):
for p in self.impls_by_provider_id.values():
await p.shutdown()
def get_provider_impl(self, routing_key: str, provider_id: Optional[str] = None) -> Any:
def get_provider_impl(
self, routing_key: str, provider_id: Optional[str] = None
) -> Any:
def apiname_object():
if isinstance(self, ModelsRoutingTable):
return ("Inference", "model")
@ -150,8 +138,6 @@ class CommonRoutingTableImpl(RoutingTable):
return ("VectorIO", "vector_db")
elif isinstance(self, DatasetsRoutingTable):
return ("DatasetIO", "dataset")
elif isinstance(self, ScoringFunctionsRoutingTable):
return ("Scoring", "scoring_function")
elif isinstance(self, BenchmarksRoutingTable):
return ("Eval", "benchmark")
elif isinstance(self, ToolGroupsRoutingTable):
@ -178,7 +164,9 @@ class CommonRoutingTableImpl(RoutingTable):
raise ValueError(f"Provider not found for `{routing_key}`")
async def get_object_by_identifier(self, type: str, identifier: str) -> Optional[RoutableObjectWithProvider]:
async def get_object_by_identifier(
self, type: str, identifier: str
) -> Optional[RoutableObjectWithProvider]:
# Get from disk registry
obj = await self.dist_registry.get(type, identifier)
if not obj:
@ -188,9 +176,13 @@ class CommonRoutingTableImpl(RoutingTable):
async def unregister_object(self, obj: RoutableObjectWithProvider) -> None:
await self.dist_registry.delete(obj.type, obj.identifier)
await unregister_object_from_provider(obj, self.impls_by_provider_id[obj.provider_id])
await unregister_object_from_provider(
obj, self.impls_by_provider_id[obj.provider_id]
)
async def register_object(self, obj: RoutableObjectWithProvider) -> RoutableObjectWithProvider:
async def register_object(
self, obj: RoutableObjectWithProvider
) -> RoutableObjectWithProvider:
# if provider_id is not specified, pick an arbitrary one from existing entries
if not obj.provider_id and len(self.impls_by_provider_id) > 0:
obj.provider_id = list(self.impls_by_provider_id.keys())[0]
@ -248,7 +240,9 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
if model_type is None:
model_type = ModelType.llm
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
raise ValueError("Embedding model must have an embedding dimension in its metadata")
raise ValueError(
"Embedding model must have an embedding dimension in its metadata"
)
model = Model(
identifier=model_id,
provider_resource_id=provider_model_id,
@ -268,7 +262,9 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
async def list_shields(self) -> ListShieldsResponse:
return ListShieldsResponse(data=await self.get_all_with_type(ResourceType.shield.value))
return ListShieldsResponse(
data=await self.get_all_with_type(ResourceType.shield.value)
)
async def get_shield(self, identifier: str) -> Shield:
shield = await self.get_object_by_identifier("shield", identifier)
@ -333,14 +329,18 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
f"No provider specified and multiple providers available. Arbitrarily selected the first provider {provider_id}."
)
else:
raise ValueError("No provider available. Please configure a vector_io provider.")
raise ValueError(
"No provider available. Please configure a vector_io provider."
)
model = await self.get_object_by_identifier("model", embedding_model)
if model is None:
raise ValueError(f"Model {embedding_model} not found")
if model.model_type != ModelType.embedding:
raise ValueError(f"Model {embedding_model} is not an embedding model")
if "embedding_dimension" not in model.metadata:
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
raise ValueError(
f"Model {embedding_model} does not have an embedding dimension"
)
vector_db_data = {
"identifier": vector_db_id,
"type": ResourceType.vector_db.value,
@ -362,7 +362,9 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
async def list_datasets(self) -> ListDatasetsResponse:
return ListDatasetsResponse(data=await self.get_all_with_type(ResourceType.dataset.value))
return ListDatasetsResponse(
data=await self.get_all_with_type(ResourceType.dataset.value)
)
async def get_dataset(self, dataset_id: str) -> Dataset:
dataset = await self.get_object_by_identifier("dataset", dataset_id)
@ -418,10 +420,14 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
async def list_scoring_functions(self) -> ListScoringFunctionsResponse:
return ListScoringFunctionsResponse(data=await self.get_all_with_type(ResourceType.scoring_function.value))
return ListScoringFunctionsResponse(
data=await self.get_all_with_type(ResourceType.scoring_function.value)
)
async def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn:
scoring_fn = await self.get_object_by_identifier("scoring_function", scoring_fn_id)
scoring_fn = await self.get_object_by_identifier(
"scoring_function", scoring_fn_id
)
if scoring_fn is None:
raise ValueError(f"Scoring function '{scoring_fn_id}' not found")
return scoring_fn
@ -485,7 +491,9 @@ class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
# TODO (xiyan): we will need a way to infer provider_id for evaluation
# keep it as meta-reference for now
if len(self.impls_by_provider_id) == 0:
raise ValueError("No evaluation providers available. Please configure an evaluation provider.")
raise ValueError(
"No evaluation providers available. Please configure an evaluation provider."
)
provider_id = list(self.impls_by_provider_id.keys())[0]
benchmark = Benchmark(
@ -527,8 +535,12 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
args: Optional[Dict[str, Any]] = None,
) -> None:
tools = []
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(toolgroup_id, mcp_endpoint)
tool_host = ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(
toolgroup_id, mcp_endpoint
)
tool_host = (
ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
)
for tool_def in tool_defs:
tools.append(

View file

@ -17,7 +17,6 @@ from llama_stack.apis.batch_inference import BatchInference
from llama_stack.apis.benchmarks import Benchmarks
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval import Eval
from llama_stack.apis.evaluation import Evaluation
from llama_stack.apis.files import Files
from llama_stack.apis.graders import Graders
@ -27,8 +26,6 @@ from llama_stack.apis.models import Models
from llama_stack.apis.post_training import PostTraining
from llama_stack.apis.providers import Providers
from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
from llama_stack.apis.shields import Shields
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
from llama_stack.apis.telemetry import Telemetry
@ -117,7 +114,9 @@ class EnvVarError(Exception):
def __init__(self, var_name: str, path: str = ""):
self.var_name = var_name
self.path = path
super().__init__(f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}")
super().__init__(
f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}"
)
def redact_sensitive_fields(data: Dict[str, Any]) -> Dict[str, Any]:
@ -208,7 +207,9 @@ def validate_env_pair(env_pair: str) -> tuple[str, str]:
if not key:
raise ValueError(f"Empty key in environment variable pair: {env_pair}")
if not all(c.isalnum() or c == "_" for c in key):
raise ValueError(f"Key must contain only alphanumeric characters and underscores: {key}")
raise ValueError(
f"Key must contain only alphanumeric characters and underscores: {key}"
)
return key, value
except ValueError as e:
raise ValueError(
@ -221,14 +222,20 @@ def validate_env_pair(env_pair: str) -> tuple[str, str]:
async def construct_stack(
run_config: StackRunConfig, provider_registry: Optional[ProviderRegistry] = None
) -> Dict[Api, Any]:
dist_registry, _ = await create_dist_registry(run_config.metadata_store, run_config.image_name)
impls = await resolve_impls(run_config, provider_registry or get_provider_registry(), dist_registry)
dist_registry, _ = await create_dist_registry(
run_config.metadata_store, run_config.image_name
)
impls = await resolve_impls(
run_config, provider_registry or get_provider_registry(), dist_registry
)
await register_resources(run_config, impls)
return impls
def get_stack_run_config_from_template(template: str) -> StackRunConfig:
template_path = importlib.resources.files("llama_stack") / f"templates/{template}/run.yaml"
template_path = (
importlib.resources.files("llama_stack") / f"templates/{template}/run.yaml"
)
with importlib.resources.as_file(template_path) as path:
if not path.exists():
@ -271,7 +278,9 @@ def run_config_from_adhoc_config_spec(
# call method "sample_run_config" on the provider spec config class
provider_config_type = instantiate_class_type(provider_spec.config_class)
provider_config = replace_env_vars(provider_config_type.sample_run_config(__distro_dir__=distro_dir))
provider_config = replace_env_vars(
provider_config_type.sample_run_config(__distro_dir__=distro_dir)
)
provider_configs_by_api[api_str] = [
Provider(

View file

@ -168,7 +168,6 @@ exclude = [
"^llama_stack/apis/common/training_types\\.py$",
"^llama_stack/apis/datasetio/datasetio\\.py$",
"^llama_stack/apis/datasets/datasets\\.py$",
"^llama_stack/apis/eval/eval\\.py$",
"^llama_stack/apis/files/files\\.py$",
"^llama_stack/apis/inference/inference\\.py$",
"^llama_stack/apis/inspect/inspect\\.py$",
@ -177,8 +176,6 @@ exclude = [
"^llama_stack/apis/providers/providers\\.py$",
"^llama_stack/apis/resource\\.py$",
"^llama_stack/apis/safety/safety\\.py$",
"^llama_stack/apis/scoring/scoring\\.py$",
"^llama_stack/apis/scoring_functions/scoring_functions\\.py$",
"^llama_stack/apis/shields/shields\\.py$",
"^llama_stack/apis/synthetic_data_generation/synthetic_data_generation\\.py$",
"^llama_stack/apis/telemetry/telemetry\\.py$",